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DEDICATION

These Proceedings are dedicated to the Recherches Scientifiques et des Inventions for

memory of Roger Brard. He expected to attend his work on the exhaust of internal combustion
this Conference together with his wife Th6r~se motors (1Q32). a prize from the Acadlie des
and was to take part In it both as a speaker and as Sciences for his design of the propellers of the
a chairman. A short illness ended with his death liner Normandie (1937), a further prize from the
on July 15th, a culmination of many years of Acad6mie for contributions to ship hydrodynam-
uncertain health. ics (1955), end the David W. Taylor medal of

Roger Brard's involvement with ships was both SNAME (1974). He was a Commandeur of the
broad and deep, touching upon almost every Lglon d'Honneur, a member of the Acad6mie de
aspect of naval architecture. However, ship- Marine and a member of the Acad6mie des
hydrodynamic problems were an ever recurring Sc!ances. He served as president of the latter
theme, and in recent years he devoted his efforts during 1972-73. He was also a member of the
principally to these. Earlier he was also known for Natlonal Academy of Engineering of the U.S.A. In

his contributions to probability theory and he 1950, he was president of the French Mathematical
regularly lectured on this subject during his years Society Much n:re could be added to this list.

at the Ecole Pirlytechnique. Few of those who It is not surprising that Roger Brard should have
know only h!:' recant work on resistance and been g:ien positions and responsibilities
maneuverability or his earlier pioneering work on corresponding to his abilities. Again tha list is not
pitching and rolling of ships under way are likely complete. In 1941, he was chief of the French
to be aware of the breadth of his activities in ship towing tank, the Bassln d'Essais cies Car~nes, and
theory, fluid dynamics and mathematics. In the was its director from 1962-1970. He was Professor
following paragraph we try to give some idea of of Applied Mathematics at the Ecols Polytech-
thisbrsadth. nIque from 19.2-1969 and also Prcfessor of

Brard's doctoral thesis (In rrathematIrs) was Hydrodynamics from 1944-1969 at the Ecole
"On some oropertles of the geometry of ship Nationaie Sup6rieure du Gnle Maritime, the
hulls" (1929). The following year there was a paper French school of naval architecture. He was
on the rohatilg of boiler feed water and the year director of this school from 195M-1962. After
after that. one on the exhaust of internal retiring from the Ecole Polyfechnlque ano the
combustion engines. To give a further Idea of the Ecole du Gknie Maritime, he began a new
almost Incredible extent of his activities, a academic career in 1970 at the Ecole Nationale
sampling of topics on which there are published Suplrleure de Mlcniqe of the University of
papers follows: theory and design of propellers, Nantes. Here he developed a special course for
acdd mass in rolling, effect of added mass and advanced training In naval hydrodynamics. In 1973
wave generation on stopping of ships, nonlinear he was Invited to give tire David Taylor Lectures at
oscillations, statistical theory of turbulence, the the David Taylor Ship Research and Development
law of large numnbers, siationar) random Center and on two occasions gave courses of
processes, model testing of towed barges, lectures at the University of Michigan. He had
representation of hulls by source-sink distribu- been chrairnn of the Resistance Committee of
tions, -ell-propelled model tests, sea trials of varl the I rTC since 1963
ous ships and comparison with model tests, flow In addition to having outstanding scientific and
about deformable profiles, cavitation. And of course administrative talents, Roger Brard was also a
the topics mentioned earlier The list Is not ex- warm human being, reserved rather than ebullient,
naustive. Furthermora, during 1932-38 while at but aao a good companion and a witty raconteur
the Arsenal at Brat lre was In charge of repairs and conversationalist. To many of us he was a
w ieveral cruisers, of the construction of another. cherished friend He vice an indefatigable worker
arid of the arniament of three baltleships. In spite of his poor health and strove constantly

His talents and contributions were not for excellence He was just past 70 when he died
unrecognired in France and abroad We mention and would certelily have accomplished nuch
first a few of his prizes, chosen to show their more f he had been spared We hall miss him.
diversity, a medal from the Office National des
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PREFACE

Although theoretical ship hydrodynamics has made steady if not dramatic progress during
the last thirty years, it suems evident that this progress has been achieved for the most
part by application of various methods for ieplaclng the difficult nonlinear equations by
approximate ones, In particular by the use of perturbati,n methods. The simultaneous
spectacular growth of computing machines and ,he;r impact on the development of
numerical analysis were not ignored, but their influenre on ship hydrodynamics was
primarily in widening the possibilities of computing derived formulas and almost not at all
in altering the methods of approach to the problems themselves. It had been evident for
several years that the time was appropriate for taking formal notice of this fact and of
encouraging wider participation in ship hydrodynamics of persons with stroig beck.
grounds in numerical analysis and computing. The First International Conference on
Numerical Ship Hydrodynamics was In risponse to this need. it brought together researchers
of rather d;verse backgrounds, with the aim of giving to each a forum for his own approach
to ship-hydrodynamic calculations and of providing opportunitie for interaction.

This first Conference, held in October 1975 In the National Bureau of Standards In Gaithersburg,
Md., was by all criteria a notable success. The papers were interesting and the opportunities
fo; discussion, both formal and informal, were adequate. Furthermore, the Proceedings
appeared in a remarkabiy short time as such things go. It was evident tMlat a second Con-
ference was both deslrablo and desired. The present Proceedings are the result of this
second Conference, held in b,.' -ley on September 19-21, 1977 and sponsored jointly by
the David Taylor Naval Ship Researc, 1nd Development Center, the Office of Naval Research
and the University of California Berkeley. .'en mere mention of the O'fice of Naval Resech as
a sponsor does not do justice to the condlntius, effective and informed support that it has
given to the development of numerical methods in ship hydrodynamics in recent years.
Without this, neiltier Conference would have taken place, and ntch of the reported
research would not have been done. The .ctual organization of the meeting, aside from
selection of papers, was -arried out by the Extension Division of the University through the
capab'e hands of Linda Held. Since authors provided manuscripts In final form for repro-
duction, only miner editorial changes were possible aid no attempt was made to achieve
consistency in format or reference style.

Finally, it seems appropriate to call attention to the remarkable diversity of the papers.
Even when the same problem is being treated, the methods are different. It was one of the
purposes of the Conference to encourage this diversity and to bring the results into juxta-
position. Diversity extended beyond subject matter. Over a dozen countries were represented
among the participants. Such Juxtaposition Is Also important.
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SHIP HYDRODYNAMICS-THEN AND NOW

L. Landweber
The University of crw

Institute of Hydraulic Research
lewa City, Iowa 52242

"Then" in the title refers to the year 1932 develop a group of ship hydrodynamicists. Rouse
when, without previous knowledge of the field of was essentially an educator who, through his
ship hydrodynamics, oz preparation for it, I books and classesand Directorship of the Iowa
joined the staff of the U.S. Experimental Model Institute of Hydraulic Research, effectively
Basin, located in the Washington, D.C. Navy Yard. spread the ilew gospel.
My immediate supervisor was arl Schoenherr, and
Captain Eggert was the Director. Two of the, After about a year, I was assigned to
young Naval Officers on the staff at the time, work under J.G. Thews, the other staff member
Al Mumma and Harold Saunders, eventually be- knowledgeable in Ship Hydrodynamics. Like my--
cause Directors of the David Taylor Model Basin. self, Thews was classified as a Physicist. We

operated a small towing tank of dimensions
The activity at the Laboratory was then 80 ft by 7 ft by 4 ft, equipped with a gravity-

primarily of an experimental nature. The cowing type dynamometer, in which we studied planing
tank was mainly occupied with conducting resis- phenomena, ship rolling, ship resistance in
tance, propulsion, and maneuvering tests of ship restricted waters, and the vibration ,C cylin-
models for the Prelimdnary Design Section of ders due to their KtrmAn streets. The results
the Bureauof Ships. Propellers were tested in a of this work appeared as EMB Reports. Journal
variable-pressure water tunnel. ,c..1, my first outlets for work of this nature, were nonexistent
assignment was to fair the characteristic curves at the time.
of thrust and torque coefficients, and efficiency
of a large fanily of propellers, with systemat- Thews and I were more fortunate than most
ically varied parameters. Since the three char- of the staff members in that Capt. Eggert had
acteristic curves are mathematically related, a selected us to conduct research in the afore-
shift in one in the course of the curve fairing, mentioned areas while other staff members were
affected the other two. Consequently, after mainly occupied with routine tasks. In those
weeks of annoying drawing and redrawing, I de- days, the undergraduste evlgineering curriculum
signed and had the shop construct a simple mech- included a year of calculus, and a year of
anism which drew the efficiency curve cozss- Freshman Physics, and trio Calculus was quickly
ponding to selected curves of the thrunt and forgotten if the job didn't requite its a£tli-
torque coefficients. This nearly ternLiated my cation, as was usually the case. Of a prufes-
association with the ship problems, since Scioen. sional staff of about 30, only two, an A'ro-
herr felt that, in the time spent designing the nautical Engineer and myself, were enrolled for
machine, I could have finished the project, graduate study. This required gleat mitivatjor.,

since the laboratory made no concessions or
Suhoenherr was one of two staff members allowances for this purpose.

knowledgeable in Ship Hydrodynamics. A well-
sern copy of Hydro- and Aeromechalcs, by Prandtl In some respects, Captain Egget wae ahead
and Tietjens, in German, lying on his table, wss his time. fie instigated not only the researches
the main reference source for him Ph.D. thesis by Thews and myself, which he followed with
on the frictional resistance of flat plato.s, keen interest, but also experimantai studies
which culminated in the well-known KArzAn- of the pressure distribution and the boundary
Schoenherr formula. Schoenhwrr was unique among layer on both a ship model and tha full scale
the Naval Architects of tSt period in that, ship, an eiterlmetntal model study of form re-
having studied in Germaany, he was aware of de- sietance. modal and full scale studies of
velopments in fluid mechanics ad wAs esaucoss maneuverability, and the ro e hh asurement, in
fully applying this knowledga to propeller aid the ourse of resistance teats, if the waeis pr -
rudder desiqgi, as well as to the flat-plate file alongside the hull, axid the linee of flow
resistance problem. One could comare his imV)act along the bilges for determining the optimum
on Naval Architecture with that of Hunter Rouse alignment ,,f bilqe k-sis. Numerical analysis
on the sister field of Hydraulic.. Rouse corn- of these ploblems wee performed with slide rules,
plated him Pn.t. ntudlee at Karlsrihe, (lermaity, issued by the laborauvy in a 10-inch variety,
and returned to the U.S. imbued with the idea
that Hydraulics could be taught au a science, It the decadt- fro. 1930 to 1940, to which
rather than an art. Schoenhe-r made lmjsrtant the foregoiing remarks apply, eaveral books ap-
ptrsoral contributions, but did not attrpt to pealed which contributed importantly to the



dissemination of knowledge and the encouragement restructured in accordance with the new goal.

of research in Ship Hydrodynamics. Thers were More importantly, the staff selected for assign-

the English translation of Prandtl and ietiens, tent -c the blocks in the organization chart

the publication of Hydrodynamics, by Dryden, gre in stature as they mastered their assigned

Mrnaghan, and Bateman, by the National Re- fie di, mado fundamental contributions and be-

search Council, and the six volumes of Aerody- came recognized as authorities in their various

n.mic Theory, edited by Durand. Methods of subjects. I hesitate to mention names, for fear
computing the potential flow about two dimen- of omitting some, but I will mention a few.

sional and axisymwetric forms had been published Wehausen and Pond on ship-wave theory; Cummins

by von KFArmAn, and in NACA Reports by Theordor- on the unsteady Lagally theorem; Eisenberg on

sen and Kaplan. A ethod of computing the tur- cavitation; Tulin for many brilliant contribu-
bulent boundary layer for axisymmetric flow lions, including the theory of supercavitating

about a body of revolution was the subject of hydrofoils and the determination of the viscous

Clark Millikan's Ph.D. thesis. The computa- drag of ships by means of wake surveys, Granville

tional labor of applying these methods was, on viscous resistance of bodies of revolution,

however, discouraging. Wave theory of ships Abkowitz on dynamic stability and maneuverabil-
was also being developed in England, Germany ity of ships, St. Denis, Szebeheiy and the Ochis

and Sweden, but only the most dedicated workers on ship motions and slanaming in waves, and
were willing to undertake the tedious numerical Breslin on propeller-induced ship vibration.

evaluations of theoretically-derived results.
Analysis had outstripped computational capabil- Nor was the nmomentum of University contri-
ity, and there was little incentive to extend 1iutions to ship hydrodynamics lost after the

the theory beyond its linearized form for a war, through the activity of a new organization,

thin ;hip. The Office of Naval Research. By sponsoring
research at other institutions, participating

In rtrospect, the war years, 1940-1.945, in the organizing of symposia, such as the

were not a period in which research in ship present one, contributing to the publication of
hydrodynamics flourished. The emphasis was on majir works and journals such as the Collected

constructing many ships rapidly, and overcoming Papers of Havelock and the Applied Mechanics

engineering problems with heuristic solutions. Reviews, and establishing international rela-

Contemeasures, many of a hydrodynamic nature, tionships b, tween researchers, the Office of

had to be developed in response to sophisticated Noval Research has been an important factor in
mines which detected the presence of a siip by promoting interest and productivity in ship

its acoustic, magnetic. or pressure fields. An hydrodynamics. Subsequently. the Taylor Modc
'

important consequence, however, was that tal- Basin, under its GHR program, also undertook
ented engineers, physicists ana mathematicians the spcnsorship of ship-hydrodynamic research.
who would normally have pursued caroers in

irversities or industry, joined Naval labor- Before the War, there were practically
stories. Others acted as consultants or under- no outlets for publication of research in
toosk Naval projects in their University labor- applied nathematics or ship hydrodynamics. The
atories. Thus a much wider giu4 became aware Transactions of the Society of Naval Architects

of the interesting and challenging problems of could hardly serve this purpose since it accepts
ship hydrodynamics, and iieveral Univorsitioe few papers each year, and these were, rareLy
subsequently acquired ship research facilities, of A ship-hydrodynavcc nature. This has been
such as towinj tanks and water tunnels, called the "integral gap'" in the Transactionls.

The appearance of several new journals, such
This influx strongly affected the nature as the Qu.rterly of Applied Mathematics, the

of Naval lahnoracorien. Where previously a Joural of Rational K-chanics, the Journal of
project enqiinesr spent most of his time at a Ship Research, and the Journal of ilydronautics,
drawing board designing equipmesint foc a test, has eased the luslication problem. Indeed,
the new breed sought solutions by physical rea- with the recen announcement of several new
soninq, formulation of equat ions, and nathe- 'uii iccatLons , there is dangler thst w may be
matical analysis. While -. st of the original oveihemisd by too much literature, and over-

proifessiolial staff had oly th bachelor's burdened referres may lower their reviewinq
degree, meit of the newcomers, and of course the standards.
piofessional consultants, had gradnate deqtre.

Arong these were the renowned aeridyiiamicls t, The seconld factor contributinq to the
Man Munk, the applied mathematician, Alex Wie- adva-iesnrrt o ehl hydrodynamics was a nw
etein, and the physicist E.H. Keiianr,. who aie, ln)licy of the daval lalnirator is to eiicoursge
affiliated with Univereitil is, the Washington, aiid prreeste graduate study by it. 1 rofei.,inal
D.C. area, This strengthening of the local sisff. Shortly after the War, arrangemente ware
universltriee iii areas related to fluid mechas- made with the nlivereity of Maryland to offer
Ice was a; rnportant factiir Is encoualing the soe clease in Mathematics and Physics (In-
staff if Naval lalxiratoies t) undertake grad- clulinq Hydrxlynamic) at the TayLor Madel
uate utudy. Balin. In addition, the laboratory grant ed

Iim fir atodente to attend late ifternon
Priur factors contributed greatly to the ilases at the lniverlity of Maryland caemiss.

advancesmnt of ship hydrodynamics it the post- tUndor this proqrai, many statf me bers elected

war y.ars. First was the reaction to the year. t; initiet or continue their graduate sttsice.
of seeking liediete practical sols! uin to A l. siicted 5' maIsnts were fully eii-rpirtrtd

military problem. it was felt that hasLicr.- while they pursu1ued their graduate stud.'s at

ealrch inr ship prrobhsms ws so-rely needld. At Berkeley. In my opinion, this was a wise and

Taylor Mixekr Basin, l.i orgsniration was far-sighted policy which sion paid valuable



dividends in the ability of the staff to keep flow of an inviscid fluid, most employine the
abreast of theoretical developments and to er- exact free-surface boundary condition. Three
ploy more sophisticated analytical techniques of these papers require a preliminary mapping
in the solution of its problems. One need only of the boundaries of the body and the free
compare 'he nature of the TMB (or USEMS, U.S. surface into coordinate planes of a rectangular
Experimental Model Basin) reports before 1940 grid, a major task even in two dimensions
and after 1950 to verify the foregoing state- where methods of conformal mapping could be
mnt. A quantum jup in the scientific level used.
of these reports had occurred over that decade.

The most popular method, used in twelve
The third factor war the influence of two of the papers, is that of singularity distri-

outstanding German scientists, Herman Lerbs butions, determined by integral equations. I
and Georg Weimblum, who joined the staff of must correct the statement in one of the papers
the Taylor Model Basin after the War. Ierbs that this method is twenty years old. Actually,
was an authority on propeller theory. Wein- the basis if the method lies in the theory of
bls stimulated his colleagues to learn and symsetrizable kernels and the fact that the
extend the Legally theorem, to learn and apply kernels of potential theory are symetrizable,
ship-wave theory, to study ship motions, and to established by Poincar4 and Marty at about the
plan for the acquisition of facilities for turn of the century The first numerical appli-
testing ship models in waves. After Weinblum cation of integral equations to a flow problem
and Lerbs neturned to Germanythe former as is that of von KrmAn, in the 1920's, for a
the first Director of the Institut flr Schiffbau, body of revolution, followed by other methods
the latter as the Director if the Hamburg Model by Kaplan, Vandrey and myself, also for bodies
Basin, their former U.S. colleagues, with wn i of "evolution. it is true, however, that
they 1,,,1 formed cloe frlendshilps, were freq- A.M.O. Smith was the first to succeed, about
uently welcomed in Hamburg where they met the 20 years ago, in applying the integral equation
staff of these Institutions and discussed their for the Neumann problem of potential theory
researches. &nblum himself was not a strong to arbitrary three-dimensional forms.
analyst; but his sense of the direction of ship-
hydrodynamic research, his physical perceptions My own feeling is that, because of the
of the approach to a solution, and his ability intimate connection between potential theory
to encourage others to undertake important and integnal equations, it is most natural to
pro-lems, make his contributions to the field employ then to obtain numerical solutions.
of immeasurable value. There ia a tendency for computer virtuosos

to ignore possible titheatical reduction of a
Tne last of the four factors contributing problem to a simpler form, and to operate dir-

to the advancement of ship-hydrodynamics in the motly on the equations and boundary conditions
lort-war years was the advent of the high-speed in finite-difference form, This is undoudbtedly
corputer. Eliminated was the drudgery of lonq an inefficient use of computer time, since the
cAlulations with a slide rule or desk calculator, noelal points of the calculation lie in the
and I(Jorithm- for obtaining a nume; ical result, problem space, ratner chan oz its boundaries.
which were previously impractical, could bL Furthermore, integrals can be represented by
coutinely performed with the com)uter. Where, quadrature formulas mire a-curately than dif-
previoislo, as in ship-wave theory, mathematics ferential equations by ditferences. Lastly,
had outttripped computational capacity, after when the domain is of ofinite ext"! t, the
th comluter lecame avsilable, the situation was method of finite differences must ac ept a,;
reverseu. Now the researcher was challenq d to error due to the upslt am and downstream trun-
iolve ii , problems more accurately, with fewer cutions of lie region.
asstritiions, or even without any sieglifyinq
as-mtpt lons= 0i 'he experi mental side , the All but t-, of thpapers have asumed
analog d gita computer, designed to interface irrotational flow, and loin considered tl;.
with an experiment, control the sequence of effects of the turbulenu bo)undary layer an,! wake.
niasuranenta and st-re and operate upon the The remarkable aqteement with,svitreeet t'
data in digital form. was equally inq),rtant ini of tre calculatios of Babe and flara, using a
freeing the exit itiiter from th drudgiry of highler-ordter irrotatlonal flow the,, rigqests
reading Orata againat scales, tapes, or film. and thAt the lenunilary layer and wake o , ship have
eenabling previously unthinkable types of expet- t in!rluenc, on the wave rsita,;ce. Here
ime;,ts to be ;undertaken. "M Iaanrwete" are in quiten lecause wa '

sistance cannot ie measured directly, and its
For flea-surface poroblnt, we may take the exprimentaily derlved values a., sub joct to

"now" of the title to be the papers to be pre- Assueptious ant n-.rreelc."ndasi Oioi i tans
aeated at this Confere nc. These Illustrate our own at-odLes at Iiwa of the effect .f wake
wry well how broadly . ad an;d woild-wide i. on wave renmltaice. in which the wave rcaintanc,
the reoarch effort il ship hydrodynamia, with was determined by the loglitudina.-i'ut tcltn1q is,

papers from thne David Taylor tenter, 11 f sh-d large effects of tho b.nidary lay." and
othere is fill LISA, ard 9 from abroad. The wake, it dlsgreemtit with the reselts of lAI-
sleed And capacity of Coputerlies havtincrer- and lIas. ThuI, alth;luh we lies mild greet
'.. a l.e.1 whet, at least for twn-dimenIonal prlireas in obtaiittnin elrr- exact solution, of
prolemle, the NWaver-ltokes oquations atid the chip hydrodynaminc problems, a! us evidenced by
exact boudairy condition. are treated In two the unusl coilction of ajers at thile C ofel-
if the papoers, by the mlthoud of finite differ- oca, we siitill ha. a long way to io. Unt I
an e. Sic other ppllers also em4)loy fiits- we have learn;ed how to x)mpute the tlitee-
differance mthoda, but for [the Lrrotatbocal linsionsI boundary layr on A sihIp form,



including free-surface effects and vortex for-
mation, and the wavewaking of the ship in the
presence of the boun-ary layer a d wake, the
problem will continue to confront us.



SURVEY OF NUMERICAL SOLUTIONS FOR SHIP FREE-SURFACE PROBLEMS

R. Bruce Chapman
Sci fe Applicatlons, Inc.

La Jolla, CaolfornIa

Abstract Thus, quasl-anelytic methods are not confined
to simple geometric shpes and are easily

Recent methods for numerical solution of applied to practical hull forms. The usual
free-surfic(! problem in ship hydrodynamics are formulation is that of a surface integrl with
reviewed. ')ubasi-analytic methods which model singularities distributed over the body and,
a linearized free surface outside a body of in some cases, the free surface. Other fornu-
irbitrary ,hape &,e discussed in detail for lations have also been developed, such as the
body motion problem. Also reviewed are methoJs localized finit- element method of Bai [1],
for the wave-making of translatig three- which combines a finite element representation
dimensional bodies an. two-dimensional methods near the body with an analytic solution outside
for nonlinear 'low. this restricted regirn.

In..,roduction The efficiency of using available analytic
solutions for problems with a linearized free

Interest in numerical methods for solving surface cannot be disputed. Unless nonlinear
Free-srfAce problems in ship hydrodynamics has free-sur'ace effects are to be included, there
grown rapidly. These methods can eliminate is no reason not to take advantage of analytic
ma.: of che approyimations necessary for anfly- representations. The validity of this appro rh
tic solution. Capabilities such as a-bitrary depends on the validity of the linearized free
h,-ll form obviously extend the practical value surface approximation. Two classes of commonly
of any method. The most useful ert..ods may not solved problems are those in which the free
be the most general ones or those with the surface disturbance is caused by notion of the
fewest a.,tions. however. More limited body about a mean position, the body motion
techniques such as the quasi-analytic methods problem, and those in which the disturbance is
discussed in this paper can be better design caused by' steady translation of the body, the
tools for large numters of problems, while more wave-making problem. In the former case the
general methods can check the validity of approx- linearized free surface is valid for small
ipations. The purpose of this paper is to amplitude motion. For a translating body, the
describe briefly some recent advances in naT.- lineariced free surface is valid for a deeply
ical ship hydrodynamics and to suggest likely suberged body or a thin or slender body, but
areas for the ner future. Three general areas not for a surface-piercing hull of finite
which will be reviewed Are: (1) quasi-analytic thickness. The physical validity of the prob-
methods for body motion, (2) numerical simula- lem of a finite , face-piercing hull moving
tion of the wave-making of translating 

t
hree- through a linearized free surface hull, i.e.

dimensional ship hulls; and (3) two-dimensional the Neumann-Kelvin problem investigated by
metfods for highly nonlinear flows. Brard [2], can only be e ablished by comparing

computed results with experiment. Quasi-
Lxasi-Anytic Methods analytic methods for body motion will be

discussed first,
The gap betxtvn numerical and analytic free-

surface metho% Il. ship hydrodynamics is bridged Bog Motion Problems
by a class of methods which com-ine analytic --
linearthed free-surface solutions with namer- The generalized geometry for body motion
'(ally genieral representitions of the body. problems is shown in Figure [1]. For simpli-
wuasi-analytic met'lods 111 be defined b. these tity, methods will be deszribed in three
two char#-teristics: dimensions with all fundamental concepts easily

1)) Analytic linesrized free-surface generalized to three dimensions. Flow is
defined in a Cartesian coordinate system

representations eliminate the need (tyo.wt par. Tesai resolve the flou over 4 large Yolum ix~y) - x. with y upward. The static free-
suroeundi o the body. surface SF corresponds to y - 0. It is divided

into a porti-, outside the body SFe and a por-

(2) The body boiundtry i, satisfied exactly tion inside tne body 
5
FI which vanishes wten the

o, an arbitrary hull. body is submergeC. The submerged portion of the
body surface is So. The fluid boundary is SW,
which is assumed infinite and representer by

tr



S. unless otherwise specified. The lower half- *9(x-y-t) O9(x.y-tl +*Se '.x.t) *1(AJY.t) (5)
plane is divided it to two regions--Q inside the
body bounded by SBT and Spj, and R outside the
body bounded by SEB. SH. and SFe.

s (x'y,5) Of(.)C) .%*8(X.Yt) +ji(xyti iZ Egq(6)

Where 01(x,y~t) -the scattering wave, present
only in certain problems. The free-surface and

SSF. WI incident potentials, sf~x,y~t)o a nd O1)x,y~t)
_T ---- T are analytic over the entire lower half-plane

6,I- while the body potentials, Oge)s,y~t( and
40.4.1 I *8 (n,y,t) both vanish on the tree surface,

Rw(- s.1j0B %(XY~t) = 0 (v,y) c S Fe (7)

+t

I Bi~x.y't) = 0 (n,y) c SFi (8)

mL

The incident wave, if present, satisfies the
FIGURE 1. GOE TRV FOR BOJY MOTION PROBLEM linearized free surface condition identically.

Thus, the free-surface component satisfies the
linearized free-surface condition,

A free-surface disturbance is created by (9)
body notion, and, for some problems, by the where h(v,t) ropresents the fi~e-surface infis-
scattering of an incident wane field defined by ence of the hody potential,
01j(x,y,t) . Body notion is defined by velocity
V B~u.Y't) on SEB with a normal conrponent xt) B

hYyt (xo,t) )v,0) " 
5~i (10)

vn vB *n (1) )Q (o,0) v SFe (11)

where vsis the unit vector norml to %,- posi-
tive outward. Note thvt f~x.Y.t) is equivalent to the classi-

The flow in region R is defined by a velocity cal prol lees of a time-dependent disturbance
potential oe(n,y,t). A velocity potential acting on a linearized free surface and can be

Isasteindi)eio . Ti solved 6nalytically in terms of h~n,t). If

Inrpotential is non-unique and depends on the 0)xyt en Istiedrvieaeiiily
formulation. Over region R. the potential tero for example,
satisfies Laplace's equation

V 2 0)o.y.t) - 0 x c R (2) (10

For the body source and the hod" dipole ne,1 od,the body boundary condilon, tf~n~y,t) is represented by the Integral of the

free-surface portion of a Green's function over
34 0 nyt) I

5  
3 the isodi' surface.

I u~~~~~~~~~n oxthews peiid Th nxy l owe SIT f ((3))• ~xyt ex~~)•e~~yt

The body rco tfnent of the velocity potential
1cvanishes on the free surface and satisfies he
Sln ed S nd nbody boundary condition

v g ate
(u"y + • (X,..t) .0 (4). -t .y. l - ..y.I 4 (

at X r 
5
e ()

and appropriate boundary and initial conditions. over region P. The body boundary condition for
I i seful t divide ... .. idyt) is arbitrary.

free---s fur co donen d ane potential into a
fr,-,ufAC while and a body coByponent

whsich vanishes on the free surface,

I(v B(~~)= xy ~ 7
C B~~~)

=
0 xy ~ 8



Quasi-analytic methods are usually applied where A is the amplitude and w. is the frequency
in the form of a surface integral derived from of the oscillation. The nondimenslonal normal
Green's theorem. Let velocity v*(x) depends on the mode of motion.

The free surface condition reduces to

G ( X ,X1 ) -- G (X .y .F ) ( 1 4 ) 2 + _ i ) g DB (j )21

be the Green's function vanishing on the free
surface. In two dimensions, where *()in represented by a source distribu-

tion ovir SB..

(Y-0 B( x t) ze j (" ~i G(x,x 1) dS . (22)
(15) 58

Assume for rnow that the fiuid is unbounded. It can be shown analytically that f(_i,t) satis-
Then from Green's theorem the body potential fying the free surface condition (21) may be

written as

011xil= ~(")(16) hf(o.t) = e lWt SJfD(_X1 ) G 2( x Ix 1) dS (23)

= OBi( x t) x F Q SB

where the free-surface portion of the Green's
can be represented over the lower half-plane by function,

j-i-,I 
k(Y+Y1 )

G2xB /aI(-* 12 (yv 1)

SP (i~ - T%1 (ipt)] ds sl2T9 as k

(17) satisfies

This is equivalent to a source distribution 9. -L a i ;, 0(, 1  -9 -L y~i.;) ~ (25)
over SB and a Cipole distribution over t8 . The 2
body boundary condition for bj i s arbitrary.
The most conon assumption is that the potential and the radiation condition at infinity.

is cntiuou acrss he odyThus, the body boundary condition (20)

0 Be(' t) 0 i( Xt) 0 B 18) becomes &ns integral equation of the form,

In this case, the norml velocity is discontin- so(6
anus across the body surface and the body
component of the potential is of the form, This integral equation -an be approximated num-

ericallyaby dividing 9 B into NB finitepsmfents
fof constant source dens ity. Equa t icn (26)

0 3(x~t) JO(-x1,t) G(x-lx1 ) dS (19) applied at the center of each segment produces
a set of linear equations for the NA source

SB densities. From this density distri bution,
which Is equivalent to a source distribution of forces and velocities can be computed from
strength 0(nxt) over the body surface, equations (22) and (23).

Body _§ource Method This well-known method has been successfully
applied to a variety of problems. One andesir-

The body source method was applied by Frank able feature is a set of anomalous migenfre-
[31 to the problem of harmonic oscillation _f a quenci el corresoponding tg nontrivial solutions
two-dimensional ship section. In this case, of the inner potential fi(m) satisfying
the body boundary condition (13) may be repre- Laplace's equlltion over region Q and boundary
sented as conditions

12.11o g1 *0iiE* 1.1 *s 20 n
4  

i 0 -X L (27)

Uh (.t) Al. *(i 61" S,(20



() 0 x E S . (28) a source distribution. Later, the method was
extended to wave excited forces and moments [7].
Recent work of Chang shcws gocd results for the

The inner potential and therefore the source iydrodynamic comfficients of a three-dimensional
dertsity is non-unique at these frequencies. ship hull.
The problem is not fundamental, however, since
the external potential and therefore the pres- The same formulation developed for the source
sure remains unchanged. The linear equations method can be appl'ed to the aipole method for a
for the density distribution are singular at submerged body. A urface-piercing body can
these frequencies. This singularity can be also be represented as the limiting case of a
removed by several methods, including placing a submerged body with a flat top an infinitesimal
lid on the body and submerging it a small dis- distance below the free surface, although this
tance. These internal modes can also be exci- involves a line integral (point sources and
ted for initial vilue problems solved by the dipoles in two dimensions) except for special
body source icthod but they only influence the cases including steady harmonic oscillations.
source distributior and have no ef.ect on the
pressure [4]. For a submerged body with the velocity normal

to the body continuous across the body surface,
The utilitj of the body source method for equation (17) reduces to

practical three-dimensional ship hulls is well
illustrated by van Oortmerssen's [5] study of f
the motions of a tanker hull ir shallow water. OB(it) JD(xlt) -- G(xx ) dS (30)
Hydrodynamic coefficients and wave exciting 

S 3nI  x x

forces were calculated as functions of frequency B
and :ompared with experimental data. The method where D(x) is th2 stiength of the surface dipole
is , three-dimensional generalization of the distribution. This body potential *B(i,t) is
Frank [3] method with a Green's function for the distiuous acrs body ss

body component of potential defined by continuous noral velocity. As in the source

distribution method, the free-surface potential

G 4IF -r 
-
1 (29) is continuous over the lower half-plane and

satisfies equation (21) on the undeflected freer surface.

where is the distance betweenjoints x andt i The greatest difference between the source
ofn acrss the utndeetedwree srache. Te and dipole methods is the technique for deter-of x, across the undeflected free surface. '1he miin thteghdsrbto ~~ For

free-surface Dortion cf the Green's function mining the strength dlstrthution 0(xt).

G2(i,il) corresponds to the disturbance created the source method, the body boundary condition

by an oscillating source below a linearized is applied directly. For the dipole method, it
free surface in a fluid of constant depth. In is applied indirectly by a known internal poteii-

some calculations the effect of a nearby wall tial ¢i(,t) satisfying
is represented by image terms in the Green's -

function.n! Vn(,t) x f B  .a

The tanker was represented by 160 triangular
and quadralateral panels no larger than one- If the body translates in the x direction with
fifth of the smallest wave length. Wave induced If the bo transle the ireti i
forces were in good agreement with experiment speed U(t), fur esample, the inner potential is
except for surge and pitch in beam seas which simply
only result from the small longitudinal asyvnme-
try. Added mass and damping coefficients al;.o
showed good general agreement with experiment *i(x~t) n 11(t) . (32)
except for viscous effects in roll damping and
some differences in rcll and pitch added mass. The dipole density is determined from an Inte-
In general, van Oorterssen's work is strong gral equation representation of equations (6)
evidence of the practical utility of the simple and (3)
source distribution for ship motion problems.
No forward speed effects were included, but the *lint) -l-,0 * $fGxt) * fD .It) 1ci,!,t) as
results should remain valid for slowly moving It I
ships.

Bodi_Dipole Method 
(33)

Another quasi-analytic method closely related where *l(i,t) is the known internal potential

to the body source method is the body dipole and *f(i,)t is the solution of equations (10)

method developed by Chang and Pien [6]. This and (11).
method was developed for d three-dimensional The wave-induced forces acting on a three-
submerged body translating at a ste'dy speed.

Chan an Pla (6 deonstate tha a oredimensional deeply submaerqed body moving throughthang and Pien [6] demonstrated that a more

accurate solution could be obtained with fewer a wave field at constant npeed were calculated

body panels with a dipole distribution than with by Chang and Pien [I] under the simlifying
'ssumption that the free-surface potential

a



generated by the body 4f(i,t) can be neglected. Figure [2]. This bounding surface includes the
Equation (33) then becomes submerged portion of the body SB, the free sur-

face SF, the bottom SW, and the left and right
D IG(x' 1 ) radiation boundaries SL and SR. The bottom

Ux = 1 (xt) + JD(i,t) ---n- dS (34) surface SW can be irregular If the depth is

1 constant fin regions II and 1ll. The body boun-
E S B  dary condition is

which can be converted into a set of N linear F () S (() i36)
equations for the dipole density distribution x = Vn(()

D(ipt) over N finite panels. The resulting
induced forces agree with an analytic result of where Vn(X) is specified function and 0(7) is

Havelock for a test case of a sphere. a complex poter tial defined by

With the same theory, Chang and Pien [7] iwt
simulated the free motion of a submerged body p(x,t0 = Re{c(x) e

- i ). (37)
in waves. One interesting phenomenon is wave
coupling in bidirectional seas. The motion
induced by one set of waves alters the force; The free-surface and body boundary conditions

induced by the other depending on initial con- are
ditions, relative direction, and phasino. The
result can be a steady drift in yaw, for example, 

2
g - x) 1 0 x S (38)

until ;n some cases a stable relative angle is g o
reached.

As mentioned above, the dipole method can be and
applied to a surface-piercing body by applying
the present formulation to a closed body with a D

flat top an infinitesimal distance below the 5 ix) 0 x C SW  (39)

free surface. No line integral is involved for
steady harmonic oscillation of a three-dimen-

sional ship hull. Chang has in fact, su.,tess- The potentials in regicons II ard Ill are finite
fully applied the dipole method to a practical summations of the form,
ship hull [8]. These results and those of
Frank [3] and van Oortmerssen [5] demonstrate NR
the practical utility of quasi-analytic methods E(0) , C8 fq ( ) ix) 11 (40)
for seakeeping prediction. A realistic simu- kmO
lation could be achieved by including the
effects of forward speed, nonlinear hydrostatic

terms, and viscous effects, and

Hybrid Method NL

For the body source and body dipole methods, 
kEt k k (x) (x) 111 (41)

singularities are distributed over 
the body

surface, with the free-surface potential repre-
sented by the free-surface portion of the with the potential and its normal derivative
Green's function 0hich is also integrated over continuous across the radiation boundaries.

the body surface. Another method for linear When the boundary conditions (36)-(41) are
harmonic oscillations of a body immersed in a applied to Green's theorem,
fluid is the hybrid method described by Bat and

Yeung [9], which matches a numerical solution -(W [ ' - -'(,,-'- as
in a small region surrounding the body with

analytic solutions outside this region. Bai and (42)
Yeung [9] give two alternate techniques for k Xi1

implementing the method; a finite element varla- all teTis involving -n can he eliminated,
tional method and a surface integral method. giving
The surface integral method will be briefly
described in the form developed and applied by ( as aty)) U . 3s 1( 2 , ;i (.0

Yeung [101. sa u ss r

This method is characterized by a Green's M_

function in the form of a simple suurce It 1 as. ;J) ~

G(x.y.,.n) - I log[(2-) + (0-0]2 .)2 ( )
Jsas [:lf(i,) 30 (;.,-. (,i- -

distributed over the surface S bounding region
I, the region surrounding the body as shown in -4us ,(;,, Oi2.21)



This integral equation can be reduced to a set described - the TDIET (Time-dependent Differentio-
of simultaneous linear equations for the poten- Integral Equation Technique) method described by
tial O(T) on surfaces S8 , SF, and SW ahJ the Harten [11]. and spectral representation of the
coefficients of the two expansions by dividing free-surface potential for the body source
the boundary surface of region I into small method.
seqments of constant potential including NR
segments on SR and NL segments on NL. Equation Like the hybrid method, the TDIET method
(43) then gives the potential at any point in I. distributes simple source and dipole singular-
An incident wave can be easily included by add- ities over the surface which bounds the region
ing it to the representation at the radiation of computation and uses the boundary conditions
boundaries (40)-(41). The method can also be to remove the normal velocity from the Green's
applied to body oscillations ir deep water, integral representation for the velocity poten-

tial. As an initial value problem, it can be
formulated in a closed basi,. Radiation boun-
daries may be included but they complicate the
formulation. Consider a two-dimensional closed
region I shown in Figure [3] bounded by a body

wt s t', S, surface SB, the basin surface SW , and a free
a.___ __ surface SF. The body boundary condition may be

written as

SESL 1 (x- t) = Vn(x,t) L b, b(,x) V it) (44)

S Ial j=l

IESB, t>O

where V (t) is the velocity of the J th mwde zf
body ot ion. The boundary conditions on the
basin surface end the free surface are

FIGURE 2. GEOMETRY FOR HYBRID METHOD t
;n t) -- o x E SW , t , 0 (45)

)2

)-j (X,fi g --' (i,t) 0 (46)

S FF X SF. t '. 0

where O(x,t) and (xt) - g- I.xt) are both

specifir, is initial conditions for t z 0.
When these boundai) ;onditlons are applied

SW ss Gceen's theorem (42. he result is an int-.r-al
equation of the form

( i' ) " d3 #S ,( .t ) ( ' J , t ( . , .-I

Sw 8US

FIGURE 3. G 'METRY FOR BODY MOTION PROBLEM , (41)

where G(s,xj ) is I , simple source defined for
two dimensions by (35).

Initial Value Methods Fquation (4/) is t Iuced to numerical form

Although steady harm,:ic oscillations are by ilividing the boundary surface into finite
the most common form for free-surface body seg(wmnts with the potentisl specified at

motion problems, initial value problems with N - NR+ Nr points. The first NR pIsfnts are on

arbitrary boy notion are of interest an well, the free surface. Let *R(;,t) 1 < i < Narbirarybo~ moton re o intres as eT! denote thu potential on the body ajid banln, and
Two alternatives to the time-dependent Green's let t) Nqll I d the potenia
function for initial value problems will he at F points on tRiis ee surface Mrten tl

10



shows that a spline fit reduces the integral on = ( 1 k)
I1 2 

is the frequency. This finite
equation (47) to a set of linear equations of summation is, in fact, an approximation to an
the form infinite integral with an error which vanishes

as the wave spacing tkn mT knvl - kn approachesN+NF (48) zero and the maximum wave number kn , which
Eki Pi(t) = Vj(t)k 48) corresponds to the shortest wave length,

i=1 =l approaches infinity.

where pi(t) is a vector with N NF elements The free surface elevation,
defined as

n(xt) = - (x,O,t) (52)vi 
=

R 
'
t) 1at

is also represented by a summation,

-- F(i,t) Np+l < i < N (49) NW iknx
tt <(x.t) = n-- A

n
(t) e n (53)

F(i-N i F N+N where An(t) is a complex vector. The free sur-
face is thus represented by a pair of complex
vectors, An(t) and Bn(t). The linearized freeThe matrix Eki has N by N+NF elements which are surface equation (9) and the dynamic condition

independent of timr and depend only on the (52) can then be expressed by N pairs of
geometry. Harten [I] shows that by Gaussian simple differential equations of the form
elimination, the body and basin potentials can
be removed from the Thst Nr equations which
then assume the form d + 

0
n n(t) = Cn(t) (54)

di An(t) - an An(t) = 0 (55)3~My k", -NF.u (50 dc.,} An 't). 0... ((50)

which is a system of NF linear differential
equations for the surface potertial F(i,t) where Ct) represents the body source potential
The potentials on the free surface can in the ?orm of the harmonics of h(s,t( defined
integrated from their initial vilues without in (9),
considering the potentials on tie body or the
basin. These potentials can be calculated from NW iknx
the first NR equations of (49) oice the free- h(x,t) = g F_ Cn(t) e n (56)
suiface potentials have been dettrmined. n=l

Another method well suited for initial value
problems is the body source method described in These equations can be integrated analyti-
a previous section with the free strface poten- cally for a series of small time steps over

i tand the incdert wave, if present, which the body source distribution, and there-
tia fore C (t), are assumed to be constant. Sincedescri ed by their spectral componerts. the bo

2
y potential is expressed numerically as

Spectral representions of the frse surface a collection of finite sources, Cn(t) is easily
have been applier a both linear and nonlinear computed by adding the aralyti- result for the
probleins b, lausslirsy and Van Eseltlne [12], free-surface harmonics generated by an impul-
[13]. The conined body source and free surface sine subm rged source [4]. The free surface
spectral method described here was applied by velocity *- (a
Chapman [4] to the problem of large amplitude
ntloo of floating bodies with a linearled boundary condition (13) determining the body
free surface. The free surface potential source distribution can be evaluated by analytic
Of(ny.t) defined by equations (5). (6) (9) differentiation of the harmonic components In
is analytic over the lower half-plane and can In this way an Initial valae vhlem
be approximated in deep water by a finite summa- can be advanced in small time steps. ' the
tion of harimonics. body Is free, torces acting on the body are

conauted each time step and the accelerations-gNw Bn(t) nI e
k

v
n ( '

y
)  

(51) determined from the equations of motion.

ynlt (One advantage of the spectral rather than a

physical representation of the free surtace Is
that wave spa(ng can be non-us urm with

where n:(t) It the complex amp'litude of the n- smaller siiaclnT at the low w-,n nmhers which
haru, 1c. k,. Is the wave numh.r. and correspond to the long wave lenqth-

i_



This increases the time interval over which the resistance induced by the surface source distri-
long wave lengths and therefore the solution bution calculated for the flow past a Series-60
remains valid. In a physical representation hull in the zero Froude number (double hull)
these long wave lengths are the first reflected limit by Hess and Smith [17]. Although this
from the boundary of the calculation since they method neglects the effect of the free-surface
propagate the fastest, disturbance on the body boundary condition and

therefore on the source distribution, it should
Small body motion is a sufficient but not a give a strong indication of the effect of satis-

necessary condition for a valid linearized free fying the exact body boundary condition for low
surface. The linear aoproximatisn can remain Froude numbers. The experimental residuary
valid, if the body moves slowly, over large resistance was compared with predictions from
changes in the geometry of the submerged por- thin ship theory and the surface soirce distri-
tion nf the body which induce hydrostatic and bution over a range ot Froude numbers. No
hydrodynamic nonlinearities. The body source improvement was obtained by placing the sources
method with a spectral free-surface represen- on the actual surface. Breslin and Eng point
tation has been applied to this type of large out that part of the disagreement between theory
amplitude motion and tested for a few cases (4], and experiment may be due to interaction between
including water entry and large amplitude free viscous and wave-making components of resistance.
oscillation of floating rectangular cylinders.

Adee [18], [19] applied the body source
method to a Series-60 hull. The free-surface

Wave-Making Problems potential, calculated for a Kelvin source, was
included in the body boundary condition ao that

The problem of a body translating with steady an exact numerical solution of the Neumann-
speed through an inviscid fluid with a free- Kelvin problem was obtained. Adee did not
surface is usually solved for the purpose of calculate wave-making resistance since he did
estimating the resistance due to wave-making. not expect any fundamental improvement over
Also of interest are sinkage and trim forces thin ship theory. instead, he sought an
and the streamlines over the hull, including estimate of the effects of a linearized free
the wave profile. If the body is well sub- surface on the double hull streamlines over the
merged, the linear free surface is valid and hull surface.
quasi-analytic methods are applicable. With
modification, basic quasi-analytic techniques The dipole method was applied to a surface-
discussed for body motion problems can be piercing ellipse by Chang and Pien [6] with a
applied to a translating submerged body. formulation equivalent to a submerged body with

a flat too an infinitesimal distance below a
The body source method, for example, was linearizad free surface. This formulation

applied to steady flow past submerged two- contained the two-dimensional equivalent of the
dimensional hydrofoils by Geising and Smith line integral for three-dimenslonal surface-
[14] with a Green's funtLion in the form of a piercing buoies.
Kelvin source, i.e. a source translating with
steady speed under a linearized free surface. Two analytic papers concerning a three-
Later, Chang and Pian [61 demonstrated the dimensional surface-piercing body of finite
advantages of the surf.we dipole method for thickness translating through a linearized free
translating, sub'eryed three-dimensional bodies, surface, the Neumann-Kelvin problem, should be
Both Bal [11 oi Chen and Mei [15] have solved mentioned. Brard [2] and Bessho [20] both
two-dimensional flows past submerged bodies discuss a line integral about the Intersection
with lucalized finite element, or hybrid, of the body and the linearized free surface.
methods based on variational principles for a This line integral may be obtained analytically
linearized free surface, from Green's theorem for a Kelvin source by

integrating by parts over the linearized free
When the body is near or intersects the free surface exterior to the body. Som numerical

surface, linearization is valid only in limiting formulations, such as the body source method,
cases such as thin or flat ships or at zero do not explicitly contain line integrals while
Froude number where the free-surface acts as a others such as the d4pole nothod do All
rigid boundary and the flow is identical to flow methods provide solutions of the Neumann-Kelvin
over a double model--the hull and its reflection problem within the limitations of numerical
in an unbounded fluid. It is not unreasonable approximations such as element size.
though, to attempt an improvement of the thin
ship approximation for the wave-making of finite The uniqueness and even the existence of a
thickness hulls piercing a free surface by solution to the Neumann-Kelvin problem has not
placing sources on thf hull surface rather than been established for surface-piercing bodies,
the centerplane while retaining the simplicity although Bessho [20) has demonstrated that the
inherent in a free-surface potential linearized flow can be unique if the surface-piercing
about the free streim flow, The validity of this body is regarded as a submerged body with a
method can only be established empirically by flat top an infinitesimal distance below a
comparing predicted and experimental wave-making linearized surface with zero water depth above
resistance. the hull. Perhaps more importantly, the physi-

cal significance of the Neumann-Kelvin problem
An early investigation of this type was that for sxrface-plerring bodies is questionable.

of Breslin and Eng [16] who computed the wave There is a net flux into the body, for example,
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which Bessho [20] shows can only be cancelled significant only for cases of large amplitude
by removing one term in the line integral, motion. In these cases, perturbing the double

hull flow should provide a correction, valid at
Thus, while quasi-analytic methods have been low frequencies (Froude numbers), to the non-

proven valuable for body motion problems and linear portion of the damping coefficient--an
wave-making of well submerged bodies, the impor- effect closely related to wave-making.
tant problem of the wave-making resistance of a
surface-piercing body seems to require a more The limited results row available indicate
realistic representation of the free surface improved wave-making resistance predictions by
than is provided by the classical linearized perturbing about the double hull flow, even at
theory. moderate Froude numbers. This suggests that

horizontal transport terms in the free-surface
Nonlinear Free Surface Solutions conditions are important factors in the wave-

for Ship Hull Wave-Making making resistance of realistic ship hulls.
It should be expected however, that in the

Before more numerical methods are discussed, moderate to high range of Froude numbers the
some mention should be made of what is essen- horizontal velocities on the free surface will
tially an analytih approach to nonlinear flow cease to be modeled by the double hull flow.
past a finite ship hull--second order perturba-
tion about a thin ship representation. Formu- A more general method was developed by Gadd

lations of this type have been invented or [33], who formulated a free surface represen-
developed by Wehausen [21], Yim [22], Eggers tation, nonlinear in the horizontal plane and
and Choi [23], Guilloton, Noblesse [24], and second order in the vertical direction.
Dagan [25]. Comparisons between wave resistance Surface panels are distributed over the body
computed by these methods and experimental data and the undeflected free surface near the body.
hive been published by Gadd [26] and by Hong The source densities on the panels are computed
[27]. These methods are shown to improve the by alternately applying the kinematic conditio.1
theoretical prediction for some Froude numbers and correcting for the error in the dynamic
but not consistently, condition. Although the method for terminating

the free-surface panels and the use of smoothing
Another approach, easily applied tu numerical are perhaps undesirable, Gadd obtaned excellent

methods, is to perturb the flow about the double results as evidenced by comparisons with experi-
hull or zero Froude number flow rather than mental wave profiles and resistance for a hull
about the free stream. Thus, the velocity over e limited range of Froude numbers tested,
potential *(x) is written as and particularly by comparisons with free-

surface contours and induced pressurpt fur flow
over a blunt bow.

Perhaps because investigators have been
deterred by the possibility of large computation

where pr ) satisfies the exact body boundary times, there have been few attempts to solve
condition apd ihe condition of zero vertical the exact nonlinear problem of flow past a ship
velocity on the static free surface plane. In hull numerically. Nichols and Hirt [341
this way, the free surface disturbance is per- calculated the nonlinear free-surface distur-
turbed about a flow which goes around a finite bance generated by a blunt three-.dimensional
hull rather than through it. An analytic body impulsively started in a basin with a
perturbation of this type is valid in the variation of the Marker-and-Cell method, but
limiting case of a slowly moving ship [28]. this calculation has no direct connection to
This perturbation has been applied numerically the wave-making of a ship hull. Recently, Chan
by Babe [29] to low speed flow past blunt ship [31] has developed a numerical method fcr ship
bows with good agreement with experimental hulls based on double hull flow without
coefficients of wave resistance over a range of linearization so that the solution is exact
low Froude numbers, within the limitations of inviscid flow.

Other authors have also had success with Two-Dirronsional Nonlinear
perturbation about the double hull streamlines. Free-Surface Problems
Dawson L30] has solved the flow about a Wigley
hull in this manner and has obtained good Fundamental aspects of nonlinear free
abreement with experimental wave profiles for surface flow are most easily studied in
Froude numbers as high as 0.50. Chan [31] uses dimensions. A few nonlinear solutions of
the double hull flow as a starting estimate for interest for ship hydrodynamics will be men-
an exact nonlinear solution. Chan and Stuh- tioned in this section. One class of problems
miller [32] have also applied perturbation is steady nonlinear flow past a two-dimensional
about the double hull flow to unsteady motion disturbance. Problems of this type, including
of a semisubmerged sphere. Double hull pertur- flows past submerged vortices, flows past foils,
bation has limited application however, for and shallow water effects have been studied
body motion problems which are usually linear- extensively by Salvesen and eon Kerczek (35].
ized on the basis of small amplitude motion [36], [37]. Of particular interest are
rather than body thickness, Terms associated comparisons with perturbatior theory and with
with flow about the body, whether linearized experiments with a foil. Nonlinear effects

about the double hull or the free stream, are contained in seconu and third order perturbation
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expansions are evident !n the numerical non- teristics of ships. A review of numerical
linear free-surface elevations for flow past a methods, including Marker-and-Cell, applicable
submerged vortex. For positive circulation, to the general problem of sloshing in containers

third order theory provides an excellent approx- is contained in a review paper of von Kerczek
imation to the nonlinear wave-making resistance. [421. None of these methods have been specifi-
The basic method is to repeatedly solve Lapiace's cally applied to liquid cargo sloshing, however.
equation and correct the free surface elevations Faltinsen [43] has modeled nonlinear sioshing
for the error in the dynamic condition until the in rectangular containers with a perturbation
solution converges. In this mannt, Salvesen method and has more recently developed a numer-
and von Kerczek could generate waves near the ical method applicable to the problem.
maximum experimental steepness. Other itivesti-
gators have generated steady nonlinear flows Sunary
with unsteady methnds using small time steps.
Haussling and Van Eseitine [12], [38], for A review of recent progriss in numerical

example, have applied both spectral and finite solutions of free-surface problems in ship
difference methods to steady flow past a pres- hydrodynamics suggests some problems which are
sure patch. likely to be solved in the near future. These

are briefly discussed in this section.
Unsteady nonlinear methods in two dimensions

are of direct interest for ship motion problems, Quasi-analytir methods, which combine a
including seakeeping and free-surface effects linearized free surface with an exact body
on maneuvering. One reason for this is that boundary condition, have already shown their
unlike wave-making resistance, which is essen- practical value for problems involving three-
tially three-dimensional for practical ship dimensional ship motion. Future work should
hulls, body motion problems can be reduced to soon expand these methods to include the effects
a set of two-dimensional problems by the strip of forward speed. It would be useful to com-
Lheiy approximation, or at high Froude numbers bie a three-dimensional quasi-analytic repre-
by the slender body approximation. Quasi- sentation for ship motion with an empirical
analytic and two-dimensional nonlinear methods representation for viscous damping and nonlinear
complement each other in this regard, with the hydrostatic terms in a six degree-of-freedom
former providing three-dimensional effects and simulation.

the latter inviscid nonine_, effects. Another
reason for the relative importance of twe- Realistic modelinig of the wave-making of a
dimensional mthods is that the simpliflcation translating three-dimensional hull appears to
is u-e'uZ- Relat'ne to wave-making problems, a require at least a partial representation of
large number of calculations are required at nonlinear free-surface effects. Perturbing
various wave lengths and headings to character- about the double hull flow rather than about the
ize the response of a ;.hee-dimensional hody in 'ree stream appears promising for the wave-
waves; and the problem is compounded if it is making problem for low and moderate Froude
nonlinear. numbers. Also, an exact inviscid solution of a

nonlinear three-dimensional wave-making problem
An example of a two-dimensional nonlinear has been obtained numerically. Furtlr compar-

solution related to maneuvering characteristics ions should be made with experimental wave
is the steady force acting on a yawed vertical profiler ,od wave-making resistance coefficients.
plate piercing a nonlinear f;ee surface as Complete .greement between theoretical and
calculated by Chapman [391. In this case, experimental resistance depends, in part, on
slender bcdy theory reduced the nonlinear three- resolving the interaction between wave-making
dimensional problem to an unsteady nonlinear and viscous components of resistance. One
two-dimensional problem. single example is the wetted surface area

covered by a bow wave, or at high speeds by a
The nonlinear force acting on a heaving spray sheet.

re . ogular cylinder was computed by Nichols
and irt [34] with the SOLA-SURF code, a varia- Two-dimensional nonlinear methods are valu-
tion of the Marker-and-Cell method. Added able for simulating nonlinear hydrodynamic
mass and damping coefficients were campared with effects for large amplitude body motion. Strip
linear theory and with experiment. Chan and theory and slender body theory can extend these
Hirt [403 solved the nonlinear problem of the methods to practical ship hulls. Thus, while
free-surface disturbance and forces generated quasi-analytic methods yield three-dlmens

4
onal

by the motion of a semisuberged cylinder, effects, nonlinear two-dimensional methids
Both a second-order finite difference and a yield nonlinear hydrodynamic effects for extreme
Lagranglan (GALE) method were applied. Lagran- motions including possibly capsizing and slamming.
gian methods such as GALE or the triangular
mesh method developec by Boris, ec.al. [413 Finally, it should be emphasized that all

could potentially simulate extreme nonlinear numerical methods should, if possible, be com-
flows, which with strip or slender body theory pared with experimental data over as wide a
could be applied to capsizing or ship slamming. range as possible. In this way the limitations

of the various explicit or implicit assumptions
Another class of problems with application can be evaluated and the simplest valid methods

to ship hydrodynamics concerns free-surface develnped.

effects for liquid cargoes or anti-roll tanks.
These effects can influence the roll charac-
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NUMERICAL EVALUATION OF A WAVE-RESISTANCE THEORY
FOR SLOW SHIPS

E. Bab& and M. Hara
Nagaaki Technical Institute,

Mitsubishi Heavy tustriea, Ltd.
1-1 Akunoura-machi

Nagasaki, Japan

Abstract In section ? an outline of the present
theory is given. It is then shown that

A procedure is presented for -the wave resistance derived from the present
numerical calculation of wave resistance theory consists of thee parts. One is
of conventional ship forms. ave-resist- due to the singularity distributions over
ance theory used in the present the body surface, the second is due to
calculation takes account of the non- the singularity distributions around the
linear effect on the free-surface intersection between the body and the
condition. Because of this a remarkable still-water surface ( the so called line-
attenuation of the humps and hollows of integral term ), and the third is due to
wave resistance curve is attained in the the free-surface disturbance expres;ed
practical speed range of conventional in terms of products of derivatives of
commercial ships. Taking a semisubmerged double-b,-1,, potential. The last one is
s1here as an example, each stage of considered , the nonlinear effect on
numerical calculations is exanined by the free-surf., - conditi-',.
comparing with the analytical values.
Finally wave resistance of conventional In section 3 a quantitative discuss
ship forms is calculated and compared on the characteristics of the present
with experimental values. Within a theory is given by applying the theory
practically acceptable order of to a vertical circular cylinder piercing
magniude wave resistance can be the free surface. It is tsen shown that
estimated by the piesent theory, the contribution from the singularity

distributions on the body surface is
cancelled out by the lower-order rerms

1. Introduction of the contribution from the line-............ integral tern. The remaining kigher-
A wave resistance theory which takes order terms are the same order of

account of the nonlinear effect on the magnitude as that of the third part of
,Iree--surface condition in low speeds the free-surface disturbance. It is
has been developed by Raba and Takekuima further shown that this third part
11,2] . In this piper a procedure is contributes especially to tile Ieduction
presented for the numericat calculation of tramnverse-wave components. As I

of conventio.al ship forms based on this result, humps and hollows of the wave
theory. resistance coefficient curve are

attenate 1'd remarkably.
The theory is an extension of

Ogilvie's two-dimensional low-speed wave In section 4 a ptiocedte to calculate
resistance theory[3] to the three- wave resi lance of conventional ship
dimensional bodies piercing the free forms is eplained. III the computation
surface. It is a characteristic of the a1 asympt-tic expresslol of the amplitude
theory that the double-body veloci-ty fumltiol I low-speed limit is used.
potential is used as tile zero-order Necessa, quantities for the computation
solution, As the next-,rder solution a are I-nub I-oldy velocity componeiilt
surface-layer velocity potential which around tile load waterliine. They can be
represents a wave motion is determined obtained by finite-eleuent method '"''h

in such a way that the sun of both as the one developed by Hless an! Smith
velocity potentials satisfies a free- for nnlif ting bodies [4). letails of
surface condition. The free-surface numerical caleulation of wave resistance
condition used in the present paper is are described. In the procedure validityl
a Linear equation for the surface-layer of the numerical calculation in esglne,
potential. However, products of by applying the computer program to a
derivatives of zero-order potential are semisubmerged sphere whose wave
included. Therefore tie coefficients resistance is obtained anlytically by
for the equation are depenent on space the present theory.
variables
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in section 5 se~ ral. exampst~ of wave resis-

tance calculations fur conveati~onl ship forms g 1

are shown and compared with wave resistarce de- rr(x'y) - IU' - XY.)

terisined by towing tests.
0Y
2
(X,y,D) J (4)

2. Outline of tlhe theaI qain I n 2,z 1

or slw 512115corresponds to the free-surface clev~tion

expressed by the term Cr(X,Y). Besle

'r ixed in retange a hod>' diits teoii the equations (1) and (,2), the radiation

system fie ntl oywt htrgn condition should be satisfied by P(X,Y,Z).

onl the still watcr surface, we set s-axis It should he noted further that in the

axdirected uphea ra sown Uind Fi- present theory the surface- layer

Ths etl uparslocity n ig1 potential d(x,y,z) does no2Z satisfy the

Tietoa vlciypotential isdcfincti: body boundary condition- The zero-order
4(x~y~z),Otential or(x,y,Z) alone Satisfies the

OT.(XyZ) O(X,,7,)condition. Recently NewilanlIl derived

the oube-bdy ptenialindependently the same boundary-val1ue

where ', r is thpobebdyptniljrobulem for slow ships as the equation,

obtai ned from the :igid-wali problem. (1) and (2). The details of tile

is the surface-la yer velocity potential derivation of the above boundary-value

which represents a wave motion. problem and the following results are

found in the referencelbi.

4 An asymptotic solution p(X,yoz) in Lhe

/ low-speed limsit is obtained as

- / ~ ~ yz ~ rid'dy' D(',Y')

'1zziz1 ~ ~X / xy6 -/ sxy,)~d k

'~ .. :Surfce-ioyer

I 44y..K Double-body
Potential '/

Figl. Coordinate syte dik(x,y,O) ezks(X.y10),injko~~yl

The houndaryr-Value problem presented

by Baba aid Takekumall] for the

surface-layer velocity potential O(ly. where
is wiitten as

0 . o* (x,Y,Z) 0 ) (x,y,Z) + o* (s.,Z) ,ko(~.gl 
9/1 0" OX.Y sO

I dry T*
1 Y (x(6)us *(

* xy) D(x,Y) , on 2
0 

- (2)

Wave resistance dl rived from the v ,Irity

where is the &acceloratlon of gravity, potll 4(X.Y.r) is expressed as

4%rx(t.y 0), *r (%.V,0) Ord ti'l velocity
topnnaat he still-wa ter gurface. R aIAO 'o' O 8

D~x~) U rx~j-Y-0 CI('Y)where o is the density of water. Ate) 15

a3 the amplitude function:

TY ry(XY.O)YXis



sec~jtile integral Ta'ngc, and integrating b,
AIS - ~. ee J dxd~(xK parts, the first term of (12) is written:

capt~~~ep i vseec5 (xeosQ - yss9 , P -d 0(0vO

where catI scg nes *yin,
It is a characteristic of the present
%ave-resistance formula that the amplitude + -- sec' ji V . Cfl d0 N(x,y,O)
f unction is ex~sressed as at int-gral of i
disturbance '(x ,yl over the free surface. exi i vscc't9 (xcose + ysino)]
Recently MIaruo hafs derived indepen~entl\
the same wave- resistance formula a!- (9) se'Siuec) ddx(xy)
and (a) seI. - iveo', dyx0xy0

The disturbance tt(x.N,) is rewrittenepiiVCI(xo *yn)J, ()
as the sunm of two parts: p[iVC2 Xo0+yn)] ()

l v~) - xyQ *N~~l l~ where c i5 the cu.-ve of intersection

%her 0 i th perurbaionveloitybetween the body and the still water

potent iai of the double body, I e. srae

When a body is expressed by surface
r s~y:) Usource distribution o(x,y,z) and normal

doublet listribut ion p(xS),:) so as to
give zero-value )f perturbation potential

Nla, Y. ) - -I0 *inside the body, w,' have tile following
Zg Ix relations:

x gI~ - (0 *O 10(x,y,O) 4s t o(x,y,P)) cos(oX fl)

Oxv +l + sioxA (on c,

I (x,y,,O) 4n 'lx(s,y,()) onc
-g O aZ 21 0. y, z G (1

It 'hotile be noted that N(x,y,O) is 0(x,y,Z) 1 - o(x',y',z')1 j T ~,Jd
expressed in terms of products of
derivatives of the perturbation +x,',' I !.I lS
potential. Within the framowo-k of thle jxyX)nr r'
linearized theory, this tert is usually S(4
negitcted as higher order quantities, (4
as done by Gueel et alS]8. In the
present theory, however, it is shown that weeni h uwr omlt h
the contribution from N(x,y,o) plays an whrnisteuwacomltoie
important role in the wave resistance at surface at the interne t ion c, and I is
low speeds. The present authors consider thle tangent. S is thle surface of the
that this term represents a nonlinear submerged part of thc hody. Here, ui
effect on the free.surface condition. body is considered which has a vertical

hutll surface at the intersection C. MAo,
Substituting (101) into (9), we have r (_,l+(y2+ 21

A(O) seclo dxi> Oxx(xi>'0) r-,_ (XX,)l 4 (yy,)2 , (,,,)
2
11/2

eirp[ I vseci8 IxcosO + ysinO) Further, we have a relation

W~e JJdily N(x,y,O) rf da> I *10

expi i vacc'0 (xcose + ysin6) x exp i sec
2P (XeesO + ysino)J

41T
(12)~~~V sec. a]v'e

2

Exclhuding The cross section between the + i scO(X'cosO + y'sino)]
body and the still water surface from



This we have The double-body potential 0(x,y,z) for

a circular cylinder is written as

A(0) = AS(e) + AL(e) + AF(G) (1S) (ax 2 2

O(xyZ) - =y , X yZ a2. 1

where
Substituting (17) into AS(9) and AL(e)

A _4 sec' a(xyz)of (16), we have

x exp[vsec'ef z + i(xcose ysine))] ASO0) 
= 

- Zia JC- 1 seco)

44Y e,^ -ia sec'e [a 1=- see20)+- 2 e dS I~ (x ,y, z) n2~ e2

Jc(- isec28)] , (19)

x exp[vsec
2
8( z + i(xcose + y3inO)l] s

ALMO sec38 [y o(x,y,O)cos( x,;) AL~a) - Zi J1 sec2O
+ sc icxy0 is 2 1 2S-+ sin(ox,n) ] (Tr sec e)

x exp[ i vsec
2
6 (xcosO + ysinO)] , J2(- sec e)]

AF(O) v - -sec'e JJ dxdy N(x,y,O) +S7V Fn
2
SOcosde 1 sec 2)-11

283 ia 4cs cs j sec?0),exp[ 1 vecO (xcosO + ysine). -" in cos2 cos -- (20)
(16)

where Fn - U/.ga , and J4, J1, J2 are
It is understood that the amplitude tne Bessvl functions of the first kind.function consists of three parts. One is The first term of (19) is the
due to the surface singularity distri contribution from the surface source

dueto hesurac siguariy iti distribution, and the second is from
butions over the body surface. This term distribution .
gives the conventional wave-resistance doublet distribution.
formula which was derived by Havelock
for submerged bodies[9]. The second is It is observed t t he amplitude
due to jhe singularity distributions function due to the surface
around 'he intersection between the body singularities AS(e) is cancelled out by
and the still-wpter surface. This term the first two terms of the amplitude
is the so called line-integral term. The function due to the line integral term
third is due to the free-surface AL(e). This fact was first pointed out
disturbance expressed in terms of by Brard within the framework of the
products of derivatives of double-body linearized theory[lO].
potential. The asymptotic expression of the sum

of AS(O) and AL() is written in the low
3. Wave resistance of speed limit:

simple forms

A A(8) - i 16- r1 cos- 6
In order to evaluate numerically the

characteristics of the present theory, X CO( c8 I S ) O(Fn')
the above mentioned three parts of the 117
amplitude function are calculated fo,, a
vertical circular cylinder piercing te
free surface.

The density of source and ioublet Nf-st, rubstituting ()8) into (11),
distributions for a vertical circule we ',ave N(x,y,O) as ollow ;
cylinder of radius a sre given as
follows!

Ux Ux(,y - - (x,y.Z) - (17)

20,



Fro the figure it is found that AF(S

4U 2~x -a'xcontributes 
especially to the reduction

N(x,y,0) 4U Fn' T~ j of transverse wave componeflt(saall 9-
_r values). As the result, humps and hollows

of the wave-resistance curve are
for r - / X-'yi a. attenuated remarkably.

In the low-speed limit wave resistance

From A (0) of (16) we then have due to the sum of AS(6) an AL(M is
obtained by means of stationary phase in

A (e).4i sec'ef 2a6  a6  8)

CW- w
Ux r sec2a) dr -4PtP'(2a) I

- 6a ' oe secle IT6656 FG+3rTI

7=-F0  cos(O r-j *Wn 43An
7 Sin( I*j+

+ o(F
5) - (22) +O(Fn'). (23)

It is thus shown that in the low-speed on the other hand, the wave resistance

limit AS(O) + AL(P) is of same order of due to the sum of three parts AS(O),AL(O)
magnitude as that of AF(e). Fig.2 shows
a comparison of the asymptotic values of aid AF(S is obtained as

where + XL(8) and XF(eJ at Fn -0.20,812 *OF.

whrC 89w n'+O(n) (24)

IAF(6) -AF(S)/2a. Fig.3 shows a comparison of the wave
resistance curves for both cases. From
this figure it is found that AF(S),

5io which represents the nonlinear effect on
.0 the free-surface condition, plays an

important role on the attenuation of

40 humps and hollows of wave-resistance
40 At(&)+ !L(O) curve in low-speed range.

2.0 F=.0 ~ S d ~ ,lAS

1.0 ,

00 G

-1.0

W I 0 air a Wa

R~tS)~dS)'EI6) Pg.3. Comparison of CW-values

5.0 \\~*~//~PO) Iof vertical circular cylinder.

-40 An Additional example of calculation

is shown in IFig.4, where the wave

resistance curves of a amisubmere
-IL0 sphre are compare. Th wave raI starce

co icin obtine from the sum of

functons f vetica cirulartwo parts A5 (8) and AL(S is given as
Pig.2. CompariS~.n of amplitude followsl

cylinder in low speeds.



224 i 4. Numerical method to
C111 24FnS + 72F Fn'sin( + )cal-HuTte wave resistance

+ O(Fn') (25) In the previous sections analytical

studies are given on the contribution of
On the other hand, thc wave-resistance each term of amplitude functions to theI coefficient obtained from the sum of

coeficiet otaind frm te su ofwave resistance. In the present section
three parts AS(S), AL(S) and AF(S) for a procedure is explained to calculate

the semisubmerged sphere is given by numerically the wave resistance ofarbitrary forms. For convenience of
computation, the expression of amplitude

633 9 7 1' in function(9) is used directly instead of
63

C  
sin( -F-, the expression (15).

* O(a) . (26) By the partial integration with
respect to x in (9), an asymptotic
expression of the amplitude function in
low-speed limit i. obtained as a line
integral around the intersection of the
body and the still-water surface:

A()-- isec 6 dyD(x,y)
c

exp[ i vsec2S (xcos0 + ysin)].

- (27)

- .0.-..d (phw

In this calculation the cross section
c- R. between the body and the still-water

surface is excluded from the integral
.0 range in (9).

c. .l F: t. 0i*F When the equation of the intersection

L,aa4,s m.is expressed by the following relations:

coSB , Bn sin(nO)

5 'where L is the length of a body and Bn
are the Fourier coefficients, the
amplitude function is rewritten:

1- Fn, fdo F(B)

0 s- a s exp[ i.s . ()], (28)

where Fn II/vg
Fig.4. Comparison of Cw-values
of semisubmerged sphere. (,S) * cos~cose + (2E Bn slnnB)sinO

In this case, not only an attenuation of F(S) I - p az
humps and hollows but also a large
reduction of the basic term which is of p(9) 1- u - v

.

order F ' is attained by the addition of
the amplitude function AF(8). The details u * 0x(X.yO)/U , v o 0y(XyO)/U
of the derivation of (2) and (26) are
explained in Appendix A. W 0lZ(x,y,O) L/U
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The amplitude function can be calculated Table 1. Evaluation of numerical
by use of the velocity components around integration with respect to 0 and 0.
the load waterline. The wave resistance
is then calculated by (8). Froude Ew, Cw, Cw1/Cw,

Taking a semisubmerged sphere as an number Numerical Analytical
example, the validity of each stage of 0.15 0.116463-3 0.115927-3 1.005
numerical calculations 1: examinri as n.20 .635963-3 0.640767-3 0.993
follows. First, the integration with U.2S 0.189489-2 0.177887-2 l.O
respect to B is carried out in (28) by [
use of the exact expression of T(S) for
a semisubmerged sphere[2,6]: This result shows the validity of the

numerical integration for practical
(9 .use.

F(B) - cosB( T sir' 2 1. (29)
In the above mentioned examination of

the numerical integration, the exact
For this numerical calculation Simpson's expression of F(B) is used. In practice,
rule is applied with the interval AB = however, F(6) for an arbitrary body has
iFn

2
/47. At a a 75, this interval to be obtained numerically.

provides more than 15 ordinates in a
range from one peak to the next peak of Representing the body by finite
the highly oscillating integrand. Next, number of surface elements on the body,
the integration with respect to 6 is velocity components at the null point of
carried out in the wave resistance each surface element can be obtained.
integral (8). In this computation zero- Taking again the semisubmerged sphere as
points of A(e) with respect to 0 are an example, computed values of v(S),
searched first and then each interval p(S), dp/dS, wz(B), dy/dS and F() are
from one zero-point to the next zero- compared with the exact values at the
point is numerically integrated by load waterline:
Simpson's rule in such a way that the
number of ordinates in one interval is
not less than 10. It is confirmed that v(W) = - cosasin, wz() = - cos,
the value of wave resistance usually
converges to a certain value when the p(S) -I sin's, - = cosO,
upper limit of the integral range is 

T

close to A 75' as shown in Fig.S; an ( B 9 sncosB.
exa.iple of calculation on the semisub-
merged sFhere.

In this computation, half of the surface
,'Q of submerged part of the sphere is
".5 approxinated by 1818 surface elements.

The source density is assumed constant
over each of the elements. Table 2 shows

nl5lnti¢5I the comparison of analytical and
numercal values,

the calculation of dp/da, p(8) is
C. OL_ approximated first by a set of parabolic

so curves determined by p(S) at the null
points of surface elements at the load
waterline. Then dp/d$ is obtained by a

o.t here. curve fitting through thv derivatives of
af F.-0.1 p(8) which is approximated by the

parabolic curves. For the calculation of
w (8) In the present paper, w(A) is
obtained first at the point which is a

-* Upwlirfiattsonueoan little apart from the surface element
0o , " t * " " *o = s " closest to the load waterline. Thedistance from the load waterline which
Fig.S. Variation of Cw-values with is suitable fur calculation wAs investi-
respect tc the upper limit of the gated in the trial and error peocess. Asintegral range. the result, the most reliable values fori a were fond In this case for the point

In Table 1 the computed wave-resis- which is 3% of the half breadth of the
tance values are shown compared vith body in y-direction from the upper edge
the analytical values which are obtained E and 3 of the draft of the body in
by the method of stationary phase with negative z-direction (-6) from the - 0
respect to B In (28) and e in (B) for a lever as shown in the,6. wz(8) is then
sea submerged sphere as expressed by determined by dividing the value of w()
(26) in the previous section. by 6.

In practice, a rather atall nsetber, say
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Table 2. Comparison of numerical and analytical values
of v(O), p(O), dp/d6, wz(O), dy/di, and F(O).

v(S) p(S) dp/do
Numerical Analytical Numerical Analytical Numerical Inalytical

0.147AS5 -0.19q96 -0.21080 0.96319 0.95465 -0.58765 -0.63239
0.27564 -0.40290 -0.30283 0.82567 0.83333 -1.2215 -1.1785
0.44442 -U.58736 -0.58226 0.57906 0.58410 -1.6852 -1.7468
0.61628 -0.70839 -0.70751 0.25025 0.24830 -2.0385 -2.1225
0.73920 -0.74859 -0.74998 -0.12401 -0.13355 -2.1624 -2.2499
0.96259 -0.70103 -0.70340 -0.49861 -0.51539 -2.0299 -2.1102
1.1362 -0.57045 -0.57286 -0.82839 -0.85112 -1.6548 -1.7186
1.3100 -0.37198 -0.37370 -1.0735 -1.1004 -1.0807 -1.1211
1.4839 -0.12913 -0.12969 -1.2040 -1.2331 -0.37549 -0.38907

wz(S) dy/d F(O)
Numerical Analytical Numerical Analytical Numerical Analytical

0.14245 -2.8776 -2.9696 0.49269 0.49494 1.4778 1.5364
0.27564 -2.8769 -2.8868 0.47999 0.48113 1.6323 !.6204
0.44442 -2.7145 -2.7086 0.45056 0.45143 1.6980 1.7313
0.61628 -2.4527 -2.4481 0.40732 0.40802 1.6941 1.7497
0.78920 -2.1115 -2.1132 0,35165 0.35221 1.5267 1.5879
0.96259 -1.7031 -1.7142 0.28527 0.28570 1.1808 1.2319
1.1362 -1.2500 -1.2631 0.21021 0.21052 0.72631 0.75816
1.3100 -0.76229 0.77355 0.12874 0.1289a 0.29665 0.30920
1.4839 -0.25609 -0.26036 0.43357-1 0.43394-1 0.35119-1 0.36527-1

Finally, Table 3 shows a comparison
of wave resistance obtained by analytical

-i-so. method with the wave resistance obtained
numerically in all the steps of
calculations.

Table 3. Comparison of wave resistance
numerical and analytical.

Cme, NOWm

Froude CW3  Cw2  Cw3/Cw2
number Numerical Analytical

0.15 0.111583-3 0.115927-3 0.963
0.16 0,164280-3 0.169636-3 0.968
0.17 0.188316-3 0.194107-3 0.970
0.18 0.300873-3 0.318895-3 0.940
0.19 0.406422-3 0.410392-3 0.990
0.20 0.605154-3 0.640767-3 0.944

Fig.6. Calculation of wz-values. 0.21 0.613495-3 0,632632- 0.970
0.22 0.114399-2 0.112825-2 1.014
0.23 0.146388-2 0.154081-2 0.950

350, -;re used from the economical view 0.24 0.135996-2 0.149167-2 0.912
point. Therefore, the present authors 0.2S 0.178262-2 0.177887-2 1.002
consider that such a method mentioned
above is necessary in determinin the
values of wz(8) efficiently. It is
needless to say that the suitable
distance of the point where w(8) Is
calculated should be searched in
accordance with the numbers, the size
and the shape of the surface elements.
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1719,20 0.4444 10.00 _
L 
.I0 30 il1mm

2330C 0.7391 6.770 2.381 27 a 19 p.,1360 0.7764 .966 2.s1 23 a 12 5 '21

19148 0.8624 6.358 2.5ar 1 23 a 14 As of surfae

s The first example of the calculations
is for Wigloy s parabolic forms 1.1719, 0o fo rm
and 4.1720 which are geometrically

similar and defined by {

y.2B ({ )5 - ( }'][ 1 - () ] , Pig•9. p(S}-values near the fore and
aft ends.

' | L/B. 10, d/L •0.0d2S .

In this computation 3010 surface elements In Fig.9 the calculated values ofp(B)
are used. Near the fore and aft ends are shwn ecmpaed with the values for a
smaller elements are used, because semisubmerged iphere. It is understood

velocity components vary rapidly with that near the fore and aft ends p(B) of
position In those regions, The breadth Wigley's form varies rapidly. It is also
of the elements at fore and aft ends is seen that p(S) of Wtgley's fosm is
0.5 8 L as shown in Fig.8. In addtion to almoat unchanged for a large difference
this case, two other cases,i.e, the of the breadth of the surface elements.
breadth of the elements being 0.25 t L and
0.05 t L are also studied so as to know
a change of wave resistance with respect
to the breadth of the surface elements.

A a j
1719,20~~ ~ ~~ 0.441.00160 0x1

19S5 55766 72 2 51 27x 18 P(#

2330C~~~~ :39 6 : 770. 2:8.27x1



Wigley's porabolic form -
at Fa.20 0- *.gley I"n C. of F-.020

',X1A(e)IaCoS3OeL2

-4 05 .

2 .0 blreadtht of element
at fare and aft end$

2.5 X 03 0~Q
-0.5a0 x I S a5'

Fig.ll. Change of Cw with
1.0 respect to the breadth of

-- surface element.

Fig.l0 s hows a comparison of wave
spectra at rn - 0.20. With a decrease of
the breadth of the surface element, wave

e 10 20' 30' 40' 50* 66 d spectrum decreases. However, its change
is small. Fig.ll shows the result of

- 9 integration of wave spectra with respect
to 0. From this figure it is found that

17ig10.Comprisn ofwav spetra wave resistance is not so sensitive to
withO Compreisondt of v sperfa the difference of the breadth of the
elemt a d frt rdt f ensurac surface element used in the present

elemnt : fre ~d at eds.study.

4.01

Wigleys parabolic form k

2.0 L 'B() (-)(- Zd 0

L/810.0, d/L=0.0625

Michell aoi Laperient
R~o a1 Sm Model 1719

\j goo 0 .m Model 1720

Present theory (Surface elements 30 x 10)

005 11 as 020 Q10 130 1135

Fig.12. Cumparison of calculated and measured
wave resistance of Wigley's form.
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Fig.12 shows the comtputed wave
resistance for a wide range of Froude
number compared with the wave resistance
obtained by Michell's linearized thernry. ioWgipey's parabolic form
In this figLre wave resistance 30at Fa.-0.20
determined from the towing tests of
geometrically similar models of 8 meters 2X1A(G)rcosze/L!
sri 5 meters are aloshown. A remarkahiL
attenuation o f the nuips and hollows in
the range Fn <0.20 is attained by the\,ihl
present theory. A quantitative agreement 2.0
is also observed between the present
theory and the experiment. It should be
noted, however, that in higher speed
range the present theory gives poorer
estimate than Michell's theory. Presen

Fig.13 shows a comparison of wave Ta
spectra at Fn - 0.20. When compared
with Michell's theory, it is a
characteristic of the present theory
that the wave spectrum cnrresponding to
the transverse waves (small e-values) is
considerably reduced as observed for a, I 2f Se 4C $ad 1110 leme
vertical circular cylinder. This is the -
reason for the attenuation of humps and
hol lows in wave-resistance curve. Fig.13. Comparison of calculated

wave spectra of Wigley's form.

M. NO C- l- - 9d ft;;ofacl
0 955 05576 6720 ?,581 a294
a2330C Q7391 &770 2.381 Q296

0.0.5 [~oiies~03 .

C.-O.86 7C.,Q-74

C.-Q56

V 010~1Ol

011

Pig.14. Comparison of talculaited and measured wave resistance
of conventional ship forms.

Flg;14 shows computed wave resistance It is observed that in a wide range of
of four coniventionail s hip forms(L,/B.6.4-, block coefficient the calculated valves
7.0, Cb - 0.56 - 0.86). For those ship of wave resistance are in the same order
forms, the number of surface elements in of magnitude as those of experimental
the longitudinal direction corresponds to values which are determined by Hughes
the number of square stations which are method, where the fore factor is
used for the drawing of Iii in routine, determined by assuming that the total
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resistance is the viscous resistance in 8. References
very low speed range ( Fn % 0.06 ).

When comparing carefully the computed [1] Baba, B.,and Takekuma, K.(1975),
wave resistance with experiment, it is A Study on Free-Surface Flow around
noted that theoretical curves are shifted the Bow of Slowly Moving Full Forms,
a little toward lower speed range. This Journal of The Society of Naval
tendency is also observed in the case of Architects of Japan, Vol.137,1-10.
Wigley's form in the range Fo a 0.20. [2] Baba, E.(1975). Blunt Bow Forms and

Wave Breaking, The First STAR
6. Concluding remarks Symposium, Washington, D.C.

In the present paper a procedure is 13] Ogilvie, T.F.(1968). Wave Resistance:explained for the calculation of wave The Low Speed Limit, University ofespitane fof ships nlclaio s . Te Michigan, Naval Architecture andresistance of ships in low speeds. The Marine Engineering, No. O02.
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-lution in low-speed limit. In accordance
with this fact, an asymptotic wave- Calculation of Nonlifting Potential
resistance formula in low-speed limit is Flow About Arbitrary Three-

used for the calculation of wave Dimensional Bodies, Journal of Ship

resistance. Research, Vol.8, No.2, 22-44.

From a number of computations based on [5] Newman, J.N.(1976). Linearized Wave
the present theory it is found that in the Resistance Theory, Proceedings of
practical speed range the wave resistance International Seminar on Wave
of conventional ship forms can be Resistance, Tokyo, 31-43.

estimated %,thin a practically acceptable [6] Baba, E.(1976). Wave Resistance of
order of magnitude. The wave resistance
of those ship forms has not been Ships in Low Speed, Mitsubishi
tractable by the thin-ship theory. It is Technical Bulletin, No.109,
the breakthrough which has been achieved Mitsubishi Heavy Industries, Ltd.
by taking into account the nonlinear
effect of the free-surface condition in [7] Maruo, H.(1977). Wave Resistance of

the present theory, a Ship with Finite Beam at Low
Froude Numbers, Bulletin of The

From the practical view point, it is Faculty of Engineering, Yokohama
expected that the present theory can be used National University, Vol.26.
to find a ship form of small wave
resistsnce in an early stage of [81 Gu~vel, P., Vaussy, P.,and Kobus, J.M.
development of ship forms. It is also (1974). The Distribution of

expected that the present theory can be Singularities Kinematically Equivalent
used for the determination of the level to a Moving Hull in the Presence of
of viscous resistance in low-speed range, a Free Surface, International
Then a reliable value of form factor is Shipbuilding Progress, Vol.21,311-324.
determined. This contributes to the
increase of acciiracy of power prediction [9] Havelock, T.H.(1932). The Theory of
of ships from the model tests. Wave Resistance, Proceedings of theRoyal Society, A, Vol.138, 339-348.

There is, however, room for an
improvement of the preqent asymptotic [10] Brard, R.(1972). The Representation
theory. In the fui~'re a correction of a Given Ship Form by Singularity
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otential so as to satisfy the body Condition on the Pree Surface is
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resistance may be possible. Further,
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the low-speed limit:

Appendix A. Wave relistance 
of

semi eubmerged adhere 7kee 16a r? 72 os,S ALMe i 7F r. MY cs
The perturbation velocity potential r

of a semisubmerged sphere in the rigid- 120 i
wall problem is given as cos3e ] cos( sece - ) + O(FhIs).

0(X'4yz+t- Ua jx (A-1) (A-6)7(Cyz =2X,+y+_Z97,2 C-

Substituting (A-3) into (A-5), we havewhere a is the radius of the sphere.The in the low-speed limit:

first term of D(x,y) defined by (10) in
the text is obtained as1 V Ar(8) + i 7 nITN osa + -Nos+ 36

- (XyO) )- a 9x -, + n

X Cos( 1 seCi8 ) O(Fn3) W 7)

Q 4 Fn' f ( AM )c058 - -jr, cos30].

The sum of three parts AS(0), AL(e) and
for s > 1 , (A-2) AF(O, is thus written:

where Fn - UVga , r - xr +y s - r/a, As(e) + AL(e) + AF(e)

cosB - x/a, sins - y/a. 16a 7 cos 27
.- i--Fn[ - cos3

On the other hand, N(x,y,0), the second
term of D(x,y) is obtained as X cos( sece - ) + O(Fn) . (A-8)

N~x~v,9 9 +UFz [- 177 20
N(xY,) 41 Fnj [( - " ) Substituting (A-6) into (8) in the text13? 3 Mi P U s n and using the stationary phase method,

we have a wave-resistance formula of ai 6O3 +-9- )cos5] semisubmerged sphere when the free
surface condition is linearized:

for s> 1 (A-3)

Cw Rw

The amplitude function due to the surface TpU'(Za)l

singularity distributions and the line 224
singularity distributions around the Fn' + 7 Fn' sin(.2' + -T
load waterline is expressed by the first
term of (12):

+ O(qfl. (A-1O)

A() + AL (x,y,)} When the contribution from the free-

surface disturbance N(x,y,O) is included,
X exp[ i vsec'e (xcose + ysine) ]. the wave resistance is obtained by the

use of the expression (A-8):

(A-4)

CW 633 Pn 9 rw Fn' sin( +
The amplitude function due to the free-
surfaci disturbance N(x,y,O) is expressed + O(F'). (A-l1)
by the second term of (12):

A F(e)-- --- secelfdxdy N(x.yO)

x eip[ i Vsece xcoO36 + ysine ) ].

(A- S)

SibstLtuting (A-Z) into (A-4), we have in

- " •



A PRACTICAL COMPUTER METHOD FOR SOLVING SHIP-WAVE PROBLEMS

C. W. Dawson
David W. Taylor Navl Ship Research and Development Center

Bthesd Maryland 2D04

Abstract 2 minutes and cost $39.00. For many problems,
the time and labor cost for preparation of the

A computer method is described for input will be greater than the cost of computer
computing the three-dimensional, steady state, time for running the problems.
potential flow about a ship-like body in or
near the free surface. The two-dimensional The method was first developed for two-
work which foned the foundation for the three- dimensional problems and then extended to three
dimensional program is also described. The dimensions. The two-dimensional work will be
method uses a sisole source density distribu- described first as it is the foundation for the
tion over both the body surface and a local three-dimensional method.
portion of the undisturbed free surface. The
free surface condition is linearized in I. Mathematical Statement of the Problem
terms of the double-model velocity. Upstream
waves are prevented by the use of a one-sided, The velocity potential * must satisfy the
upstream, finite difference operator for the following conditions:
free surface condition. Results are given tor
Wigley Model 1805A and for a Series 60, Block Y2+ - 0 in the fluid (1)
60 ship. The results ware obtained at
reasonable cost and show that the method is *n = 0 on the body (2)
practical for the evaluation cf ship designs.

1. Introduction gn +1 -2 + +2 + #2 -U2) * 0 on thei(X zfree (3)

This paper describes a computer method for * n + * q - .0 surface
computing the three-dimensional, steady state, x + y y z
potential flow past an arbitrarily shaped body
in or near the free surface. A FORTRAN vo - (U ,0,0) at - (ex:ept where (4)
program (XYZFS) has been developed using the there are waves and waver mist be
method. The output of XYZFS includes the pree only dw amefrmt b
velocity field, pressure distribution, and present only downstream from the body)
streamlines over the body surface plus the where n refers to the direction nomal to the
wave resistance and elevation of the free
su, face. A Texas Instruments "Advanced Scien- body surface,
titic Computer" was used to solve test problems. subscripts n,xy,z denoto partial

differentiation,
The method of solution is a modification

of the surface source method developed by Hess z is the vertical coordinate, and
and Smith [1,2]. A method similar to the n is the value of z at the free surface.
method described here has bean developed by
Gadd [3]. The body and a local portion of the The free surface condition is replaced by
undisturbed free surface are geometrically a linearized condition and approximations are
represented by quadrilateral panels. The made to discretize the problem. However, it is
source density Is detemined so that the the way in which waves are made to radiate only
boundary conditions on the panels are approxi- in the downstream direction that is special to
mately satisfied. the method of solution described here.

The Series 60, Block 60 ship, used as a Il. Method for Two-Oimnsional Probm
test problem, was run with 206 (8x26) panels
on the body surface and 360 (10x36) panels on Consider a body beneath the free surface of
the undisturbed free surface. Because of center- a moving fluid as shown in Figure 1. The
plane smetry, only half of the body and free simplest approximation to the free surface Is a
surface were directly represented. This line of symetry. Then the problem Is easily
problem took 5 minutes of central processor solved by placing an image of the body above
tim and cast $87.00 for the first Froude the line of symtry. This formulation is
number. Each additional Fraude number took called the double-model problem.
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Figure 1. Geometry of a Two-Dimensional Problem

To improve on the double-model solution, *(x.y) Ux + f S(x',y')(Inr+Inr)d t
a portion of the free surface (FS) near the BS

body is treated separately from the outer part 
(5)

of the free surface. The free surface e _+ .S(x',y')ln rdt'
condition is linearized in terms of the free FS

stream velocity and is satisfied by te addition
of a source density on the line of the un- where S(x',yl) is the source density.

disturbed surface. The undisturbed surface is
used to preserve the syimmetry condition for the
outer part of the surface as well as to simplify r is [(x-x)2+(y-y)2J

1/2

the calculations.

This symmetry condition is a very good F IS [(X-XI2+(y+yl)2]112 ,C applies

approximation upstream from the body where the to the image of the body).

surface has not been disturbed. Downstream it

is not correct but it still represents the and x',y' is a point on BS or FS. Laplace's

average condition. That is. some parts of the equation, the infinity condition, and the

surface are moving up. others are moving down symmetry condition for the outer part of the

so that the average vertical motion is zero. free surface are satisfied by * regardless of
the value: of S. Thus S mwy be found so as to

The problem just defined does not have a satisfy the boundary conditions on BS and FS.

unique solution. Upstream waves satisfy the
free surface condition just as well as down- Both BS and FS are divided into straight

stream waves. Normally t9 solution is made line segments, and the source density is

unique by imposing a radiation boundary approximated bly a constant v..ue in each

condition upstream from the body. Since it segmenst. Integration is thus replaced by

is difficult to set up a radiation condition in summation. The velocity components are given

three dimensions, another approach is used here. by Equations (6) and (7).

When a numerical procedure Is applied to a u(x,y) - #Y, U.+ 4 S CX (X.y) (6)
problm that does not have a unique solution. 

J.1 
J

the result can still be a reasonable solution
of the problem; and if the procedure is et up M
lust right, the solution will be the desired v(x.y) - #y • S CY (xy) (7)
one. In this case the desired solution is 

J11 
J

achieved by using a one-sided, upstream, finite
difference operator to approximate the free where M Is the number of segments
surface condition. In this way a disturbance
in the free surface is propagated downstream by CX (x.y) * +

the free surface condition but will Influence 'j rl "2

the flow upstream only through the application

of Laplace's equation to the bulk of the fluid, or
This process Is analogous to the natural process 0
in which a disturbance is carried downstrem i
by momentum but is felt upatrem only as changes and

in the pressure. CY ( - + (±Y)d.

The solution is generated in terms of a BSj r2

source density distributed on the body
surface (BS), on the imag of the body. and on or A4 da'
the local part of the undisturbed free surface f r
(FS). and is represented as follows: J
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The appropriate boundary condition will be point operator but still damps the waves too
satisfied at the center of each line segment. much. A fovr-point operator which eliminates
On BS the boundary condition (2) at segment I errors from ux and ixxx results in waves that
is grow in amplitude downstream from a disturbance.

A four-point operator which eliminates errors
0 . #n ' uiNXi + VNYi from UxgandUuxxxx but not uxxx results in(8) reasonale conservation of wave height and was

M. , + +CYNYiS therefore used in the computations. A five-U..N I '" j i point operator which eliminates errors from
Ux, u and u x conserves wave height

relsonaomy well but does not work as well as
where (NX1I,NYi) is the unit normal vector to the four-point operator with large segments or
segment i. (Note that CXiiNXI +CYiiNYi equals near large changes in the slope of the surface.
w plus the contribution from the image of The coefficients of the four-point operator
segment I for I in BS.) are:

On FS a four-point, upstream, finite
difference operator is used to obtain *xx so CD, (1  _-XI)2(x1 -,-))(xi-2
that

xx Ux CAju+CBiu i-+CCI u- 2+CDiu 1-3 i-li-2ilii

M Cc " . X -I"xi)2(x1 .3_xi )2 (xi-3PdJ [CA1CX I 'jCi~-~ (9)
.1I '+B C 'I

'
"X-xi-)(Xi-3+xi -l'2Xl)/Di

+CCiCXi-2,j+L'D1CXi-3,j]Sj CBI  ' (xl.2-Xs)
2
(xi_3-xi)

2
(X,.3

where CA1. Cbi, CCI, CDI are functions of the (11)

segment lengths and I increases in the down- i-2i3i2 i

stream direction. When the free surface
equations are linearized in terns of the free CAI - (CBi + CCI + CDi)
stream velocity and q is eliminated, the result
is: DI - ((X-Xi)(Xl.2-Xi)(Xl.3-x,)(xi.3

0 U2# +g9#
U xx y - 1I) (x i.2-Xi.l)(xi.3"X i.2)(x i.3

U2 [CACX1,J+CBCX j (10) 

+CCCXi.2,j+CDiCXi_3,j]Sj-gV Si  where the four points are xi, xil ' xi-2. '1-3"

Near the upstream end of FS. a smaller number (2) The wave length will be too short by

of points Is used in the finite difference about 5%.
operator. For the first point, S is either set (3) A large abrupt change in the lengths
equal to zero or determined in some other of the segments will cause a large point-to-
manner, point oscillation in the free surface upstream

from the change. Changes in segment dtze
Thus a system of M equations in M unknown -maller than a factor of 1.5 do not cause

values of S must be solved. The matrix is full noticeable oscillations.
and is not symmetric or diagonally dominate but
does seem to be well-conditioned. The system (4) The downstream boundary will also cause
of equations is solved by the Gaussian oscillations unless a damping region is placed
-limnation procedure with double precision next to It. An adequate damping region is
arithmetic. provided by the ose of the two-point difference

operator for the last two segments.
IV. Two-Dimensional Results (5) The effect of tht downstream boundary

is siqificant for only a short distance
Experiments with simple two-dimensional upstream. Most of the dowstream boundary

problem have shown that the method does work effect disippears after 1/4 of a wave length.
Waves develop downstream from a disturbance and Figure 2 shows three solutions to the problem
not upstream. The experiments have also shown of flow past a point dipole. fhe soltion
that: with the shorter downstream region is almost

(1) A two-point finite difference the same as the solution with the longer region
operator used in the free surface boundary except for the last three points. Although
condition results in waves that are strongly errors at the upstrem boundary are usually
damped downstream from a disturbance. A three- sell , they are serious as they can affect the
point finite difference operator wh'eh elimi- fntire solution, The soution in Figure 2 with
nates errors truem u. Is better thin the two- the short upstream region has a phase shift
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Figure 2. Boundary Effects on Flow Past a Dipole

INFT,

rel-tive to the long region solution. POSTllE CICULATION

(6) Goo results can be obtained with
only 14 segents per wave length and useful
results with only 8 segme;ts per wave length. /" ,

In Figure I and Equation (10). the free x' _ !
urface condition was linearized in terms of FY -. . ' -1 \ ;

the free stream velocity. The free surface
condition can also be linearized in terms of
the double-model velocity. A good discussionu-1
of double-mode, linearization is provided by
Neuman in reference [41. .. K3ATIVE../

A,.CIRCULAION:4
Two test problemt were run to compare

double-model linearization with free-stream x ,
linearization. The first problem, that of flow an. / -z a
past a point vortex, was used by Salvesen and "" E
von Kerczek (5] to compare perturbation methods *1with a nonlinear calculation. Figure 3 is a ".""."LOCATIO.
comparlscn of wave profiles. Double-model OEPT4=4.6
linesrization produced i wave more nearly In lENTh '12f-_v
p.ase with the nonlinear wave than did free
stream linearization. Figure 4 is a comparison
of the drag m the vortex. For positive NO IMEAR (IALVEIN veKE BCEK)
vortices the doble model linearization ... RITEMIF LAII (PESIT lnlOO)
produced very good results. For negative --- DOUBLE M110011LIN (RW q M[ E )
vortices the rasults were no. as goo4 but were
still much better than those for free-stream
li-tarization and were comparable to the Figure 3. Wave Elevations for a

pas-turbstlon solutlmn . Submerged Vortex
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Sm~ALVS AMD r..uEacz problem was .ased by Salvesen 01] for a compari son~ MD EARof perturbAt',on calculatoq's with experimental0 YAWWARresults. Figure 6 shows the wave proufiles for- FIRT ORDE three different depths of submiergenc.. The
----- U DMimprovement rroeuced by double-model lineariza-tion was sawli for Cie deeper submergance but

-- T~lED RIERquite large when the body approached the
PP.EIBITMETI' Yrface.

9 PNEE STREAM WEAR
+ DOIUBLE MODEL LINAR.

n 1.8 Fr. UMMMEN

16 POUTIE ,

ORUIT I IAV,
./,C - 4:0

/1 +,/NUATIVEMU SU40 - ,4' L ..
- - -EAI WAVE

-FrM TS'U M S ALIP

0., O I ... COE MM. LMM R.FUNT '1100

±03 ±1 u ±2.4 ±3,2
VISIX $!TM*M Tln. fl/MU Figurt 6. Wae Elevations for 9ifferent Depths

of Submergence of the Body

Figure 4. Wave Resistance as a Function of
Vortex trengthV. Ntthod for Three-Dimansi.)n.al Problems

For three-d imensI anal problem the free
surface condition (3) It always linearized inThe second problem was that of flow past a terms of the double-model velocity potential *,submerged body represented by 3 point sources that is. f - f + #'and nonlinear terms of #'are

and 8 point sinks as shown in Figure 5. This Oiropped. Also Equati ons (3) are applied at
110, not it the fres surface. When n is

Y eliminatect. Equations (3) reduce to:

x x y Z x x y 2y

Now for any function F
0 CF.*+9y Fy - 4 F1  (2b where the subscript I denotes differentiation

along a streamline of 4. Thus the free aurface
co tion becomes

. (2 *

y Z 0~]9~

Figure S. Singularity Rapresm'tetion and ttv
cross sectior of the (y
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but 2 (0,,2 + 4e*,)X + *(.2 + 0), *ram reference [3] how Gadd prevents upstreamYy WAVS.

* ( . + ey) x  a ( oy a- ) VI. Three-Dimensional Results
Two three-dimensional problems have been

+ ( . ) -e(x, +4o + studied. The first problem was that of flow
y y Yy oyy) about 'xigley Model 180SA". This body is

~e~ ) I * , referred to as Model 2891 by Shearer [7] and
t " £ ot#Lt Wehausen [8]. Model I8SOA is ship-like with

t0e body surface defined by
so that

+ + 0g* y .75(l - x)( 2 
" '

) (I -.6") (15)

Now replace #'with #-4 to get Numerical experiments were run with Model
1805A using 64 panels (4x16) for the body

- 2 surface and various numbers of panels for the
+ go (14) free surface. These experiments showed that:

(1) The paneled region of the free surface
Equation (14) is the uame as the double-model must be about 3/8 of the body length wide.
linearized free surface condition for two Otherwise waves reflected from the boundary will
dimensions except tnat x has been replaced by t. alter the flow at the stern of the body

For three-dimensional problems, quadrilat- need(2) The paneled region of the free surface

eral panels are used in place of the line be extended downstream only about 1/4

segments of the two-dimensional problems. The wave length. (About 1/4 body length for the

body Is assumed to have symimtry about the problem considered here.)
center nlane so that only half of the body and (3) The paneled region of the frre surface
free surface need be directly represented. The must be extended about 1/4 of the body length
In r 6f the two-dimensional kernel is upstream from the body.
relaced by 1/r. The Integrels over each panel (4) Much smller panels are required near
are evaluated by the method used by Hess and the bow than over the reminder of the body.
Smith [1,2]. Exact Integvation is used for
the shorter distances, a quadripole source is (5) The free surface panels should be
used for intermediate disUnres, and a monopole 'wept back at about a 45* angle so that the
source is useJ for large distances, smll panels near the bow follow the bow wave.

The panels for the free surface are The final panel arrangement in these
arranged 

4
n sets so that each set is bounded by experiments had 288 panels with 64 on the body

streamlines of the double-iodel problem. Thus and 224 (8x28) on the free surface. Migley
Equation (14) may bo applied to each set and Model 1OSA was then run with 484 panels. 144
approximatad by the four-point, upstream, finite (6x24) on the body and 340 (10x34) on the free
difference operator that was used for two surface.
dimensions. The result as in two-dimensional
oroblems is a system of M equations In M The wave profiles and drag curves for Model
unknowns that Is solved by Gaussian Elimination. 1805A are shown in Figures 7 and 8. These

figures include experimental data and thin ship
All the double-model streamlines go around calculations from Shearer [7] (also available

the body whereas saQ free stream streamlines in ref. [8]). The wave profile was taken from
go through the body. Thus the problem of the surface elevation at the panels next to
starting the free surface condition at the body the body, which resulted in some error near the
surface has been avoided. This was the bow.
original reason for using double-model lineari-
zation. The Increased accuracy shown by the The solutions f,-)m the 288-paet model and
two-dimensional experiments Is a bonus. the 484-panel model agree quite well at

smaller Froude numbers. At higher Froude
The free surface panels adjacent to the nubers the two solutions differ by an

body are extended a short distance into the increasing amount. indicating a need for smeller
body. Otherwise there would be a singularity panels. This result was unexpected since the
in the source density where the body panels waves are longer for higher Froude numbers.
meet the free surface panel. This idea was
borrowed from Gadd [3]. The error In the wave length predicted by

the two-dimensional results shows up as a
th the present mthod and Gadd's method Froude number shift in the drag curves. Other-

use a double-model of the body and represent wise the results are an improvment over the
the body and a local portion of the free surface thin ship calculations.
by sc'rce panels. The methods differ In that
Gad4 uses artificial smoothing to eliminate The second problem involved the flow past a
unwanted oscillations and a nonlinear form of Series 60 Block 60 ship. For this problem 208the free surface condition. It is not cleair panels (GSxf) were used for the ship and 360

3.
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Figure 7. Wave Resistance for Wigley Model 1805A

panels (10036) for the free surface. The
drarrngement of the panelsoviewed from the side%and below, is shown in Figure 9. %

The drag curves for the Series 60 ship are -.3

shown in Figure 10. The baid for the residual
drag represents the envelope of the experimental
dat from Huang and von Kerczek [9) , Tsai and .1 4 0 4
Lantdaeber (10] and Todd [11. The drag curve
does not show the expected Froude nuder shift. shw hf

The wave profiles for the Series 60 ship Figure 8. Wave Profiles for Wigly Model 1805Aare shown in Figure 11. Experimental date and
calculations by Guilloeons method rgj are also
shown. The wave profiles computed by the
present method show a dip in the top of the bow
wave that is not shown by thei other curves.
The bow is slightl concave near the dip so shows the streamlines viewed from the side forthe dip may be real. Because the dip is smell the double-model solution end for Froude
and would be hidden by the bow wave Itself. It nymbe, .359. The change In the streamlines
could heve been missed 4n the experie ts. indicahrs the importance, at higher Froude

number%.* of the free surface to the flow over
For Froude number .35 the surface elevation all parts of a ship.

at the next set of paoifls Is also shown. The
center of these panels is .035 L/2 from the VII, Conclusion
ship. The dip in the bow' wave Is very small atthis distance end cannot be detected further With the method presented here, It is
out. practical to examine the steady state

performance of ship designs. The coat is
The experimental wave profiles show reasonable and the accuracy of the results islarger oscillations near the middle of the better then thet provided by thin ship theory

ship then do those obtained by.the present or by Guilloton's method [9]
method. The error may be caused by the non- 9
linear terms that are omitted or by inadequate V111. Acknowledgment
retolution. This question needs additional
study. The author wishes to thank Mr. Paul Morawaki

for running the three-dimensional calculations.
Streamlines on the surface of te Series This work was supirted by the 6.1 and 6.2

60 ship have also been computed. Figure 12 Mithemtical Sciences Research Program
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Figure 9. Panel Arrangement for Series 60 Ship
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Figure 10. Wave Resistance for Series 60
Block 60 Ship .

sponsored by the Naval Sea Systems Loemaond (TaskFn .3
Area SR 0140301: Mathematical Sciences) and the
Navel Material Comman~d (Task Area ZF53532001: -.
Logistics Te4chnology).
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FINITE DIFFERENCE SIMULATION OF THE PLANAR MOTION OF A SHIP*

Robert K.-C. Chan
JAYCOR

Del Mar, California

Abstract the computer is required, and that the result-
ing equations are much longer and harder to

A finite difference solution procedure has program, especially when simulating finite-
been developed to study three-dimensional po- amplitude waves. Consequently, this approach
tential flows, both transient and steady, about is not taken in the present study. Rather, the
a shiplike floating body. The primary features full nonlinear equations are used directly.
of this paper include the use of special co-
ordinate transformations so that proper bound- Several difficulties arise when calculat-
ary conditions can be applied at the exact ing three-dimensional, time-dependent flows
locations of the body surface and free surface, about a ship. Because of limitation in cam-
the application of Orlanski's numerical radi- puter storage, one is allowed to use a rela-
ation condition to prevent unwanted wave re- tively small computation domain, e.g., 40 x 20
flections, and a new upwind-centered finite- x 20 mesh points. Besides, one almost must
difference scheme for numerical integration of employ a body-fixed frame of reference, so that
the time-dependent free surface conditions. The the precious mesh points can be used to give
forward motion of a shiplike floating body and the best resolution in the vicinity of the
that of a submerged body are studied. Both ship. In this fram of reference, the ship
nonlinear and linearized free surface condi- appears stationary 4n a running stream. Nu-
tions were used for comparison purposes. The merically, this situation creates two problems.
nonlinear results were found to be significant- The first problem concerns boundary conditions
ly different frcm the linear solution for at "open boundaries," where the flow and/or
finite-amplitude waves. Also, Orlanski's nu- waves leave the computation region. Improper
merical radiation condition was found to be treatment of open boundaries will result in
extremely effective in reducing spurious wave spurious reflections that make the computations
reflections. meaningless. Fortunately, with the appearance

of Orlanski's2 excellent technique for numeri-
1. Introduction cally implementing the Somnrfeld radiation

condition for unbounded hyperbolic flows, this
This paper describes a finite-difference, obstacle can now be removed. The second prob-

numerical technique for simulating transient, lem associated with streaming flows is that the
three-dimensional potential flow about a float- advection terms in the governing equations
ing body. The primary objective is the devel- (Eqs. (18) and (19) in Sectle I) demand care-
opent of a computational procedure which ful construction of finite difference schemes.
allows arbitrary planar motions for a fairly Various conventional explicit schemes, such
large class of shiplike floating bodies. This that the first-order, forward-time, central-
work is the continuation of the author's previ- space difference, have been tried and found
ous numerical study of tJo flow about an accal- unstable. Other schemes, like the first-order
*rating floating sphere. In earlier studies, upwind differencing, Arm so dissipative that
the basic approach was the separation of the the waves are severely eamped. Implicit or
flow field into a base flow and the perturba- other higher-order methods, on the other hand,
tion from It. As an example, In studying the greatly Increase the programing task and cost
forward motion of a ship, we choose as the base of computation. In this paper an upwind-

face were replaced by a rigid plate, instead of some attractive properties. Is proposed. The
using a uniform stream with the magnitude of details are found in Section III. Another
the velocity equal to the speed of the ship, as category of difficulties is related to the
Is usually done in analyses to render the math- geometry of se boundaries. Proper boundary
smetics tractable, The advantage of this conditions must be applied at the exact, in-
approach is that it is more efficient in achiev- stantneous positions of the hull surface and
ing a given leel of accuracy for the perturba- the free surface, so that large-amplitude
tion field because accumulated errors due to motions can be accommodated. To this end, a
computation of the bulk of the flow pattern, series of coordinate transformations is made
i.e., the base flow. can not arise. The pen- (Section I). Essentially, a body-fitted, but
Alty. however, is that additional storage on otherwise stationary coordinate system is used

*This work was sponsored by the Office of Navel Research under Contract NO0014-76-C-0455.
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to describe the interior of the flow field. X - X + x cos 0 - y sin 8
while a second system, which conforms to both
the hull surface and the instantaneous fret, Y - Y 

+ 
x sin 0 + y cos e

surface, is employed to implement the free
surface conditions. Z - z

The class of body shapes considered here T - tis limited to those representable by a single..

valued function on the ship's center plane. where 8 is the angle which the ship makes with
Thus, the technique here is particularly useful the X-axis, and (XcYc) are the coordinates In
in calculating flow about a sharp-edged ship. the (X,Y,Z) system of the instantaneous posi-
For blunt bodies other coordinate systems must tion of the ship's center of rotation; e, Xc,
be used, but the formulation and computational and Yc are generally functions of the tim
procedure remains the same. The presert method (T or t).
can also be applied to flows about a submerged
body, or surface piercing structures, such as a Potential flow is assumed in this study.
bridge pier. Using * for the velocity potential, we have

I1. Governing Equations sX - x Cos B - y sin e

In this section a series of coordinate

transformtions are performed to obtain the Y 45 sin a .y co8
governing equations in forms convenient for (1)
applying correct boundary conditions at the OZ * Or
solid surface of a ship and at the instantane-
ous position of the free surface. +T t , u~x + 9y

Equations in a Moving Frame of Reference

As shown in Fig. 1, let (X,Y.Z.T) be the where
cartesian coordinates referred to an absolute,
inertial frame, and (x,y,zt) be their counter- 0- - u0 +wy
parts with reference to a mving frame which is
fixed in the ship. Within the scope of the v - vO - WX
present study, let us assume further that the
ship undergoes an arbitrary planar motion such u0 . (Xc)t cos 8 + (Yc)t sin 8 (2)
that its most (i.e., the vertical axi. of the
ship) always points vertically upward. The vo - - (Xc)t sin e + (Yc)t Cos e
choice of the moving axes (x,y,z will be such
that the positive x-direction is the same as
the longitudinal axis of the ship, pointing to t,
the front.

In the equations above, subscripts imply par-Employing a procedure similar to that ttal differentiation, e.g.,
given by Stoker,

3 
we obtain the following rela-

tions between the two coordinate systems:

OX 'Y,Z.T

Y while

_____ _ r I 
1

y,Z,t

-- '. In toe (XeYqZT) system, two of the gov-

-5- erning equations are toe Laplace equation
hXX 

+  
YY 

+ 
*zz " 0, ()

end the Bernoulli equationY-__ _ *T [+),(y,+ ( , -gz +. .o.
4)

In E4. (4, P the fluid pressure and p the
density. Using Eqs. (1). Eqs. (3) and (4) can

X, be written as

0 X xx 
+ 

*yy 4 #Zz 0()

Figure 1. fraes of Reference and
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#t + + + [{(#x) + (*)2 + c,2j Boy-Fitted Coordinate Systemcriina o

+ 9z+ 2. 0 (6) ordinate system with the property that one of
p its coordinate planes coincides with the hull

surface. Consider a new coordinate system (x-,
The boundary con~dition at the hull surface y',z.t') which is related to the (x.z,t) Sys-

is simply givpn by ten' by

(vB -;VF).Vtn ' (7)

where IS Is the velocity of a point at the body ~x~ (0
surface, IF the velocity of the fluid particle Z'z
which happens to be at the surface point under
consideration, and A is the unit normal vector t,- t.
at that point. In the (x,y,Z,t) system.
Eq. (7) is expressed explicitly it Let Q be any scaler quantity, then by the chein

*xnl + *n, ' 40n3  O in, , n2  (B) rule we have

where (nl,n2,ft3) are the cartesian components ~ ~ xu
of the vector At. As shown in Fig. 2, let the Q
single-valued function y - f(x,z) describe the Q Y
distance of the hull from the ship's center (11)
plane. Then the components of I can be written Q2  . -z z

n 2 I/AUsing these relations in Eq. (5). the Laplace
= 1/Aequation beconss

0 3 .f z/A oxx + + 11 + (f z) d2]oy~y_ + ozz_

where

A - J1 + (fx)T +(f z)T . y(~~ z~

Thus, the hull-surface boundary condition, (f xx + z) (12)

Eq. (B), becomes

'x~ +x) + y,~ - *y - q o 0 (9) and the Bernoulli equation

Note that generally f(x,z) A 0 in the projected X Yx +

area of the ship hull on tho center plane, and
f(x~z) s0 outside that area. f 2xy +( ) 2 + f )

+ gz,+ P 0(13)

The hull surface boundary condition, Eq. (9).
now takes the form

~YI f(O + #K) - V + f1.1]/[ + (f5)
2 + (f I),].

(14)

The location of the free surface can be
described by defining a scalar function

t~xy', t')3 z - n(x'.Y',t'); n is the
height of the point at which the z' coordinate
line pierces through the free surface (Figs,
3(b) and (c)). Using this description, the
class of free surface snapes is limited to those
representable by a single-valued function of

X y). Since c s 0 at t0e free surface for
Figure 2. Distribution of f(x,z) on the Ship's all times. the particle derivative Dc/DT

Canter Plane vanishes there, viz.

AV
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(a) Top View

z- rFREE SURFACE

(b) Side View

z FREE SURFACE

(c) Front view

Figure 3. Coordinate Systems and Compujtation Ibsh
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+ 1X5) O +f 0 . (15) x 
+  

"

Applying the transformations Eqs. (1) and (11), y= -- - ny--*z-- (20)

this leads 
to

t  "+(+xnx + y ¢zz (1 + fzny-)*z- - fzy.

Note that in Eqs. (18)-(20) all space deriva-
+ x)fx - #zfjny

j  
- az (16) ties can be evaluated on the plane z" - 0,

the only exception being z- which Involves

variation of * below the free surface. Since

which governs the displacement of the free 
varitio o c b e esy ced bysurfce.In te euatins bove quntites z,, " #2',. #z- can be easily computed by

In the equations above, quantities using the (x',y',z',t') system which describes
like , $a. etc. are to be evaluated by the interior flow field.

Eqs. tl)!YThe hull surface condition, Eq. (14).

Coordinate System for Free Surface Conditions becomes

To impose correctly the free surface con-
ditions for finite-amplitude waves, it is im- OY_"
portnt that Eqs. (13) and (16) be applied at
the instantaneous position of the free surface. fx(O X V + + f 2 + f2)n,,'+ f" - fx-x
This is cumbersome to do in the (x',y,z'.t')
system because in general none of the coordi- 1 q 'f

nate planes coincides with the free surface. (21)

Consider the following change of variables. and, using Eq. (9). Eq. (19) reduces to

x' x" nt. + 0. + x)nx
"" - ¢z (22)

(17) for use at the intersection of free surface and

Z- = Z' - n(x',yt) the solid body.

t" - t'. Other Boundary Conditions

Equations (13) and (16) can be written, respec- Temporal integration of Eqs. (18) and (19)

tively, as provides values of 0 and n at the free surface
at any instant of time. At the bottom of the
computational "tank," *z - 0. At large y', the

Ot" 
+  
U 

+ 
(x " fx " f~x _)y. 

+ 
a disturbance should vanish, so that * - 0. This

condition also applies at a sufficiently large

+. 1 distance upstream of the ship for forward meo-

pg + '0 (18) tion. At the downstream end of the computa-
tion domain proper radiation condition mst be

+imposed so that waves can leave the region of

t (u + C'x)nx + v + Cy " (u + x~fx interest with minimum amunt of nonphysical
reflections. This condition is so crucial to
successful computation of wave propagation in a

- *zfzny- •$z(19) limited domain, we shall describe it in aseparate section (Section IV).

where
Outline of the Computational Procedure

x x z y The basic computational mesh is rectangu-

lar in the (x',y',z') space, as shown In Figs.

2 2)2 3(a)-(c). The only quantities to be computed
+ r +I+ f 

+ 
fzn..- in the (x-oy-,z-) system are n and 0 at the
Z free surface. The following Is a sketch of the

steps required td advance the flow field In

+ 2n -(f z fxnx.,.)]02_1 tim.

1. Apply radiation boundary condition to ob-
tain advanced values of n and * at the

These equations are to be used at the free sur- downstream end of the comutation domain.
face where z' - n (or z- - 0). Thus, the
term gz' has been replaced by gn In Eq. (18).
The following relations are used to evaluate 2. Use Eqs. (18) and (19) to advance # and n

*t' and #a, which appear in the equations at the instantaneous position of the free

ebOv. surface.
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3. Obtain the *-field by solving Eq. (12), 0+1
subject to appropriate boundary conditions, 1,1

e.g., Eq. (14).

111. Finite Difference SchemesU
For illustrative purposes, let us assume

constant mesh spacings 6x', 6y', and 6z'. It

was found early in this study that the computa-
tion is unstable when the familiar scheme of
explicit central difference is emeploycd. Since ,
in forward motion, the flow clearly has a pre- QI.r
ferred direction, one imediately thinks of the i
one-sided, upwind difference. Unfortunately, I
tMe usual upwind difference schemes introduce
so much artificial 

damping that 
the accuracy 

is 

i0

seriously impaired. In this study we use a new
upwind-centered scheme which introduces no
artificial viscosity for pure advections at a
constant velocity.

Let Q be any quantity, such as 0 or n, de- 0l-,1
fined at the free surface. We use the indices aX"
(i,jn) to discretize Q over the free surface,
such that (a) x"-t" Plane

Q , j
=  Q(i x" , j y" , n 6t" ) ,

where 6x'" and 6y" are the spatial mesh spac-
ings and St" is the time increment. Equations .-,1+I ii+iT
(18) and (19) can be cast in the general form T

Qt" 
+ U*Qx." + v*Qy_ + t - 0 (23) al"

where u* - 0, v* 9 - Ufx - fxYx., for Eq.
(18) and u + I v* - + v - (0 + 0x)fx  C)",
- *zfz for Eq. (19)' Since in fgrward motion +
(i.e., the ship moving toward the negative
x'-direction) u* . 0, we may develop our finite
difference schemes about an upstream point 0 as
shown in Figs. 4(a) and (b), using the follow-
ing rules:

=Q 1, Q - QB)/6t"

[ .] . { - < .) , . (b, x"- ," P on.

[Q]" + .j)

Figure 4. Upwind Centered Difference Scheme

[Qy10 " (O + ,J-I + Oi-tj+l lead to a finite difference algorithm that does

n- /(26y-) not contain any artificial viscosity.

In solving Eqs. 18) and (19) one has to
where evaluate oz.. at the fre surface (sea also

Eqs. (20)). Since oz
•
- # z*, we only have to; I+ n,,) calculate #z at the free surface. In Fig.

QA'- 3(c) let be the value of 4 at a free-surface
(24) point 0, tIn a one-sided difference gives

[a i~ + Q7:1,J). - (5

USng these rules, Eqs. (18) and (19) lead

to explicit, one-step, but three-level differ- The boundary rndition, Eq. (21), for 4
nce schems for advancing n and 4 at the free at the free surface is represented by a one-

surface. It can be shown that Eqs. (24), when sided difference in the y"-direction, but by
applied to the simple advection equation central difference in the other two
Qt.. + I Vx + roy.. 0 (U and V are constants), directions.

1'4



Because interior values o? o, such as 01 a number of authors in the past. Experience
in Eq. (25). are needed in solving Eqs. (18) indicates, however, that none of these methods
and (19), one must solve Eq. (12) to obtain the is effective in reducing wave reflectigns to a
internal distribution of *. This Is done by negligible degree. Recently, Orlanski

d 
pub-

using the following difference expressions lished a simple, but very effective treatment
of such boundaries. His method consists of

nimposing a Sommerfeld radiation condition at
[Ox']jn [Or~ji1, ijk + the outflow boundary and numerically evaluatingthe phase velocity in the vicinity of the

(SxT)-2 boundary. Since Orlanski's original finitedifference representation of the radiation con-

dition is dissipative, we have replaced it with
,ny nn a nondissipative, neutrally stable scheme in

'OY'f,j,k fiJ+l,k " 2?,k + ti,j-Ikj thiE paper. The reader is referred to the ori-
ginal paper for details on Orlanski's scheme.

(,y-)-2 We shall describe here the improved version.

(n n + n The Sommerfeld radiation condition is

4i,j,k+1 - 'i,j~k ijk.J'C a
z ,j,k k j,k-11 Qt 

+ 
CQX = 0 (27)

* (6Z1
"2  

where Q is any variable, and C is the phase
velocity of the waves. Because the dispersion

nn characteristics of a complicated hyperbolic
k -lj+lk system are not generally known, it is desirable

,j,k to have a simple procedure for finding the

n n ) value of C needed to effect the condition (27).
t+l,J-!,k 01 ¢-lJ-l,k) Using the finite differences in Eqs. (24),

* (4 6x' dy^)1 Eq. (27) becomes

n n n,+' = n,_11 (I - 2.[) ,rB (28)

~yz{4~ IOi,j4-1,k+l - i,J-1,k+l Il +( of~ i-} (8
1Oy'zli,jk °j k

where the mesh index i - IB at the outflow
M n 1 boundary point and" l,j+l,k-1 +  i~j-l,k-Il

c6t
(4 6y' SzT - "

n nThe tine step 6t is chosen such that 0 o 1.
(Ii,+k J- I 1 I(

2
6y' = 0 By inserting a Fourier component solution inlYLjk I ' Eq. (28), it can be shown that the amplitude of

(26) wave components of all lengths is preserved
under the algebraic operations in Eq. (28).

in Eq. (12) and solving the result ing system of
difference equations by the standard procedure Equation (28) allows one to advance Q at
of successive over-relaxation (SOR), subject to the outflow boundary if n is known. This is
appropriate boundary conlitions. Note that accomplish6d by reducing the values of both the
Sx " - nd dy 6dy" in Eqs. (26). At the superscripts and subscripts in Eq, (28) by one
hull surface, Eq. (14) is represented by a one- unit and rearranging to give
sided difference in the y'-direction, while
central difference is used in the other two fn +n- ,,i
directions, In forward motion the boundary " ( -B. "-2 - B-I B-2 / (B-2
condition at the upstream (or inflow) plane and
at large y' is simply z 0. At the free sur- Qn-1)(
face, 4 Is provided by Fqs. (18) and (19), as Ie- (29)
Just described. For an internal mesh point
near the free surface, such as point I in Fig. By Eq. (29) we now have all the informtion to
3(c), #I is obtained by interpolation from 40, :omputeo a and, in turn by Eq. (28), ?1.
$2, and $3. At the downstream (or outfl ow)
Plan*. values of * are providd by the ridle- Not that N. (29) is equivalent to find-
tion condition dscribed below. ing C by rearranging Eq. (27) into the form

IV. Radtion ConditIon C -Qt/Q • (30)

Wave reflections from "Outflow" or open
boundaries have traditionally presented a sp- Wheqn a wave crest or trough approaches the out-
CIAl difficulty In finite-difforence simulation flow boundary. Eq. (30) can result in division
of' erbolic system. Various devices, such Of ze by zero, a singular situation that must
as simple extrapolation or artificial damping be treated separately. Thus, when the absolute
or the outflow region, have been proposed by value of the denominator In Eq. (29) becomes

very small, e.g.,

45
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S1TOTAL LENGTH OF SHIPwher-e - 1x NOMNAL LENOTH OFSHIP

where ( max and (Iin are the extiem values of 0IF I i D

Q in the flow field, ie simply set

01+1 n (31) h-L ' '0 ' 04 ' 'S(31) IB-0.o -0.4 0.0 0.4 0.6

LONGITUDINAL DISTANCE %/L
to replace Eq. (28). This is a valid procedure .
because when a wave crest or trough reaches the ) Top V*Sw
boundary. OIB changes very little in one time
step. Howcver, in applylng Eq. (29) there is SERN eBOW

still the possibility of dividing a small num-
ber by another small number, leading to a large
error in a. As Orlanskti pointed out, the fol- o o
lowing constraints on e are sufficient to
hendle such singul3r cases. Let the right side
of Eq. (29) be a*. then 0

(0 if a* < 0

- * if 0 S*S 1 (32)

if a,> 1 •03

In the present study, Eqs. (28)-(32) are
applied to * in the interior near the outflow
plane of the computation domain. 1he effective-
ness of this treatment will be discussed in the
next section. o

V. Discussion of Sample Results -O a

To demonstrate the present approach, con- o.2 0.1 co o.i 0 .2
sider a shiplike floating body depicted in
Figs. 5(a) and (b). Throughout this section.
we shall consider only the forward motion. For (b) Cross SeIlino,

comparison purposes, calculations were per- Figure 5. Shiplike Body Used in Sample
formed using linearized equations as well as Calculations
the full, nonlinear equations. The linearized
free surface conditions are obteined by neg-
lecting higher order terms in Eqs. (13) and
(16):

Ot, + U*0" + gn + P- 0 (33) ,o • (X c)t { (uO)m X • (t/tmax) .0 t < mx

(Uo)M x ,  I t . ax
nt U (34) (35)

where u* - -ue * - (Xc)t and gz' has been re- Figures 6(a) and (b) compare the free sur-
placed by gn. Equations (33) and (34) are to face profiles along y' - 0 (Fig. 3(a)) between
be applied at the initial, undisturbed position linear and nonlinear calculations for

.4 of the free surface. (Uo)mx * -1.0 and tm - 4.0. Figure 6(a)
corresponds to t 2.5 n n the ship Is still

Dimensionless variables will be used accelerating, and the flow is unsteady. At
throughout this discussion. Let L be a char- t - 10.0 (Fig. 6(b)) the flow in the computa-
acteristic length of the flow, such as the tian domin hs reached steady state. At
nominal length of ship (Fig. 5(a)). All steady state. the Froude number I uO I " 1 .0.
lenil hs will be normalized by L, all velocities The nonlinear result is quite different frim
byo'#L. acclerations by g, and time by 4-- . the linear one. something to be expected be-
In a typical calculation the computation doeIn cause in this case ka w 0.65 for the linear
consists of 40 mesh points in the x',direction, solution (k is the wave ,nuer and a the ampli-
20 in the y'-direction. and 20 in the z'- tude), The wave pattern at three different
direction. Variable mash spccings are employed tims for the nonlinear calculation is shown
to meet resolution requirements in different In Fig . 7(a)-(c) in term of contour plots of n.
parts of the flow field. The valuef 6x' - 6y'
t the; 0.1 are Into near the ship. The tion The mthod of this aper is als o

th ship Is prescribed by ble to a sumard body. As a nuieric a

14.



experiment, both thiner and nonlinear calcula- application is worth mentioning. Suppose that
tioms tie made for the forward motion of a the calculation of a particular flow situation
body with nondimeasional length equal to 1.0, has been validated by comparing with exper-
and a dimeter of 0.2. The depth of submer- mental data in terms of quantities that can be
gence is 0.58. The motion is again prescribed easily measured, such as the drag (with the
by Eq. (35), with (uo)x - - 1.0 and tax * viscous contribution subtracted) and the wave
4.0. lte nonlinear and linear free surface height distribution. The wealth of information
profiles at y" - 0 are compared in Figs. 8(a) contained in the numerical solution can then be
end (b). Note that the profiles in Fig. 8(b) processed to gain some insight into various
are in steddy state. In this submerged case, simplifications made in analytical models.
as qposrd to the surface ship above, the This my help identify those areas needing Ir-
source of disturbance is farther from the free provements in the simplified theories. For the
surface., and the linearized free surface condi- nonlinear problem considered in Figs. 6. as an
tions are exiectd to be good approximations, example, one can examine the validity of the
as is avide't in these comparisons. In this linearized equations (33) and (34) along
case, ha - 0.1. The contour plots of the free y- - 0.1 at the free surface when steady state
surface are shown in Figs. 9(a)-(c) for three is reached. In Fig. 12(a), tie terms u*Ox. and
different times. The flow field in the compu- -gn are compared. These two terms are supposed

; 4 I,'n has reached steady state in to be in balance by Eq, (33). The agreement is
Fig. 9(c). good in general, except near the bow and the

stern. The curve for u**x, which is used in
In the exaples abeve, the body na: mni- conventional linear analysis, shows a greater

tially at rest and then accelerated to a firal , deviation fro the -gn curve. Next, we compare
constant velocity. In due time the flow field u*nx" with Oz" in Fig. 12(b) and find fairly
in the computation domain should reach a steady good agreement. Again, the term U*nx, used in
state. It is interesting to see how the steady conventional analysis, differs considerably
state is approached in different parts of the from oz. near, the stern. Thus it appears that
field. Furthermore, it is a nontrivial ques- Eq (34) is a good approximation for the full
tion whether the sa. steady-state solutien is equation, while Eq. (33) is not. This observe-
obtained if the s.i- elerates in different tion is also true when the analysis above is
manners before re' t he prescribed final repeated for flow variations along y" = 0.
velocity, because thi: .w is nonlinear and it Since more extensive analysis of this type is
is -3t clear how the nemerical radiation condi- anticipated in the future, we shall not draw
tion and truncation errors in general affect any conclusions that may be premature.
the well-posedness of the overall problem. To
answer this question, an additional calculation References
was made for the nonlinear problem in Figs. 6,
this time the ship being impulsively set into 1. Chan, R. K.-C. and J. S. Stuhmiller,
forward motion with uo - - 1.0 in one time "Numerical Solution of Unsteady Ship Wave
step. Figure 10(a) compares the steady-state Problems," Eleventh Symposium on Naval
free surface profile at y' - 0 between the Hydrodynamics, Lonaon, 1976.
gradually started case (i.e., the problem asso-
ciated with Figs. 6) and the impulsively start- 2. Orlanski, I., "A Simple Boundary Condition
ed one. The agreement is excellent except for for Unbounded Hyperbolic Flows," Journal
minor discrepancy at the last few points. Note of Computational Physics, 21, 1976.
that the last point (point C) is subject to
numerical radiation condition. This kind of 3. Stoker, J. J., Water Waves, Interscience
agreement is observed throughout the entire Publishers, lnc.7iRw o-r

", 1966.
computation domain. The time history of n at
three selected points A, B, and C (see Fig.
10(a) for definitions) is compared in Fig.
10(b). It is seen that, independent of start-
ing conditions, a unique steady state is ap-
proached, except for minor variations at
points very close to the outflow boundary.

To investigate the effectiveness of the
radiation condition, two linear calculations
were made for the problem associated with
Figs. 6, one with a short computation domain
(-2.36 S x" S 2.46) and the other with a long
domain (-2.36 $ x' 5 8.45). These two runs are
compared in Figs. 11(a) and (b) for the tran-
sient and steady states, respectively, in terms
of the wave profile at y' - 0. Similarly good
agreement is found throughout the flow field.
Thus, we have some concrete evidence that
Orlanski's radiation condition leads to practi-

cally no spurious reflection at all.

Although validations and extensive applica-
tion of the present methodology is not within
the scope of this paper, one potential
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DISCUSSIONS
Of three ppers

NUMERICAL EVALUATION OF WAVE-RESISTANCE THEORY FOR SLOW SHIPS
E. aba and M. Hare

A PRACTICAL COMPUTER METHOD FOR SOLVING SHIP-WAVE PROBLEMS
C. W. Dawson

FINITE DIFFERENCE SIMULATION OF THE PLANAR MOTION OF A SHIP
Robert K. C. Char

Invited Discussion suggests that the difference in the free-surface
condition is not too significant..NM Newman

Massachusetts Institute of Technology The paper of Dr. Chan is doubly impressive
in treating the full nonlinear problem, for
unsteady motion. Much weight is placed on the

These three papers represent remarkable utilization of a numerical scheme of Orlansky
progress in analysing the three-dimensional ship- for imposing the radiation condition. The need
wave problem, in comparison with the state of the for such a condition in this initial-value
art at Gaithersburg two years ago. The paper problem is a bit surprising. Moreover, as uti-
presented by Dr. Babe is quasi-analytical in its lized here the scheme ensures that a single wave
approach, and uses extensions of integral repre- moving parallel to the x-axis will propagate
sentations that are familiar in the classical downstream. The unsteady ship-wave radiation
ship-wave theory. By comparison, Drs. Dawson condition is more complicated than this, and
and Chan have obtained direct numerical solutions even in the steady-state the usual linear solu.
that include unsteady and nonlinear effects. tion includes two separate transverse and

diverging waves, to which the radiation condi-
The work of Baba and Hare is based on the tions must be applied separately. It is

low Froude-number assumption; and thus it might difficult to assess the results without extending
be Judged less ambitious than the following the domain further upstream and downstream. That
papers. but the results are very complete and of course is expensive and possibly inaccurate.
impressive. The slow-ship approximation is Within the domain shown the charateristic wave-
appealing from the practical standpoint, espe- length seems to be much shorter than Is
cially for large merchant ships. This is appropriate for steady motion where, with the
essentially a short-wavelength approximation, units adopted, X-2n. Perhaps this is the result
with all the subtleties thereof. In particular, of unsteadiness as well as the bounded domain on
the waves are driven by a slowly-varying double- which the waves are being studied.
body field. Since the short waves are not
efficiently driven by this slowly-varying We should appreciate especially the compari-
generator, I wonder if the result is correct to sons for tie common Wigley model that have been
leading order in a perturbation sense, in com- added by Drs. Dawson and Chaa following Dr.
parison with other higher-order terms that have Babe's introduction of this hull form in his
been neglected. Also, how serious are the preliminary summary. There is clearly great
singularities at the bow and stern, where the value in the use of common hull forms ini com-
double-body flow is not slowly varying as paring different numerical techniques, as in the
assumed? analogous towing-tank tests fostered by the ITTC.

The paper by Dr. Dawson includes calcula- In summary, while there are a few details
tions of the free-surface elevation and of the that remain to be refined, all three of these
wave resistance; the crucial step of one-sided papers represent impressive progress toward our
finite-differencing appears to embrace the implicit goal, of predicting ship-wave inter-
radiation condition as a part of the free-surface actions for practical hull forms. All of the
condition. From the analytic viewpoint this seems authors are to be commended for their efforts in
a marriage of convenience, but the results are that quest.
impressive. One detailed comment Is that the
double-hull linearized free-surface condition
differs from that derived by Dr. Baba and myself;
Dr. Dawion applies the free-surface boundary
condition on zO, as opposed to the "double-body
free surface", with differences that appear to
be of leading order. It would seem no more diffi-
cult to use the more complete free-surface
condition equation (2) of Drs. Babe and Hare.
However the comparison in wave-resistance calcu-
lations between these two papers is striking and
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Discussion If the Froude number is assumed small, the first
Fy H.-Maruo approximation is the double model flow. There-
of paper by E. Babe and fore the wave resistance at low Froude numzbers
M. Hara is given by substituting for * the double-model

solution *o in the calculation of the function
The authors claim that the coeputation of H(k,e) expressed by (3). For a numerical

the wave resistance by means of the slow ship example, I calculated the case of Wigley's
formulation gives good agreement with the parabolic model. Because of the assumption of
measured results. I have carried out a similar the low Froude number, the double integral of the
calculation and obtained some new results, from secund term of (3) can be further simplified.
which I derive a slightly different conclusion. The result of calculation is given in Fig. 1
The basic theory is based on the expression for
the velocity potential derived by the direct ap-
plication of Green's theorem: o1

*(P) - /G(PQ)-- (- -  
,() SQ

So, o o,0,.,,. Lo. 3 ./3 /

o---------- / _n .00

/ f/
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) k(2u + U
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+ V
2 

+ W2 (2) integration. The calculation of Baba and Hara

32 zcorresponds to the result when the Integra-
z-O tion with respect to x is approximated. There

are considerable differences between various
approyimations and the exact integration of theThe first tern on the right-hand side of 1) double integral term. Numerical results deviate

gives the singularity distribution over the im- from the measured values at moderate and
mersed hull surface S and the second term is higher Froude numbers. For a trial, the solu-
the line Integral. The third term represents tion that satisfies the exact hull-surface
a plane z-O or the undisturbed free surface condition and the linearized free-surface con-
plane z-0O or the undisturbed free surface dition is calculated by assuming a source
outside the tull, with the source density given distribution. This so-called Neumann-Kelvin
by (2). The fluid motion far behind the ship solution is employed for the calculation of
Is characterized by the generalized Kochin (3). Since the numerical work is very tedious,
function defined by only results for one Froude number were obtained,

H(k,e) - - 1 (JJIn- IA)exp[kz + k(xcose

S O

kcose.*) exp (k(scose + ysine) dy

1 *(x,y)exp k(xcose + ysine dxdy

to (3) Is 33 on o on F

and the wave resistance is given by Havelock's
formule. They are shown in Fig. 2. The result includ-

ing the line-Integral and the free surface
/2sources gives plausible agreement with the me&-

I 8U tZ yo2iH(foeC*5*5)IlsecSde. (4) sured wave-pattern resistance. In conclu-
-/ sion, I wish to point'out as a warning that a

calculation based on the double model solution is
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likely to show a considerable deviation from Re Il
the measured results at moderate anI higher y a and M. Hara
Froude numbers, and the effect of the distortion to discussion by C.M. Lee
of the free surface must be taken into account
to determine the singularity distribution There are three reasons why we do not use
over the hull surface. the wave-cut results for the comparison with

theoretical results.
(1) The wave-cut results do not always give the

Discussion wave resistance. The term "wave resistance"
by7 Tee used here is defined as the resistance com-
of paper by E. Baba and ponent due to the generation of gravity waves.
M. Hara For conventional ship forms, this component

is written as the sum of two components:
This paper presents information of great

interest to me. I would like to sincerely Wave Resistance - resistance component due
congratulate the authors for their excellent to the generation of
work. propagating gravlty waves

+ resistance component due
In a practical sense, the question of to wave bred!ing

the usefulness and the validity of the pertur-
bation expansion about the zero-speed limit (2) The measured wave heights are the results
in the wave resistance theory seems to be no of wave-wci interaction. The wave-cut results
longer a bothersome issue. However, I will not contain interaction effects between the propagat-
completely dismiss this question until I can ing waves and the viscous wake. Therefore, the
fully digest the paper to be presented by wave-cut results do not always represent the
Professor Tuck and Mr. Vanden Broek. resistance component due to the propagating

gravit) 4aves as was pointed out by Prof. Land-
Io 1969 at the 12th ITTC meeting, Dr. Baba's weber in the keynote address.

work on the so-called wave-breaking resistance (3) The process of analysing the measured wave
was introduced. This has led to an impetus for heiqhts is not always accurate enough. The
many investigators to review the decomposition of theory used in the analysis Is the linearized
ship resistance. Essentially, Dr. Baba decom- theory for an ideal flow.
posed the total ship resistance into the
viscous resistance and the wave resistance. The However, the comparison with the wave-cut
viscous resistance was defined by the pressure results is useful for the investigation into
head loss through the transverse control the detailed mechanism of wave propagation. The
plane behind a ship. This head loss was divid- order of magnitude of wave-cut results is about
ed into one contributed by the frictional 80% of the wave resistance defined by the Hughes
wake, a id the other by the wave breaking by method for fine ship forms such as a high speed
the bow. The wave resistance was defined as that container ship. For full forms, the wave-cut
obtainable from the wave analysis behind results are much less than the values given by
the ship. the Hughes method. There are two reasons for

this. One is due to wave breaking and the other
The present paper appears to give an is due to wave-wake interaction.

impression that there is a shift In the posi-
tion for defining the wave resistance. That is, The theoretical value of wave resistance is
the experimental results presented in Figures 12 originally defined as the resistance component
and 14. according to the paper, were obtained due to wave generation. Therefore, in the
by Hughes' form-factor method. As we know, any present paper, we considered that, within the
correlation of theoretical wave resistance limitation of our present knowledge of the
with model experimental results can be signifi- resistance components, the calculated wave
cantly influenced by the definition of wave resistance should be compared with the results
resistance obtained by experiments. It would obtained from a method such as the one by
be interesting to know why the authors did not Hughes where the form effect is considered.
compare the theoretical results with the
wave-cut results, which can be truly defined
as wave resistance, consistent with the theoreti- Author's Reply
cal definition. Could it be possible that the byRobert K. C. Chan
results presented in Figures 12 and 14 contained
the wave-breaking resistance, especially for Professor Newman's comments on my paper maythe fuller models? be summarized as (1) that the need for the radia-

tion condition in an initial-value problem was
I understand that a numerical integration unexpected, (2) a single radiation condition was

of rapidly oscillating function such as the imposed, instead of two separate ones, and
amplitude function A(e)1

2 
can be more effec- (3) that te calculated wavelength seems much

tively performed by Filon's method. I would shorter than expected. To answer Professor
like to know if the authors tried this method Newman's first question, I must admit that there
instead of Simpson's rule which could be is confusion of terminol . In the usual
time-consuming and erroneous when applied to analytic approach to initial-value wave-
rapidly oscillating functions, resistance problems, an infinite domain is

assumed where the only far--fie condition is
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that all disturbances die out at infinity. If
the ship is the only source of disturbance in
the whole field, there will be outgoing waves
only. The situation of a discrete numerical
simulation in a truncated domain is quite differ-
ent. If one had the resources to use a compu-
tational mesh that is so large that, throughout
the physical time of interest, the disturbances
generated by the ship never reach the far-field
Loundaries, then the radiation condition would
not be needed in initial-value problems. In
practice, however, the flow field is arbitrarily
truncated to fit the capacity of the computa-
tional equipment, as well as the budget. Unlike
the case of real infinite domain, where one
can simply specify * - n 0 at infinity, one
does not know a priori what boundary conditions
to apply at those arbitrarily defined boundaries.
The basic assumption which allows one to trun-
cate the domain is that at some distance from the
ship the flow field becomes hyperbolic so that
infornation propagates away from the ship.
Under this assumption one can describe the flow
field in the vicinity of the artificial bcun-
daries in a characteristic form. Orlanski's
method essentially makes use of this character-
istic form to "extrapolate" the interior informa-
tion to the artificial boundaries, such that
unwanted wave reflection is sharply reduced. In
contrast, the function of radiation condition
in steady-state analysis is to help determine the
one solution that satisfies the physical re-
quirement of outgoing wave systems. Thus, there
is difference, both in purpose and technique,
betwoen Orlanski's radiation condition and the
radiation condition in classical hydrodynamics.
I am in favor of relabeling the former as
"open-boundary condition" to avoid confusion.
This would also have answered Professor Newman's
coment No. 2. As for his last comment, con-
cerning the wavelength, I am afraid I do not
have any satisfactory explanation at this time.
Mowever, I am positive that the short wave-
lengths are not the results of unsteadiness or
the bounded domain, since these calculations
were carried to steady state and various boundary
sizes were tested. I plan to clarify it by
using a point source pressure disturbance at
the free surface in the near future. I am glad
that Professor Newmn pointed this out, becauso
the computational results were very preliminary
and a great deal of additional work is required
to understand the various properties of the
numerical solution technique.
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EXISTENCE, UNIQUENESS AND REGULARITY
OF THE SOLUTION OF NEUMANN-KELVIN PROBLEM

FOR TWO OR THREE DIMENSIONAL SUBMERGED BODIES

j. 0i. Dorn
Bassln d'Essals des Cat4heS

Pais, Fronce

mhowever, that even in the case of a body kine-
matically equivalent to a distribution of sin-

The Neumann-Kelvin problem associated with gularities, the integral equation used to cal-
a steady flow above a horizontal bottom presen- culate the density of these singularities may
ting a bump of limited area is considered. In have a number of solutions for some, so-called,
the case of the height of the bump being small, irregular frequencies (28).
but not infinitely small, the existence and
uniqueness of the solution is demonstrated. These are, however, minor drawbacks and the
This result is valid for two or three-dimensio- Method of Siagularities is largely used in dif-
nal flows. The Method of Singularities is dis- fraction and radiation problems.
cussed and it is shown that the bump is kinema-
tically equivalent to a distribution of sources, Therefore, to calculate the wave resistance
and/or dipoles on its surface. Furthermore, it of a body of any shape piercing or not piercing
is shown that the int.egral equation employed to a free surface, one is tempted to use theMethod
calculate the density of these singularities of Singularities. Unfortunately, the numerical
has a unique solution, experience seems to prove that it is rather a

delicate matter to use the Method of Singula-
Contents rities in the Neumann-Kelvin problem. This fact

induces one to think it is advisable, even as-
I. Introduction. sential, to carry out mathematical studies "on-
2. Notations. currently with a numerical analysis.
3. Hain results.

4. The flat bump approach, I generalized The present paper is intended to determine
solution, certain conditions under which the Method of

5. The flat bump approach, II strict Singularities can be used to solve the wave
solution, resistance problem for submerged bodies.

6. Two auxiliary boundary value problems.
7. Existence, uniqueness and regularity of As far as thic problem is concerned, the

the solution : proofs of theorem I and II Method of Singularities may be divided into
8. The I 'hod of Singularitius : proof of three parts

teorem III.

Referenon (i) the linearisation of the free surface
condition ; this leads to the so-callu

I. Introduction Neumann-Kelvin problem (N-K problem) (4)(s)
frequently, numerical methods in ship hydro- (Ii) the representation of the solution as a

dynamics are developed before it has been dstrib tion of so luion as

proved that an exact solution to the problem
really exists. Prom a practical point of view, disposed n the surface of he body
one may maintain thih procedure when good nume- (iii) the expressiun of the flow condition on
rical evaluations can be made which compare
reasonably well with experimental results. For the body by mans of an integral equation.

example, the Method of Sigularities has been
applied successfully to calculate the difirac- One is then led to ask the following ques-

tion and vagiatlon forces acting upon a body in tions on the above points (I) to (iii).
heaving motion in waves. Nevertheless. even in
this case, difficulties are occacionelly e t (i) has the Neuann-Xvin problem a unique
for example, in the two-dimensional problce, solution and what is the regularity of
the Method of Frank is not applicable (13)when this solution ? Above all, is the regula-
the body settion is not vertical at flats- rity sufficient to provide a physically
tion * this ;& due to the fact that such a body acceptable solution
is not kinematically equivalent to a distribu-
tion of sources on its surface. It is known,
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(JI) is the body kinematically equiva- it is clear that the non-uniqueness of the solu-
lent to a distribution of sources, tion in the hypothesis of the zero Froude num-
and/or dipoles, on its surface ? her does not necessarily entail an analogous

(iii) has the integral equation a unique property for the corresponding solution with an
solution ? exact Froude number.

Few studies on the existence and uniqueness N. Dessho(2)har given an interesting proof of
of t e prolm thae eiene p ublshed. the non-uniqusenesa in the case of a 2-D verticaof the N-K problem have been published. plate partly immersed in water. For 3-D surface
For 2-fl or 3-D submerged bodies. N.E.Kochin piercing bodies, M. Bessho(3)has proposed a me-
(17 has proved the xisee nd niqenesofn thod for proving the uniqueness but further1]7) has proved the existence and uniqueness of stdearneedoclif thmto.

the problem as follows : the velocity potential studies are needed to clarify the method.

0 (I) of the fluid at point X is represented by The above discussion demonstrates the diffi-
a distribution of Kelvir. sources on the body culty presented by the study of the existence
surface r : if K(X,Y) is the velocity potential and uniqueness of the solution to the N-K
at point X of a Kelvin unit source at point Y, problem. When the body pierces the free surface
the potential 0 (X) is assumed to be the mathematical problems are enormous. To be-

(.) CX) O ](- K(X,) o (Y) dy gin with, it seems to be preferable to study

fr the simplest case of inersed bodies and espe-

The flow condition on r is cially of bodies lying on the bottom of the sea
Sv x(2-D or 3-D bump) and subjected to the effect

(1.2) v(x) , x c r of a flow of constant and uniform velocity c.

where N is the normal towards the outside rela- The potential '(X) corresponding to the flow
rive to thc body end v(X) is a given function, over this bump is solution of a N-K problem,t.i and (.2) give which shall be noted as NKd (Fb, E) ; d is the

( ) . gdimension of the physical space (d - 2 or 3)

(1.3) - O (X) O(Y) W CI.Y)dvr - v(X) Fh - c/g is the Froude number allied to the
r depth h, E - C(X') is the height of the bump

which is an integral equation of the second at point V , positively counted from the bottom.
kind for the unknown a (.).Let V be the integral
operator To prove the existence and uniqueness, the
0.) - r R (.Y) dK NKd (Fh, T) problem shall be considered as an

a f 'r"~ ' x Y elliptic boundary value problem (but with a
the equation (1.3) can also be written as :non-conventional boundary condition at the free
th ( 3 cn asurface) and the perturbation theory of linear

(1.5) (V - ) o - v operators (I6) will be used to prove the follo-
wing chain existence and uniqueness of the

N.E. Kuchin uses the Fredholm Alternative flat bump * N-K uniqueness n. N-K existence.
Theorems to show that, if the Froude number is
sufficiently small, 4 is not an eigenvalue of Another possible method would be to consider
the operator V. Therefore, the operator (V-1) the NKd (Fh, E) problem as the steady state
is invertible. Thie proof of existence and 2 limit of an initial value problem of hyperbolic
uniqueness assumes, however, that (i) the ope- type. But, this method, used in water wave
rator V fulfills the conditions of Fredholm's theory (32) does not directly give the unique-
Theorems (e.g. V must be completely conti- ness, which is the crux of the problem.

nuous), (ii) IV L 2 (U)l1 is a :ontinuous func- 2. Notations

tion of ko - A2 in the vicinity of the critical

value k- Ic Here g is the acceleration of The system of reference s xis OX X2 X3 is

gravityu; c, the velcity of the body ; L
2 
(r) right handed orthonoral and is bound to the

the spIce of square summable functions on r I bottom of the sea. The OX1 X2 plane is that ofIV ; L (r) , thre Ote oprto V con- the free surface at rest. The OX3 axis is verti-
L th coninorm opping from L V) Cal, directed towards the bottom. The OXI axis

sidered as a continuous mappn fro Ld (F)
into L2 i) i.e. Vt C (L2 VT), L2 ()rI These is parallel to the incident velocity,c, of the
properties are not explicitly proven by N.E. fluid and runs in the opposite direction to it.
Kochin. The bottom of the see has a bump of limited

area. The part 5 of the bottom which is situa-

Th study of the existence and uniqueness, ted without this bump is horizontal. The bump r

for bodies piercing the free surface is very has either a two-dimensional shape with a gene-
complitated. Curiously, it as .. Michell ratrix parallel to 012, or has a three-dimsn-
(23) who first proved it in the liuit case of &annal shape. The equation of the bump is

infinitely thin ships. However, his argument (2.1) r 13 - h - C(X'). X'e K
would not be considered a rigorous proof by s

modern standards. The uniqueness of the solution e is ' re-l (X X ) if d=2 and a Pol ' or

of the N-K problem in the case of a body of any re .- ( X2 ) if d-3. K - supp L is the

gliven shaFe was questioned hy J. Kotik and support of L . compactum of -1 . If C is defi-
R. Norgan (Is) in the hypothesis of 'he zero ned outside K by I(X') - 0 for XV K, (2.1) is
Frouds number. Their proof which neglected the the equstion of the bottom r us. For what fol-
existence of the water-line wee improved by lows it is convenient to introduce the folIo-
It. rard (4) , (5) with the aid of the line wing notations t
integral, and later by P. Guevel et al. (12)who
used the mdif led Kochin function. However,
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(2.2) E ma~ E(X')~ vatives up to the a-tb order (m<-) on th, comn-
X' K pact subsets of w (of w) If w is compact

(2.3) 1(l) (X') E 6' E(X') em (UW V6T ).
UE2Y

0
CO) iff UE Pi(w) has compact support,

(2.4) O~(w) t-, t(V) supp u,.i w.
(2.5) ~ ~ ~ ~ U N) (X)-£ &()u~~ ) iff u£23m(w) for all m 2! 0.
(2.5 N'~w) -1 x-)For the topologies of theae spaces sae (31)

It should be remembered that 4(X) is the u.,mQd-')iff u' 1C jndu anshs t n

velocity potential at point X, N is the normal finity
from the buap towards the outside relative to ,n d-
the fluid doain. u.$K,' CRd ), wwcee K is a compactum ofRN

(26 r N)iff u 
m
'a (ft d1) and supp u cK. The Banach

(.)N-(NI. N2 , N3) orkI 3 am,0 CIRd-1 is a Banach Algebra, that is i
according to d-3 or 2. sTpce K

With these notations the fluid domain Qis OR~~?~ Cd-1).a uvc~a,0 ORd-I) and
given by : (2.11) 1u 1 " .am d-I ..o u;'m,a O~d-I)I1
(2.7) a,~ A-X - (X',X3) : N 3d-, K1 ~C ) v ~ ; K ~

0<1t3h - t10) ('.). v ;1U.0 Ckd-I )II
The fluid domain is therefore in terms of pars- u~j"(2) iff u, 'u(Q,)and u Roe

0  
(P:

meter C.R
where one has aet:

particlar 2d-1
In patcua (InIJX' )7 ,- if X> 0,

(28)% 1..()*{XY. X3  X d_1 (2.12)It(X)- I(+X 2d-2

0<3.h) as a Banach space with the norm

Functional spaces I1o0 %!Ii~'0 ftIIui~ (l 311.

The termipology and the notezions are for the f$
0
Cd) m'2 it halb sidht

most part those of L.Schwartz (31). Let wbe an Kn ?2 thllb adta
open subset of in, n 

2 
1bdry w, the boundary of the function u(X) defined on rbelongs to

w and wT wubdry w. A function u(X). X e w , be- 510(r) iff u(X',h- E()e1
1
, "'Rd-1).

long* to the class Cm in w (in w;) iff u has con-K
tinuous partial derivatives up to the rn-tb order
in w (in ii). It is said that u belongs to the 3. Main results
clogs Cm,Ll in Zi iff u belongs to the class Cmt
in wi and if the partial derivatives 3 " of the It should be remembered that QI is the fluid
rn-tb order, are a-hiilderian (0< u domain defined by (2.7), N is thecnormal to

(2.9 jau(X)- au (Y I _S MI XYja , Ythe bottom, with (N1 ,N2,t!3) or (N1 ,N3) compo-(2.9 I~a1x3  3'~(Y)II4 I-Y1
0

XYnenta with respect to 0K1 X2X3 or OX IX3, OMX

where M is X'y inde andent and where .Iis the is the potential at point X allied to the fluid
Euclidian norm sn R. movement of v'lich the velocity is

Tha following normed linear spaces are usei 31 3X ~0X
ue 1% M if r is a function of the class cm in with

w and all the derivatives of which up to the (3.2) V'(,, - r(3,~-
rn-tb order are bounded inow. The norm :X 8'~i d. 03)

Iju ;.%"(w)II is the norm of the uniform conver- according to d - 3 or 2,
genre on wof u and of all its derivatives of

order ~. -Let E(x) be the height of the bump at
0 5f 5 B(w) the same as above with wreplaced by w point XV. We define

ucla"'~ (w-) 1ff u is a function of the class EM . EM (XI)

CON
0 

in (33 0() .*(

JThe norm is Iju N,(' -IIo~ ')I~~ N,(')(X' r EM

$ up {lpumX - apumI .Ijx-YI "; XY.w) by formulae (2.?) to (2.5).

where the 6utmatin E1* taken for all derivati-
ves up to the rn-tb order. In the Neunn-Kelvin formulatior (4), tle

solution of a boundary value problem NKd(Ph, I
Al h pcsaoeare banach sae.which tattes the following form when 0() to

All he saresabov spaes.chosen as the unknown N'nction.
uvCOw) iff u is a function of the tlaosC low
u.C(a) 1ff u is a function of the class in w NK (Th. c , I~~ problem
uot(w) iff %efCOMs for all a.0
us &W() 1ff uoee6) for all t.;iO. find $0I) $0() (x j C , tr'

3
) such that

These four spaces are equipped with the to-
po logy of uniform Conergence of u and its deri-



(NK1) V2 (X ; 0 , , XT Theorem 3 Under the conditions of theorem 2,a2  

the ,nique solution of the NKd (Ph,E ) problem(NK2 ) 2 (-) a(l) can be expressed equally well in any of the threeX_ ko O X3 - 0 following different forms
(i) single layer potential : O(X)- go whereI. )W.7 the unique solution in L

2
(P) of the(K3 ) a c 1  3 h ( integral equation,

(NK4) radiation condition : R(IO) 
° 

(P c) (V - II) a - v, v A c NI
here k. - -L- (ii) double layer potentiat:¢(X) = I3p where pC2 is the unique solution in11,L (ir) of the
Given integral equation,

K compactumo ofof the bd1p(e) (D - ) = u, u - restriction of (cXI) tOr
m integer >=2 (iii) mixed potential :A(X) -Ihi- v where p is
at real 0 < a < :the 

unique solution in 1l,o(r) of theWe net integral equation

(3. R X ' (space of solutions M(i)) (D - ) Sv.

(3.5) W 
m 'a

of data 4. The Flat-Bump Approach
K (ae d 

I  
I Generalized Solution

The two folloing results are proven Before resolving the NKd (Fh,E,E
( I
) problem

for any given value oft , the problem is to beTheorem I : Let us assume d-2 and Fh-l. For resolved fore- 0. In this case, the solution
jeatT7 'UJ W the NKd(Fh, E)prob lem has no in well known
solution in .e

For d;2, it is possible to refer to LambIn fact, it is shown that no solution exists (20 p.409) who explains the method followed byin the space of bo,.nded functions. Rayleigh (1883 ; artificial frictional forces)
and the method used by Kelvin (1886, FourierTheorsm 2 Let us assume whatemer be Ph when Integral Decoanposition)

- --- -2andFh 1if d-2. For each EI0 qj, C 
> 

0exists such that for all c .iao, t[ " For d-3 it is possible to refer to Ekman
(i) th6 NKd (Fh. E)problem hae a unique solu- (1907) (711. Also, the articles of Palm (29)tion 0(0)3 and Hatrband (14) who used the Initial Value(,) (I) i)' Method can be quoted. All theme methods clearly(ii) 0 () (X; E, )analytically depends demonstrate the existence of a solution of theon E : NKd (FhOt(l)) problem, by actually construc-(I) (I) (I) ( i)) ting it. In return the uniqueness of the solu-).$ (X;0,t . •n(X; ) tion is not rigorously proven by methods of

Rayleigh, Kelvin and Ekman, whereas the Initial
This series converges uniformly with Pee- Value Method cannot, in essence, prove it.
pact to X and can be differentiated with
respact to X , tem by term until the In fact, it is possible to prove the exis-m-th ormer. tence and the uniqueness of the solution byusing a modernised version of the method of( @ii) ()(X;,t',

(
1
)
) ()(;0.E()) and the Kelvin : The Method of the Fourier Transform

bn(X;E(1)) belong to E('1.JC) i.e. they in the space of L. Schwartz's Distributions.are linar and contintuous map ping fror into J . Using distributions the proof is routine but

lengthy. Therefore. only the essential stagesThe _ athod of Sinaularitt of the proof (which is expounded in detail in(9)J will be shown.

Let K MY) be the potential created at X bya Kelvin unit source placed at Y, 0 r. Notations

The operators "source" and "dipole" are defi- For the sake of brevity the following note-ned as follows tions will be used :
(3.6) B a - f K (X,Y) a (y) d¥ r I - (X3 0 X 3  h) so that II° - R 

d
-

r~ Ir
(3/ V - I~r £ (X,'Y) Pi (¥) dy [1 , l - (83 0 - 83 

<
hI

and he restrictions of So and Dv to the sur- T - (x 3  0 1 X) I h) so that i7 . Rd-I 9 Tface rot the bump are noted as So and D1 . The
followinged f(XJ.X2X 3) to the mapping Xo drf f(XoX2'd3)

r.)Vo- JaK (xMY) a (Y) dy[r. #o( 4 ()(i.t(I))4olwtio
n of the

so



N*9d (Fh, 0, E()) problem. onto S'oRd'.

u, ZPFOd-1 ift u is a function of the class
0 with compact support If is taken as the symbol of classical dif-

u (rd-
l ) 

iff uc )PORd-i)for any p 2 0 ferentiation (i.e. s y), the hmbol of differen-

d-i tiation in the sens
2

I ofT)' is noted by D
uc 'D (It iff Mi u is a function of the D

class C (i.e. R). To the classicil Laplacien opecator
(ii uand all iopeeiva'a2tor

(ii) u and all io derivati- V corresponds the operator Px in the ,ease

es belong to LP(Rd
-
) of 1)i.

u. 8 (dR 
l 

iff (i) u is a function of the
class C- Definition 4.L -

(ii) u and all its derivati- A function of C 2(.8'0Rd-))is said t. be a
yes aoca rapidly decree- generalised solution of NKd(Fh,O, I(')) if it
sing at infinity is a solution of NKI ,NK2 and NK3 in the sense

So M  R 
d
-13 ift (i u is a function of che of distributions.

class 
,

(Ui' u is a fuction slculv It is not necessarily assumed flat the NK4

mncreasin5 at ir¢sL-iy. condition is satisfied.

The ces~ctive duals of tho. above spaces Let us show that NKI, AK2 and NK3 hasmeaning

g h izot c.'d d ii $. C
2 

(I, 8 'ORd-I)) - NKI can be written
aso

space of dintributions o order *" p. 2 7 D240
For p-

0 
we hu _. the OpzCe of raden measure: (4.4) D x - , X ,,+ -- 0

which is denoro2 al so by , 4
- l 
) 3

1)' I) sp&.e of L.Schwarcz's Distributions which is really an equality in S' 0d
-

1)

wilo p-1.q-l1 I W- denote by The operators depending on the parameter
d-I d-I x3 I arc then defined by

ORt ) the dual of (4.5 O(1( 3 ' dL~D C, D( 0 so d-1)

8'gR
d
-I) space O tempered distributions (4.5) BI

2
x3)% - =Xz -

k° 
D 3

0, OR
d -
I) space of "stributions rapidly facrea- D d-1

lio St intinity. (4.6) B2(A3)3o - !'RI
ox3

FPr the k.opertiea of these eaces and their 0 osti lies ttK2 and NK3 in the sense of dis-
topoirs) see %i) . C' , 3 (di-) is rhe r-i.,ttora it
space o Lb ti hctir.r , (X) - f(X' .X3) which ( i ' ) when X * 0
are differentio'e with respect to X3  1(4.7) B,(X3 ) 4 in S 3 O 3
u? to the k-th order and ar, value" in the ver- c - in 8 - )when X3  h
tot space 'J'0Rd.I)i~e. t(X',1 3 ) .5 8 OR

d
I

l  
s (4.') 52(12) 0 , DI()' d-hfor- clos (10-- 1 X 3n'2r

(30 p.49). where it is assumed that DTO) S' OR 
d- l

Fourier Iransform (FT) an Inverae Furier

Ttasfnofo ((Pt). 2W 'IL ..n L -

The direct Fourier Transfu.. (FT) of A ditrit tion belonging to C(l,8 (Rd-I))fs
f( ' .13) , 30qd-1) if said to be a gereralised Green ZcPnfiat of the

SN~d(Fh;O,I(')) problem if it aatisfie 4 in the
(4.1) fi(k',k 3 )- - (YXi)eik' d' aerse of distributions, the following squations:

where k'-(k1 ,k2) if d-1, k'-:- I if d-2 ar,& ( I d(X) - ( in 13

where ''' -a the scalro proi4uc k'X'-k 2 1 kd
or kIxC, oending on d-3 or 2. (G2) -(k x - 0

It shall )e noted y Y ( f(X' ' )) the I

e'tension to 8'Utd-I) of k' tt oparsor defined (0i) - 6(X : X3  h
by (4.1).

e inverse Fourier lransfos (IF) of 6(X') is the Dirac measure at Vnc X' - L.

1 (k',X3 -)R d-I
) 
is The two following lemmae a'e well known

(4.2) f(X',X1) -- r - f(kX 3)e-Xdk' Lene, 1.1 - 7wI following equation for the un-
(2,) rnown y

ctd it chL1 C'c noted by .- i{ 5',X ))the th y h -

estaMAuiC ro 8,'0 d-) f te operator iefined
by n4..). .has no sootfion if Ph> I i.e. koh<

.0.b a un'oue positi'e aolution 0% if

It should ba remembered that tie oae3atur Y Fl. < I i.e. k.h > I

iw a topological 
t
somoiphism from 8' (ISh) .:as the doublc- aoZutioh 

y  
0 if

a Ph- lie 1h.



When k h increases from I to +, yo increa- H2 (kX 3 ) -
P f 

h2 (k,X 3 )
sea frn Oto + - and verifies :

22 22 >2 h2 2 (xt.x3 ) Y-t (112 (k,X3))k • > • k oh-h2 '
with

.emma 4.2 - The positive solution y y(t)of te -k 0 (chkX 3  hkX)j-- O-t - 2 h2(kX
3  k2ckhk 'h k)

th yh - t . t [0, 2. ] k2(hh k-- )

ko  Pf - Padw ard-Schwartz pseudo-funotion with mes-
has the following properties pect to variable k.( y (7-0) -y~t)
(ii) Y (-t) - y(t) (ii) in +he case of d-3

One can therefore restrict the study of if Ph 0 I 93 (X) - as+aiX I  a2X2 + a3XIX2
y(t)to t (0, ], if Ph - I g3 (X) a So+a1 X, + a2 X2 I a3XX 2(iii) if Ph <1, y(t) inoeeases 1rom yo to + m + - 3Xta(X

3 
3 6hX3)XM

when tincreases from 0 to131 3 2
(yo: see-lenna 4.1) H3 (kl,k 2 ,X3 ) - Pf h3 (k,,k 2 ,X 3 )

(iv) if Ph - 1, y(t) increases frm 0 to + k 
2

when t increases from to-0 to -k(chkX3- kk shkX 3)
(v) if Fh> 1, y(t)only exits if t k

2 tk )tchkh-ko . hkk
where t o is the solution in [0, i-f
of co t- Aoh. When t increases with k I / le + k 

2 
, a ada, abitr cons-

AMto t ) T increases from 0 to+ at2m
(Vi) for each Fh,y' (t)- M 2 

> 
0, 3 (k 1 ,k 2.X 3)(ch X3 - ko sh k X3 ) TC

T Thh I~ extension to Rt of an arbitrary distributiony(u0-0 only for Ph I zn ohich case t-O. TC whose support is in (C) (see lenma 4.3 (x))

(vii) for each Ph wher tIT, hy(t) koh sec
2
t H3(X) - Y ( 3(k k,. X3)}

(viii.) if Ph > I and if t-to, 2(X) - ' 63 (k I' k2' X3 ))
h y(t)= /30'- 8-. )7

k h Pf - pseudo function with respeot to oariab~e
and h y'(t)- 3gm 2t0  0 k' - (k1 .k2 )1koh hy(t)

The precise meaning of the symbol Pf will be(ix) in the plane k' - (klk 2 )-(kcostkpint) given at the end of this charter, as well asthe manifold (C) with polar equation the expression which is corresponding to the
k-y(t) consists of two different curves distribution TYC'
without any point of intersection if
Ph <'. If Fh I (C) ,consistp of a con- Theorem 4.' -
nected curve with a double point at the -2
origin, Let us aeaune that Ph has any given vole and

Theorem 4.1 XI) Oc ORd ) Then the NKd(h,0 :(' ) pro-
There exists an infinite number of genera- blem has an infinity of genorelised solutions

limed (;ron potentials that are given by the given by :
following : 10 Mn- a E ,4 (It) - -D (8')

Go o Xn o :d( ) + o(X)+ 0 - X 3)+ ( , 13d(X ' (X)Cd(X) - Hd(X) + Pd(X) 0 gd(X) where Gd is any one of the ganeralized Green
where Hd, Id and gd a'o given by the follwingi potentials of theorem 4.1 and where id is anfoimiulae :arbitr rv olynomial, that -an be chosen indo-(i) in the cas8 of .7 pendently of Gd but havtng tho mae fom ae the

if Ph 0 I S2(X) . I a I g 8d polynomiale defined ir theorem ;. :,

The i:mbol X',' denote@ the convolution withif Ph-I 28) 1 + 2(X-X2hX3 respct to variable X'.
+63(X?-3IXXI+6hX1 X3 )

%afore demonstrating the proof of theorems
if Ph I 12(8) - 0 4.1 and 4.2 the following results ahould be

noted i
if Irn I t2 (X)(ch ,Xl - 9 AsY°X3)'

Let us met ke
.(btuyoX'-b

2 sin qyo) 0 (k' ,83) - khi3  - ehkX3
e(j-O to 3) and b (j-l,21 are arbitrary where k Ib' (-kI if d-2)
cons tanta. 'o is dlfned by lames 4. I
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Lenoei 4.3 - The distribution U(X) C
2
(t,SRd-) The details of the proof are not given Ihere

to iotton of (a) and (b) : (see case d-2).

(a) D U-0 X r)o (ii) case d-2 - The same operation is carried
(b) D

2
X U - ko Dx U 0 0 out and nstead of (4.9) one obtains

(4.9A) k2(chkh-ko'hkh)'o(kX)= -- koG(k.X 3 1Xk')

iff its IFT U(k',X 3) is of the foOMting form
(kX3) - 0 (kW) The general solution of this problem of divi-

'3 O(k'SX3 ) sion R is :

where V(k') is any teered distribution such (4.10A) O(k .X3)P [o(k ' 0(k)

Le0 43i 3k)+a2 2 (k).a32

kk ( h k-k---

L(mm d.3 is proven easily using the FT of 6(1)+ (1)( (2) )+e ](3) k X3 fk)
(a) +and-,()()2 (kb). )MGk'X +k

Proof of theorems 4.1 and 4.2 - + bj0(kX 3 RXk)6(k-yo)+b 20(kX 3 RXk)6(ky,)

where the terms a and b- are arbitrary cons-
(i) Case d-3 - Let 4o(k' ,X3) be the FT of tants and a2-a3O if Ph#JI and bl-h2 -0 if Y

-o ) doee not exist, i.e.if Ph >1.

The FT of (4.6) is Compared with (4.10) the solution Is simpler

B2(X3) ,X (k"X) because:

D ,OX3] () Pf is perfectly defined as a Hadasard-
k2 ( j 2 I3'] vkl) chwartz pseudo-function in I

-- l chkX3 - k --- ' 1Vw seudo-function (i.) The manifold (C) is here reduced to two

where leIsa 4.3 is used. points and the meaning of TC is therefore
DX(|) elementary.

Let us set : '3(X') - c - W)
By taking the IFT of (4.10A) the formulae of

The relation (4.8) gives theorems 4.1 and 4.2 are obtained. The study of

12 rl\2 h
1

regulirity is simple. Forsexample:k chkh - k h h V(k')- '(k') Gc (I, d-)), because that is true for
I T and 92 ; for H2 according to (31 theor.

From which after multiplication by -k o(k', x) XV n2 fo H2 o rdingat o r

3)2  1 p.268) it is known that
( .) k2 [ kl '2 -h h X 3 I H2(k,X3 ) O'0R

d- l )
- H2(XI X3)' OMOR d-I)

(4.4) k, chkh k 1 1. (k',X3)
L 3According to (21 p.20) it is also known that

. _ k° O k ,X3) iJ(k'). .2(k, C l ( ) )r K2 (k, 3 ) Cu(I, S' I))

he general solution 
of this problem of divi-

sion in R
2 
is -H 2(X1 . 3).d'(lS IR))

(4.10) .0 (k',X3)-Pff -k 0(k' K)h k') From Sh? regularity of G , the hypothesis
[;2 ) chkh'ko! - lJ '3. 'On- ) and from the t~eorem Xl of(31p.241

+ d(1 6(k) DS(k') D 6(k) the regularity of 9o is proved. Q.E.D,

- . a 2 -/'' I 2 Study of TI distribution

*.'-" a m Ihe precise definition of T shell be given
i•mwi, 0' D I k2 J' only ia the case Fh <I. Before hand a meaning

where TC is a single layer on (C) (i.e. a dis- must be given to the pseudo-function which
tributlon with support in (C)) and TC is the ax- defines

tension of this distribution to the (k) 'k) - H3 (k,.k 2 ,X 3 ) - Pfh 3 (k1 ,k 2,X 3 ).
pl'cs - sea (31. theor. XXXVI p.10

2
, formula

(1V,5;7) p.
1 14 

and theor. VIll p.2) , The On the outside of disc(k n} where y> 0 is
terms ai and a are arbitraty constants and given, the change of variables (k,k2) h
a em, i~ h 0 (t~ k cos t, k sin t) is a dlffeomorphisto and the

following can be posed without any difficulties:

The solution (4.10) is somewhat formal and 4 1k cos I, B sin
it still has to be precisely expounded by givig 4

a definition of the pseudo-function Pf and of
the distribution 

T
C so that the right-hand side

of (4.10) is a Lempered distribution. ber the where 0(k k) 8 )

end of the presen' chapter. -Ik 2

By using the IFT of (4.10) the formulae of (4.13) 1 (t.) - th3(kr.X3 )i (k,t)kdk
theorems 4.1 and 4.2 ere obtained. These theo- f+ o
tas are therefore completely proven once the where is the finite pert of the integral.
regularity of G. and 0 has been proven i.e : f

. 8' OFor what follows it is sufficient to consir
C3, the elements of Sin

2  
u h that
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(4.14) j(k,t) -j(k,-.t)- j (k,1w - t) Theorem 4.3 - General propertcies of Gd(X) for

It is not difficult then to prove that any ge-- alue of Ph.

(i) Gd(X) - Hd(X) + Td(X) + gd(X)
Fropoaition 4.. - When Fh< I, Io (ts See theorem 4.1

8 £(S2), ( ]0, f[) w whioh follows (ii) Gd(X) is of the class C' in O , and on the

that 1+(t, *)exists and varies contiuus- free surface X3 - 0
ly wA * varies in SOR2) (iii) For O=X 3 <h one hask, chkX

3 - shkX .

Therefore the following definition can be H 2 (X)-- A '.. k2(chkh- .h kh dk
put forward. k2(chkh-r shkh)

IT o k ik'X'

Definition 4.3 - When Ph < I the pseudo-znoton k I chkXa hkx e dk

Pfh3  (k lk2 X3) i s de f nd for ea h * S oR 
2
)by: H3 (X)-- k, -) dtj k X 3 z hk h 31 e " k

1A ~ ~ ~ ~ ~ ~ I 2X)ideie772 kcoa2tchkh-k ahkhj
<Pfh3 (k1,. ,X3), *(k 1 k2) I+(t, )dt where

<.,.> is the duality pairi
-
n on 'it

2
)xSoR

2
). h

If X _ h tjo above formu, ataine its meaning here denotes the 'inite par of the integral.

if f14- OR ). (iv) 'i2 (X) - 0 if Ph Z I

In fact h3 (k,t,X3 ) is rapidly decreasing at Y()chY (bcos¥X,+bs ,
infinity and the integral (4.13) remains conver- 2(X) cnYoh o 2s noX
gent if 0 is only bounded. if Fh< I, bl, b2 being arbitrarj constants.

It is now possible to give the expression of if Fh<l 73X')
2  

h.

YC :aince supp TcC (C) a distribution T exists 3r< IIJ ch
2

such that for al* 0 8CR
2
) satisfying (4.14) -

c  t 
h '

(4.15) <Tc' *(k'- 2)>- <Tt. i(y(t),t)> . y(t) {cos @tdp,(t) - sin Ztdl2 (t)1

~~Tr
where it is assumed that t varies in i-f . _2 chyt(X 3-h) Cos

Knowing 1he properties of y(t) (lessa 4.2) a Dd ( 2 .-(
8 OR it is easy to prove that *[Y( t)I X - , h., oh

is continous function of t and is bounded
in - , ,Thuo T isa e don measure ie. . y

3
(t) {cos mtdp,(t) - sin Mtd2(W•~~ ~ is . Adan masure i(b xste.c ha

cp sasute p(h exists such that 1 (t) and ;2 (t) are arbitrar?, signed measure

(4.16) < YI k 41f ") ,t dii(t) and Mt A t rcon t-)

T ),t CtTh Now the Method of Stationary Phase
In other words TC has the form and the Riemann-Lebesgue Lemma yield the

following reqult.

(4.17) Yc- P(t)sechy(t)h 6(k-y(t))
aheorem 4.4 - Far Field of the Generalised

and the tm it i ven Inthe stareant Green otentiaTe for anyg.ven ',ab.ueo Ph.
of theorem 4.1" (ii) 5Scoms:

(.) (kkX ch[ty(t)(X3= t When d-2 and 3, Hd,d and gd are defined by
3 2'3c -h[y(t)h theorems 4.1 and 4.3 and the follow-ing results

are obtained :
This lads to th IT that takes the follo- -2

wing form sic - X 2)L.OR2) In the case of d

lk'X,  W) If h< I

V3(X) " < 3 > G2(koX 3)- 0 j=2. 21 ) O I X 2(X'X ) - lx a x)  + x2(x)

Y3(1)-(2n)j - exp~not]y(t) d v(t) + ChY0 (K+ h)l ch Y t
h  

wit h °("l'"--w ch ~h ~ h~h .ntyoX )sgY1 + 1'2 (X)

where s - y(t),X' " (X1,X2 )i(rco°OrsinO)d °th

and llt - ytrcoo (t-0). B- . -2

By setting P(t)" P1(t)+P 2 (t). one has %
l- r(t),g12 (-t)-- .(t) since 13 (X)ieraal, X2 (X1 .X 3)( & OR*),, (i tI)

from which

(4,19) 3(X -h(2sff hR) If Ph X1
3 
. ((Z X 

!
) 2 -(). I

.Y(t) co ,dv(t - sin Zt dj 2 (t)} * 62() * V 2 (X) + X2")

This and other easily established results with x2 (X1.X3 ). f O)j 0,CR)
can be sum,.T up by i
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(C2) if Fh I Therefore (i) is deduced from theorem XII of

k (31 p.167) and from its corollaries. If besides
G2 (XI,X 3 )- L k 1Xii g2 (X)+ T2 (X)+ X2 (X) E(1) t 0Rd-$) this same theorem X1I proves

o k
with to (NO)
x2(xlx 3)  g(K*) 0' 1 ()

To prove that 0 has a correct normal deri-

In the case of d-3 vative it is shown that first of all when X3* li

W(A) if Ph < I (XX 3)* 6(X') in the space A.wd
- l
) of

k / chyt(Z3-h) y'(tsinj'j' le ...... res onRd(compared with the defini-
G3(X'.X3)- - -Ch

2
f h - -in2F dt tion 4. G3) where the preceding limt is set

2 in 2) K-) only). The theorem XII mentioned
above is then used to prove the result.

+ g3(X) + '3(X) + X3 (X) Q.E.D.

- r cos (t-6) Theorem 5.1 - It is asumed that de2 an h-l

co 0)For all ) ' Cd-'), the Kd (h,, )

X3 (XX 3 ) R 2 \ {0,01) problem admits no atztnit s6ution.

Proof - When IXl- "the behaviour aescribed in

3r tx'orem 4.4 results, thus the generalized solu-
tion is as follows

(B3) if Fh _! I

a2 [ 3 k IT -to0] cy(X3 h) (5.0) O6(X1 , 3)_ t X- (XI). G2 (X1 ,X3 )

-- (x',X3)- TIT f 2 j2 t zh t c 3
[ 0  ' hth-4 V Mh ~ (I )

sin[yt*rOs(t-0j] cotgt 'y(t) y'(t) dt + 3cX3 2X3 IlHO) , .• k( h)  h _ ( I) Y x - -l ... i
+ g3 (X) + 3(X) + X3 (X) aE

- c 1I(Xi) 02 (X) 2 (X)

X3 (X',X 3 ) O + c \(0 (X) 02 (XI)
X3' 0 ( wr

) 
when r N* 1

2 2S. The Flat-BuMA with ff2(X) - oo + CtIXl + o2(X| x 3 2hX3
)

1S, strict solto+ 3 2
3(X I-3X32X, + 6hX 1X3)

Chapter 4 has given the sv~of ail generali- Let us set :

zed solutions of NU (Fh,0, l(
5
.2) poe k E()(X_Now, fro aong these general solutions, these, 452 k " I d!

which are strict solutions must be found i.e. so that ()
Mi those which re sufficiently rgular in [ k 3E

order that the partial derivatives occur-ng in (5.3) XI  dXI - h-k -
NKI, NK2, N1K3 would be derivatives in the clam- c 2 .
sical sense (lii) those which satisfy besides (5.4) o(xi.x 3)- - c [3mo:Xl 6m Xl

+ 3'-
] SgX I

others, the radiationt conditions NK4. t4he

e--iti o 6. 1 - "Reglarity o h e g(n.a)Id 1 a tCt2aCMe-,2 X i3arcularXlm
V , it' . f'the NKd (h.0.j

(
f
) )  

pro blm". -3 3cXlmo+3a3c 3 o -6hX3 oa3C+ 2(X)+o(1)

d SO'
!  

where becaus he prnlast term of (5.1) is o(I).( ) e CIL o~')'€o C. (4 o o ) s

Now. it must be s
e
eaf or a suitable choice

So X O the rem s .urfac e at v rR :'~a testoo a:d the

8o  X-O o he ~eavrae at vseof coefficients 'j the generalized solution

E01" 'IO~d I -ao), &(j, S )and (5.4) is a trit one, and in particular boundai
: |~~ ~~~~ ~ ~~ a ( 'i0dl °(o,( ° u o  m at infinity

that fe, its normal derivative existi (4ha The principal terms of (5.4) are t

direcional forative o~t X 3-h and iso the 3 3c 2 7 2
no (-5)a x -1a,,XjgX| - 3a3%loe Ylo n t n u u s l i i - v a u e o f ( X ' .X 3 )  ) 3 t 1 4 h+ 2

whe X 3 . h. 3
oL1-0 but whatever Le the choice of a 3 and a2 the

Proof I ACcording to theorem 4.3 (11) we have sa~lution will always be non-bounded when 31 +.
&(A u S(l 0 1 theorem 4.2 it is ssu- or -,Q1D

D d- _ _1

no ht v O !O



Theorem 5.2 - It is aaewned that Ph is of any (g) d- 3
vau 7 fd-3 and Fh 0 | when d-2 . For eaoh According to theorem (4.4) the generalized

E '%I Cd-1 ) h ~ n00
(() d) the Ntd (,

0  
) problem ad- solution is written as

nmta a etrtot unique solution with a correot z(I)
normal derivative on X3 - h. (5.12) 0 (X',X 3 )-c N-1 (X 3)(X,)I3 ( '.X3)

Proof : As an example the proof will be given + 1(I)
when Fh <I and d-2 and 3. T d (X'X 3 ),) 83')
(A) d - 2 +c ). X (X. 3

According to theorem (4.4) the generalized
solution i3 written as follows withi_ o~~~h ,°/tchy ,N3-n)

(5.6) %o(X,.X3 ) -- () X (5.13) 1 , x3) t hy

0 1
So + (I , •(t) Cosyrco(t

d*9(l+cIX1 I _______ 2__0
+ c TxT ( Ii) 2(xi,) X 3 2(x1) k ro - d(

n

Let us set :.. sin 11t c cos ft-6)]1 I

(5.7) (I)- E(I) i L e ); | dX The second term of (5.12) equalsc "

the%% it follows that when * + (5.14) c ( X-/ (X',,3)' 93 (X') - - c mn i. 1
( ) ome g (XI) with notation

c hyoX shyoX) (5-15) m fz I x 2 E W(x') dX'T . oo(ho3
- 
k~o ho 3)  K

[' 1  
T)cosYoXl] the third term isO (-),the fourth term equalsS IinyX1+E0c.X SgX1+amoC+1+OXl~ 3

x )
= II

+
aX

11 7T3 (V) a0 + I XI + 2 2
hy.X 3 - sh X3) 1 

11
S h 2The arbitrary signed measures p,1 and 0 2nd

the arbitrary constants at. must now be derived
+ (bI E()* b 2 EM ))COB YoX] + o(I) for (5.12) to satisfy WK4

J 
It .mmediatly follows

c S that :
The constance a. and d. must now be detarmi- - 2 0

ned in order that 5.8) wAuld satisfy ?NK4)con-
dition. 0. 0 c ao0 a 0

If XI .+ hence. for example, CIO - a, - a1 I a2 - 0

C I -0 k As far 2s the integral (5.13) is concerned,
S

almoc 
+  

o h 0 when usingthe steady.phase methud it is noteworthy
a--

h  
that the first term whjn r - - gives a contri-

It follows for example o-0 and a1 I- bution which is 0 (r
1 
2) for nearly all the

o -values of 0. The sam applies to the second
term if pi is of any value, and the conttihu-

h EMl) b () I) CBo tions o f 5oth terms cannot vanish. Thus to as-(c ( S 0 tisfy NK4 condition with XI *+= , X2 - a . ns-
( b 1(I)+ b2  teI) t

(I
) But cant, it is necessary to choose

which gives the cnique solution c (t) 50

(5.10) bl B . , c, b2- 0 (t) ,' (t) Y'(t)

The behaviour at infinity down-stream (X# -.- ) e - .- 2 -t (-T )

is then deduced hence the behaviour at infinity Xl - "
(5.11) 0o(, 13) - - c

2 ia constant
- oyj (Chy)X T - ,hyo). (S.J6) 0() - c - (x') (1,)

. a co ] o(I) to chy(t3-h) (t) i dtl

which is consistent with 8114. , t Ity -Wtth
hnd 1I) steddy phea* method shows that. (5.16)is
0(r'' )wh ch satisfies NK4 condition. .



Corollary 5.1 - "Far Field in the tio-dimeneaio- Corollary 5.3 - "Vetocit iotential and Green
n cee and blocage ith a free surfaoe'. potential of NKd (Fh,0,

1 ) 
problem".

It is assumed that d-2, Ph i0 I and Te iu-u o eF)Let Bo be vanished if Ph >1 and B o equale the The strict unique solutionof theWD(F4,4E
)

etpr e ai shed2t if Ph> and B equae theproblem which was constructed in theorem 5.2
expression of 4.4 (A2) theorem if Ph <1.

can be expounded in the following form
Let us set (I)

mo.j (
1 1

)(X,)dX, and Y(X,)- 0 if 0(X) * c (x ') Gd (X',X 3 )
where Green p.rential Cd is given by

- I i. X, >0 (Heaviside function) (A) when d-2

The behaviour of the potential o(X 1 ,X3 ) at I k°
infinity X -t is given by G (X)-H +' ]IXl

k el
Bo(X,1 3 )

" 
2 Ikh mo(sg(Xl)I') ki XchkX hd

jllX1)Y~c~-if- X~ sinyX (X)c cTsIT .'k fI1 chyo(X 3 h) 3 2I k 2 kh- hkh

chyo(X 3 -h)
+ 1("''3) tP2(X). u Ro Chyoh siyoX1

the function X2 vanishes at infinity.

B - 0 if Fh >I
X2(Xt,X) R*)and F1)and Elare defined by 0 chy h

B -o - 2 if Fh < I
-(I) M(( o - (I) _ i M .l). ( )(X)-iYoXdx 0 Yh sh2Y -h

K 2y0 h

The above formula particularly shows that the (B) When d=3 (in the case of Fh< I only)
magnitude A. and AS of cosine and sine waves at
downstream infinity are given by the very sim- G3(X) - H3(X) + 3(x)
pie following relation : ks it

if X 0 h.H 3(X)-- 2- 2 d.
AC- iA - B,- 2 '(k) BO yo Ec -is-i0 00~

This corollary is a direct consequence of hkXo- Os 
2

r t
formulae (5.8 - 5.11) and should be compared - 3 k shkX3  ikr cos(t-) dk
with result given in (27 p.201 formula (13)) k cos

2 
tchkk shkh' e

Crlay52- "Far Field in the three-dimen- chf It IX ) '(t
ai -" l3case".2T .- chy(t)h - -h dt

It is assumed that d-3 and Fh< I. Let us set: ch t hd

(t -E(I)XV2 W -cs~ itd dX 2  Co lir4j -5 The solution o; the
21NfKd, R hO, ) problem dej'inea in corolIary5.3

Y(U) - 0 if u<o, - I if U>0 i o a followos. () d-,

Therefore the behavioui of Lhe potentiol (s)Io ; 0  K
*r Infinity IX'- -i. represented by (")l B %" (K)II i) Rd"h

IJ I ¢hy (X
3- )r

*,(X).- *_..I _ -Y(cos(t-0))J . where No and M I a, two constants.

Y t This corollary which is deduced from corol-

r -- 1~ / lary 5.3 and theorem 4.4 is admitted here

.:)(t) .. aect ykt)e ijv' t ;end".
in  

dt+0(1) without demonstration.

li formula chow* 
"  

particular i.;.'I the Theorem 5.3 - "Exiatnce, Uniqueness and Regula-
apjiit. ', A_(t) and i -f couino and sine 7-i-'' stT Ot solution of the problem
waves at d(ow ream isinitys are , by thy NKd (Fh.Oj(/. It in aaumed that Fh is of any

4 ery simple followi,. relation : value if d-3, and Ph 0 1 if d-2.
A r Lot m be an integer.' 2 and K a fyien cmiaci-ac~t) -.. B(r - t ) l y It) £< 'r.u 0 I 1 I . a dIu)t

tum of R
d ' l

o fo 'aoh ]lt c R')f ,
where NKd (PhO.

(  
) problem aofitl a unique aolutw'n

I, I)i
5 a*~~B(C) 112 -q ' ' i 3'O (ii) 0 0 depends oon finuouslyi on

i.e. the rapping t(19-i 0belonge to

Compsre vith 5O given b'y Theor.4.. tA.2 .g a

Si

t.I



Proof - Having proved existence and uniqueness to (5.22) satisfies then
in theor .5.2 we still have to prove the regula-2
rity of this solutio n and its dependence with (5.23) 11t;$ , u~(T_)I) < C, 11 l) 2

0d-)l 1<s
respect ;o data 10.Le': T be the solution ope- n K

rato r ( E M rs 4 ). Th e proof that is given fol- which proves the third step.
lows closely method used in (15 ).

Fourth step -

IT-T 2, (i ). This K )o$

follows from theorem 1.3 of (19 p.115) where the By. once again, applying Schauder's a priori

result is established for bounded domains i.e. estimates one haa successively

the boundary of which is compact. Although,
here, the domain 0I is not bounded the result of (5.24) 11 ~ 'C

(19) remains valid if it is taken into account )

that V 4. is continuous, bounded and that it EM £I d- )
vanishes at infinity as all its derivatives.K

Second step - 7': C ($K d-) 2, ct (5. 25) 11 to 10 11(~I 'C( ) '; ~.~
First of all the following is established Which is proven in the same way as for (5.22).

Then it follows
Proposition .5.2 - (1)~_ ~O~- i
T c £& R md-1) C

2
(I' 8, mRd))) (5.26)1100; V~"(l )j 11< ,1

The proposition 5.2 is an immediate cone-Fit sep-7 -£(mOJ') mo 1
quence of theorem XI of (1p.247) . The result K 0
to be demonstrated is d educ ed from this propo- Which is a consequenc.- of (5.26)
sition because the graph of T is closed and
thereforLo con tinuous'according to closed graph Sixth step - T7 c c OR d-l~
theorem. 'K' R*

Which is a consequence of the fifth step aod
Third step - Z() m~aOcd-l o, % 2., the corollary 5.4. Q.E.D. theorem 5.3

We have %KORd-I) r. %m,OL Od-I) with dense 6, Two Auxiliary Boundary Value Problems
injec ti on. Bypmn he mollifiers (regula-
rization) of E (u *it is possible to find a The two problems studied here will be useful

sequence W I > sI. ZIO '% dIt) )bounded in.:te snsTe ofP problem 'Variation Problem
in 2 K and th seseo calculus of variations) allied

K oneret o en Kto NKd (Fh.) problems soda D.P. problem

At each E (1) ter sauiu coepndn (Dirichlet Problem).

solution 0 . 2,a ((1 ), see second step. V.P. (f,01 , 0,) prublem -
Scaue ~ pr i eai e(I ,theor 7.3 p.668) The followinR three functions are gives

can be then applied f(x).x I, 1  ) xcRd-I; x2,,.s 11d-

(5.0) 2o IIchi cO~) and o.. is seachig for w(x), a. ?i sLch that:

~ 2'a J- 'VII V w(x) - . ) xs , a. I
.IIX K CI )IIJ(VP2) a- It k,, - t~''x_

where C0 is a constant. However, according to 3x

Corollary 5.4 :(Vel)

0 0 n" K

z (1) 2' ORd-I)) (P4) R w A0 (110)

n K Hetv, RWs is defined by ( ,10) where, to

Then it follows ake the following easier, the not : ion change
X -(X' X3) 's a - (a' .53) 'q us"d.

(5.22) 114 n ~2( )11 ' C,) 11) I R, ~ ~ It is noted that VP(0,0,cS
1
)- H~(h 0

1
)

where C, 4. C (I.)+H Thus the as.qsence 0
0 2. no forl o- he following theorem is a genaralixatlon of

is bounded in 1 (1)No fr lcw-theocm, 5. J

cptel continuous. ) the injection being Theorem 6.) Fh is .iatowd of any value if d-.3,
competel Ioo ifus d-2. GNvo f~)oc htfx-

Thetefor. ifu w, 7 it Is possible to obtain PA;1 XJ'.0 the VF(f,0.01 problem acwiif 'I nf
from sequence 4., a soubmoquen~o also noted~5o asI qu~lto JG fo on
0which is covroti M h ii f .a( .Od-')'

t~is sequence can only be aoX hc acrign



Theorem 6.2 - It fs assumed that Ah is of mtn' ;LR '(F 'V
3, ad 4 if -2. Let m becm integer M .Fr, , I cl ithe i wn, *

.2. For ~ ,'p, *hU
VP(f, 01' ,) problem adnts a Oi solution -re u (f. and "-M, us t- 'nstants.

wt C "-.i
m
s c T I ) w dxpen.d continuous~y ( ) iinallv .re eular)r-, ot the strict solu-

on f, *1 €) i,. he , mapping (ft¢i ~) ' W lion it; pver, 11v ti- metnod use, Ll the

to p ro of o f lh- o - .

The notations are as follovwsd:E z
') 

i Rivn t:nd ,x looked for
lf(ax) 2-2,I I  I Xo2)-T-- f (x,fo

3) uh thatLl--d-I))(DPI) -: - r

* t r: 1 2d-l 
IDP2) 4 (x) U,

'1 
1  

,) , OR x-
):(]+!x'l )- , (P3) () -

GD* C. (I

XD

LI OR d-1 un-
Cl{Rd, ) is the spacy of messurable u(x') func- '002) C =
tiong defined on - for which the Lebesgue (03) x) ,
integral

Flu; LIORd-) l 3,) dx' Lenofz 6. I

is finite. jr'- There -ts nqkii0a-:!gt -
te mti: C an(, ,,tn 1 - '-

2 are Bausch spaces ith the norms t he' ire. inf - _ -t ,,rthe -- ,nre jo, e-, ,-,,,
Ilfi '~ o ll-If s -2 '  5 ( 3t,, o ,, * ( )
+ ; I (d-1 I I0 2 C

3  
(a 'I)

+ +,x,12) f(x',x) L OR,)I have C GD (X)

zt-2a C - i( 53)Ve b

2d-I d- 30 in(_ x
I(*1x1)T 0,(x') 1, () ' 23 t

.d-I I • .1-I
d- II, IOI)T 2d' -,'ll,, ) . r (-i)"" o in 0, T7% 1 r)

and the product space 'VU x'Yx,' is also a wh,' -!'10 0 andK.-ao in a'f c ', ,
Bonach space. AL is the subspace of'YoXU xx) f, "
for which (f'o1.02

) 
verifies the comptibilitY

condition 0 ,

Ild-I 2(x')+ (1,()1 dx' -f,, f(x)dx - 0 (f ' J d Gd(x',X 3) dx' -
D0 (jx) 0 d.' 

d

'U is a closed subspacs of aUoxV 'XT,. hence I O Gde Loach space. d
o l , Aw D(4 (x U '!' )

Proofs of theorem 6.1 and 6.2 : The proofi are ( 3i, Whn 53* h- G -( ,3 7
identical to the proof& of theorem 5.1 and 5.3 opace of d av oaekr's, on IF
and are basecd on the use of the Pourier fres- ( in a funot1on 3aidd, lrc,,aa,'rt
form in the apace of ultrsdistributions. We ,- s a asnate -on aORid S t losi
recall the main four steps of the argument t

(I) we look for the generelised solutions of Theorm d.3 -

VP(f i.e. the solutions which are ot tK be a giivn elomfaotu ' m d-'. F,.o~es r egyrular and for which the VP4 eh T. '%0 hR e E pr,!sad
condition is not necessarily satisfied. Kah tldI P(()p bt~ d

Mite in I )t,o e (7)eh i nique Autim:
(ii) then the strict solutions of VP(Df,*l,2)

are found, i.. the solutica with suffi- ( ((x') ( C'(x', 3)cient regularity which satisfy the radiation The eol ution hoe the fot owing propwvae
condition VP4. This condition can be ati-
fied only if the compatibillity condition Ia (i O(x'x 3 ) 8 Og'

l
) (, 1 .3 < h

verified by the dete f.#|,4t;. f it iS so
the strict solution is uia e(.. (f -

(iII) the following result Is proven which Is The proof of losse 6.1 and theorem 6. are
analogous yet much simplie than the proof otanalogous to corollary 5,.4 a hosnl,42n .3. o cl I
theoreme4i. I 4.2andt. 3,sais for details.

.:- - - - - - . . - - . .



7. Proof of Theorems I and 2 ,eua .2 -
h er cots c>0 such that for o c < &

Chapter 8 gave the conditions of existence the mapping p is a homeomorphtsm from 1o onto
and uniquenjf5 of the solution of the problem f1 of the class CI 0

Nsd (h.0,'
r 

). One is tempted to use the con-
ventional perturbation theory -_ linear opera- It remains to be seei therefore whether q is
tore, to deduce the conditions of existence of the class ECms.(1)) and to use
and uniquenm of the solution of problem ci - ma (c, t) to thoroughly prove (i). Now
NKd (Fh,c,E ) e.g. theorem 5.17 (16 p.235). q gaving derivativea of the m-th order aoq
In-this theory it is assumed an operator Aft) which are continous and bounded according to
is given : Xr-Y depending on a real or complex lease 7.2, these derivatives are 0-Holderian.

parameter E. X and Y are Banaclppaces indepen-
dent of c. For the NKd (Fh,c,E 

2
it would be Proof of lemma 7,1 -

possible to take, for example Y - V( ) with We have
X Z 2, but this choice is not suitable as o

one hand Y depends on and on the other the (7.2) I 0 0

choice of .eI instead of o , ' ] ]0, 1 would p'(x)| 0 i 0
lead to non-optimal results,

The conventional method to obtain functional I -- 3 -
.

x  
2 h

spaces independent of t is to carry out a map- T
ping which induces a one-to-one correspondence
between the "unperturbed domain" S7 and the (7.3) det p'(x) - Ix
"perturbed domain" f2,, see (8 ,secion 6.26 3

pp.420-423), (16, section 7.65 pp.423-426) idea p.(x)12 ] t
etc... This mapping is not unique and it has

been chosen to simplify as much as possible+ ;10D m's(3o1
the demonstration of the final result.

Let p 12 -n ' Rd be the mapping (7.4)1dea p'(x)I? I- Eh 1101; %"(67o) 1
0h

(7.1) X - p(x) & x -Ex3 4D(x)e3 , x( 2n Then the lesa is proved with

where h axi. I -1 110 r e )11
where 03 is the unit vector of Ox3  axis. t- h 0 Q lemm 7.1

Q.t.D. 1ecm 7.2

Proposition 7.1 - "h " ' m -
It i as d t t O), '

-  
m' 2. Proof of lemma 7.2 -

There e.ists C > 0 such thatKft r 0_ < The fo-" [ s shown
the mapping p gas the fottoving properties (7.5) QE c p (12)

(i) p is a diffomoorphism cen 2 %onto 1 which will prove with (a) that p is a bijection

of the class (CC from 12 onto fl1.

(ii) x 3 - 0 )L3 ' 0 The system of equations with unknowns x~x2 x3
(iii) x3 - h X3 - h- I) defined by 7.1 is reduced in fact to:x3

(7.6) x3 " 13 + . x3 aD(,,.x )

Proof of .roposit ion 7.1 - 3 )

From (7.1) (ii) and (iii) are obvious, which is an equation of the form

To prove (i) it must be shown that : (7.7) S3 - f(X3,al)

(A) p (11.)c 
1
i- where x has the following properties

(b) p is of the class Co'o(io 1 d (a) for each x3 fixed in [O,h]. the mapping
(c p is a bijeetio r " on O f(Xx) is affine thus continuous,(c sabjeinfrom 12e unto 

12
r. and trot lt nto $2

the inver.,. .upp10g q is ot theclss 
C oc

r[mn id (0) for each X3 fixed the m&pping 3 , f(X ,x

V 
1 j is a contraction of 41o wit a ratio indl-

The (a) is obvious. The (b) results from the pendent of X3 .
expression(l.l)of p which takes the form qf a This results from (7.A) and theorem 6.2()
sum of 2 mappings of the class (ce'

0
(1 )]Q. The because I

(c) is a consequence of the two followng 3 Mah((o)r i.o(I ) iplie
lema 

e o

[AMea ,1 - J f(X3*a 3 )-f(X3 ' y3) " s3 #D(a ,'3 )-
y 3
# (' 10 3)A

119'?0ezista C' >Osuoh that for I 
< 

r ;t'
the differential A ing p' isare invrt toa C D D,

f.a7p~p~ niu'fh ( 3 -y 3 )# (a', *))*13(4 (a 5x3) -4(x 'y3)I
o f4d.0s .Iph i a w 1 3 O 

"  .
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tf;t
If therefore r [0, c'[is chosen, with (7.23) q ~ X-? 1,2

'-?33
12h 1- Ii V' ()j () ) is the result, all the others q vanish.h- - kE

0
The properties (o) and ($) and fixed point In the same way, the following is introduced

theorem (tO, thaor.l0.l.7 p.271) show that equa- 02
tion 7.6 admits a unique solution of the class (7.24) q -
Cm with respect to X3' therefore the system m
X-pit) admits a uniquL, solution x-q(X) of the d

2
2

class Cm(11 ) i.e. p is a bicontinLoous bijection (7.25) n - , dad
2 
matrix

and thus a homeomorphism of the class Cm. dX2 kq m

Some useful formulae (7.26) q t m 3 U 3 m 3

The following properties of coordinate change (I- Cfi 3 )'
should be remembered. L - I,2 ,alike formula for mmI, ;

If the following is posed cC'

(7.8) f(x) h D e3  (7.27) q 3  - - 33

Then 3
(7.n alike formula for mn-t,2 ; all the others qkgs(7.9) X - p(x) "x - e f(X) vanish.

and the inverse mapping shall be written inFinally t following tensor product is in-

analogous form :troduced

(7.10) x - q(X) = X + E g(X) (7.28) Al @, - [qk, q d
2
xd
2 

matrix.

The differential mappings satisfy
dfThe P (Fh.Y ) problem

(7.1t) 1 - E d)dx dx The problem NKd(Fh,c. 
(
i ) will now be tran-

(7,12) d 1 t formed by the diffeomorphism X - p(x).
Rd The lollowing is posed :

where I is the identity function in R 
'

(7.29) (x) - O(x,0(
t
)A, 4 , r.E(I

To calculate the differential mapping g' .Xp
one begins with ; (7.30) (

1
)(X, .(I

1
))

- 
#(x,tz0(I)

(7.13) p o q - X

which by differentiation gives The following formulae result

d2d 731 0() dd(7.14) 1.? ITX t R

thtir dfl d- (7.32) d20 44 1 ax)1 d
2

tht s[l ~.J[It J- ' dx' dx dX dx d1

with d.
t
) af(Ot(

Then it follows 17.33) - ladmatrix
1 1Lf q. LI

Thus by using the matrix notation and by setting: (7.34) d2(. a200 xd
2 
matrix

(7,h) - , J dxd matrix the same for and

we obtain the mtrix equation
wo obtan te e n rom these formulae It is possible to deduce

(7.7)easily the formulae that ONx) satisfies namely:

of which the resolution by Cramer's rule giuves P (Fht(0)) problem

(7.18) 0 for k 0 3 Find #(') so that

((..it f*t (P) L(
t
)O - 0 in fQ09, ' ("t" ' " c-T' " 

(P2) ,-
Then it follows

(7.20) A- [~1 .xd matrix 03 5 (0) - ('
(7.20 ,d [.,.. 2 C W.

with (P4) radiation condition when Jxl -

(7.21) q 11 I The following has been posed

(7.22) q;3  I (7" 3  
)t " ij 

)  
*

33
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where~~~~~ joie e aus .2,3) or llonce the domain of definition DT(E) Of the

(1.3 )according to whether d-3 or 2, 
operator T(c)istrcl lyn ine.hn

A - I for i - I and 2(74)J,' .CTo)e90

(e) 0 fr (ij) *l.2)and 2,1)is defined and we choose DT(o)

(c) - .c47IPIO_7.- c. Je T* it)

( 33 ) - E ~ cf'.( I-tf~ i-1,2 This 1cmn can he obtained from Green's

(735 ) ei 3 3i 3f;(l-f 3)
1  

second formule end from properties of each term

&313 j- 1,2 of (7.35A)mud(7.39) wl'ich follow frmthoa'3

a 2Cg 3S c + C'(9 + g ) Lemma 7.3 alluws us to choose DTVt)

2 21  2) r1  -2 t~ow we introduce the following notions

.+C ( 31 32, [1 t 33j se(16] for more details

*(7.36) b1 (x) - 0 i - 1,2 range of T(c).RT(t) - (uEULL:30 E DT(t). u-Tc)4,)

* (737) 3 (x)- £('i '~ g'33)nullity of T(E)-OulTWtdi{9e DT(C): T(r) 101

~ rc212 11independeat whrdi(4is the dimension of the spaes .

(7.38) B (E) of E wher oft
11 1 D 1 X3. deficiency of T(t) -def T(c).dim{ 'IL /RTt(0)'

(7.9)82 -retriti0 t 0 .h of 'U. 0/RT(C) is the sat of the equivalence
(7.39)~lase with retitont 3spect to RT(c) that is to say

+;W tf'x 02 u ' 2 ad 1 u2  -> ul-1 2 E RT(t)

2LX index of T(t). indT(c) -nul TWt-det T(t)

2 2+ 2)(-EfThe minimlum modulus of T(E)- yT(c) is defined

with , T(0- infil T(E) ;3C1l / II);3JIfor 000, 01(c)

(7.40) (W). E x)o~) - etc...
;XI ( This definition %as meaning only if ilTt).0

p Temai pr ie af PoC Pw ( J Following Kskto(16p230)a closed operator S

probe arei as fo- w 1 (1 a Knd-l 3  is said to be Fredholm if FS is closed and both

osi5o 7. a easM ul S and def S are finite.Sissdtob

ere Wets E 0 such Jjt for 0 -t'C< semi-Predholl if RS is closed and at least one

th ,P(Fh. ).id 55.8 (rh, ,Z£ )prbiem oIflS n$atSi finite.

wqivalent fn other words the N C(h.E.E I L ~ 74-Fraic

problem a&PK te mqu solution*~f~l) ___1_6d___ . -Fr l C
iff the P (F 1 olai admtits a uniqu: So 1(fc) 'a Linear, bunded, c2laed a'nd such that

lutO~ i !A of,%g' and we haoe T Tic) T (0) 0 X.. 0

(7.41) ONa) 4.0 1p W) asc-r0~ ~"
(I) I~i Lemmae 7.6 Moreover,. 'he operator ~~o ~

(7.42) $0 ) M -0 q(XW 7JT37 PM'Terties
in particular Tc A-In thc .'aee. of (Fh) 21

PF(Fhr (
11
)I 0 VP(0.Oc -1 r- ONKd(!h10,t. F ~ a )rbos T- (bIon gt

w hich $hows that the prob lem PC has a unique ('1LO, X,)

solution when C- 0- (if) Tfo) is a Fr#CDhom operator with index serao

Proof of theoras Iand 2 nut T(o) - def Tbo) - ind T~o) - 0

The Pt (MhE (I))problem can be written 00 (ii I h inimium modulus y - yT(o) of T(o) is

foll ows 1 sch ha
(7.43) 600M~ .) uhta

(1.44)U *m-Aft B 2''~- w ud~l <l

UL - oubspsce of'lLdeflfled in theorem 6.2 13-In the oe of (d.h) (21

(7.45)flU0 - 'ILI : #I) IL - 0 (U WTO) is not invuertible except for Moro ite-

so that Ut~ .*i3) ),jplios that Mont of IL

(7.6) I~a-I *2 ()dA - fadS . I) tii T~n) is ai Vemi4'rodioln operator

The spae,%U. is a IsBN~c space. nut T(o) - 0

Lot us c onfider the following opeator idef T~O) - i*

(7C1 --N) U 5 (c) W /ii the min/nsel eewdutue of T(aWit

wit 34 leand' 
2
0 c< C T(
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Lemma 7.4 and 7.5 are easily proven. For 8. The Method of Singularities
instance, in lema 7.5 (Ai) and (Aii) are direct
consequence of theorem 6.2. (Bi) and (Bii) are It is thanks to R.Brard (4) to (7] that the
direct consequence of theorem 6.1. rigorous bases of this method in the general

case of a body, immersed or piercing the free
Lemma. 7.4 and 7.5 enable us to use the surface have been established. In the particu-

teneral stability theorem for linear operator lar case of a body totally immersed such as that
16 p 235, theor. 5.17 ) o the bump, Brard's results are conventional

and have been known for a long time. However,it
Case (dFh) 0 (2.1) : proof of theorem 2 is useful to rapidly go over R. Brard's reaso-

ning steps.
By virtue of the general stability theo-

rem for linear operator we have Before doing so some new notaticns will be
introduced and a new boundary value problem

nul T() nul T(o) will be studied.

def lit) def T(o) Notations -

provided that c is sufficiently small (let The fluid domain which until now has been
us say c< c3)for T(t) to be closed to T(O), see noted as 5, - Of shall henceforth be noted as S1lemm 7.6 and lemma 7.5 (Aii|) and1' 'al

and t shall represent the domain situated be-
.eath the bump i.e.

By using lemma 7.5(Aii), it is concluded o
that : -TiW= -(X - (X1,X3) ' K, h-E (X')< X3< h

where it should beoremembered thai K is'the sup-
Thus T(c) is a topological isomorphism port of the bump, K is the interior of compac-

fromU.L° into 3C , see theorem 1.16 in(16 p196). tui K and bdry K is te boundary of K on the
bottomi X3

=
h :K 6 K ubdryK.

On the othee hand T(E) is 
an analytic

(or real holomorphi ) operator-valued function The velocity potential, solution of the
and the family ( T(c)} is of type A, see NKd(FhT) problem, which till now has been o-
definition chapter VII § j p 375 in (30) : it ted as 6(X). shall be noted henceforth as 6 (X)
is then concluded that T- (c)u for u 'L0  where index e indicates that the potential is
and c < 0 has a Taylor expansion defined in 1 and where the sign - indicates

TI that the velocity t of the flow is positive
T()u - I (o)u c T1 u + T2u ,. (running flow in the negative X - direction).

which converges for E < to independent of u. In the name manner K (X,Y) shall be the po-tintial of the Kelvin u~it source and 2 , 1D,
What is true for u , '"1o is therefore S , D

+
, V* the operators defined from (1.6)eto

true for M(I). ( g), e

o - (o~o. -c -. ) with E
),  

NKd(-Fh,E) can correspond to the NKd(Fh,E)

if .- in( t .2 c)theorem 2 is problem. NKd(-FhY) is obtained by changing
proven. o the sign c (reverse flow problem).

te(X), K(X.Y). So, etc... shall signify the
Case (d.jh) - (2.1) proof of theorem I magnitudes corresponding to this new problem.

By virtue of theorem (5.22) in (16 p 236) IP(Fh,.,a.f6y) problem -
we h&Ve

nul f(t) nul T(o) The IP(*Fh,E,a,Ry) problem (Interior Pro-

def T(c) def T(o) blem) is associated with the NKd(Fh,t) problem

Ind T(e) Ind T(o) in accordance with the following

provided t~at t is sufficiently small.lst us Let aOY be.given functions defined on .
may ( < rO. The solution 0-of the NKd(PF ,C problem iS as-

sumed known and a function .i is searched for.
By using lema 7.5 (5ii), it is concluded such that :

that 2tha :RI 
2 t t - 0 in fi I

nul T(E) - 0 t

4f(O-dima'IL 0  (P2)- i

2 T 02) - 0. X3 - h , K

If co - ein (cote), then tor ., h (Pt) a * t " " ,

r 1 0. c 0 (the operator T (c) is not invorti-
bla except for sero element oZ Vil . Theorem I A particularity of the IP problem Is that it
Is thus proven, is defined in a not very regular domain i. in

the n h boundary of this domainI is of
Q.E.D. theor. I end 2 the class C piecewis but along the bdry K it

presents a simple cusp which will complicate the
regularity problems of the solution of the IP
problem.

T3i
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Hence the two particular cases of the pro- Proof of theorem 3 (iii)

blem IF are studied :
In admitting the hypothesis of theorem 2, 0

(i) 0- y- 0, a- I thus $ e 0 on F . therefore eaists and is unique. If the third
e Green's formula is applied to the pair

01 is therefore a solution to a mixed problem 0,(X), K+(XY). The following is obtained (see

with a Neumann condition on X3 =h and a Dirichlet (6)and (5) for details)

condition on r. In fact, by the principle of rr

images this problem is equivalent to a Dirichlet (8.1) 1
0
(X) -Dr - £

problem in the domain interior to FuF'(F'is the e j e L "J
image of r with respect to X3-h).In these con-

ditions it is k~own that the problem has a uni- where [f] denotes the restriction to r of a

que solution tj in Hl(fli)and that this solution function f defined in 3Y or i"

is also in In (1), see for example (26p. 329,

theorems 3.2 and A.3,.0 Furthermore for any ram Likewise, the application of the third

pactum w C fi not having any common point with Green's formula to the pair 0(X),K(X,Y)

bdry K, the solution is of the class C',2,(w) 
gives : 

I

according to the Schauder's a priori estimates. (2 + F2,1
the behaviour of the solution when X tends to- (8.2) 0 i - N

wards a point in bdry K is difficult to study

because of the presence of the simple cuqp. Is In making X, Qe tend towards a point on r

it possible to say particularly, that (8.1) gives

is of the class Cloon F' -Pr. bdry K? -ThisIyl* +D

question+shall not be answered but it is notedL 2 L -N2J

30 + hence by setting and v -iit = c

(ii) a. y 0, a- I thus L-it on r
S(8.3) (D

+  
+ V

(: is therefore a solution of a Neumann problem. - 2) -
S
v

Tais solution exists and is unique in the space Ii its construction this equation admits at

HIl(ii) one arbitrary 
constant note or less. least one solution . This solution is unique

More again the regularity of 0) on r is diffi- 
in l2() according to he following lesauni

cult to study but it 
shall be noted that

t ' H(r) (26 p.
25 6

, theorem 2.2) . In fact Lamia 8.1 -

ailis for the best as the particular solution . 2

-t c X1 + constant is known and which is the nul (D- 0 in L (r)

general solution of the problem.
Proof of lemma 8.1 ~

Pr esofoerators S D-, VIn fact any solution Wo of (0- -) o  0

T. the following the results 
and terminology 

is such that

-f (34) will be used. We shall use, the lact (8.4) *e 1 De ii satisfies

that I' is a manifold of the class c
2
,O without

boundary but which connect op in a very regular
way with the bottom X3 -h so that Privalov's (8.) D .12 - -t -- (3 Green's formula)

theorem is true, see as an example (25,p.46)

for d-2 and (24 p.50) for d-3. (8.6) oD i o - jo(by passing to the

The operator S' is a Predhl.'s, operator 2imit x r)

from L2(r) into 12jl) and from l 
1

1(r) into Therefore

:ft.o(r) according tc Privalov's theorem.
(8.7)

The ,perators ' and V are weakly singular

operators from L2(
'
) into L

2
(r),from a( ) On the other hand.

into 1L1 t(r).

The adjoint (opsrator) f D in 2 is v; 0i 8 1 [.] satisfies in the as m way

and the adjnint of St in LIf) is S . This is . -0 by definition ofh donth af et xoci n5

a consequence of ti argument expound in (Spill t (

formula M) therefore is harmonic, vaui'hss on I and its

derivtive vanishes on Xg3h, '. K thus
_____________ i "D 

12
i

(Mit I lI ) denotes the Usual Sobole Space 3 i slso satisfies an analogous relation to (9,2)

u - H'ili) if u. Do' L
2
(ifi) where LP(I3i) is ] -

he set of measurebla f(x) functions defined on 0 - 0,1[.I i h2 J
the dosiin eli, flr which thi Isbesgue integral Then it follows

1  18.8) 1 0
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(3.71 0.6) itS iqly rLst 6. Also is Iiit~ni be noticed that it would he.*t h'en
pos-sible to pro-: leama (8 z) b, using lean 8.14 ~~~~~~~~~~~~a solatio of r-zhe ?Ird iF[,,i prxnlem rnyn tRis-cadrhetad atthtV

ai t 0 . is t0, adoint of 2.Nev.th-Ioes4 o- wuld bhe
alec to prove thit V* or one awmag its :-t'rrtes

p~t ;~t . kyF't of uni,-e nos Al ft a C PQct opcrto,.

; - There 3, i ii iO th-. protn. Itgipees . eakitr
0fsc!7 reot tha tIoe 31 fit as thle re-_,Qaueky

e- th , n hoct den.*sit .ns.e. This is 11
Q~i0 iemJ A. R . ! -t 0. a .I icient ?rll:.ct o'f renqlart-

V .bcnvr-oo; for thtnocia uveinotivLc
Then !he tnttg%- ' ain (3) dtil.a

ae;,~~Sillit tl p)(+ph(C).1.2ffi§thi,21-2). e

unique~~~~QJV solutionm in W.I) nfctti ul
i. in W"V7V s-nc - It Kad te Q1hl! t-ece 3n

OJID. h.:ot-a hiThic proof is.uilar to the ptecedingptoofs.

Ptotl f zher , 3 (i) thcrtfcc.only tfhe lojor points of tto p-it"
shall be given

'%w lbird Greet' fos~,a i; at-plsed to thet
4: M(.) tXY! -d *, z:- -"r, -he thr42;ee.'.;,e, u s .e ts the

V~i), l1,' hers 01 is A niqnez selution We: (3) 1(K,33 arC the pair
of tiso P1 I b Cd prob ix) 4 -XY -el isteiu ui-c

0.9)i4 (A.) - SkN of th itI ( (-F.02,j pr-: 'en. Also, eqIli1t o
I Lidentical E., (8.- and (3.10, ::e obtained. 

t

1S. Wi) 0 - 5 r-4 ID com--ti , -o ishr-for.- these equations with the
tJ ?.I. eation-. l and3 0I.2) the follsaing is now

obtained

In addlehg sr-nbc . m -ete ;8l) d 1 ) -A 8..
thai, (8.2) nd 0.91 it fl'cc el

(8.11) 3(X) I (Sit) I (() -F)

i8.fl ,8 where once Z,:.ne

1("1 
! . I - , lwhore one bas ect od 1.1

(3.13)~~~r% Q*o--nd-cordierg t9 what ha; been woca in the dis-

and according t, whet has beetn seen in the dis- ei-.'sitinb !)

cussis Af !P problem., -- l exsts in 1.2(72. In nabiij I 7-i ter.. t.-aaTds a point o.0

thetef 'tt z;,!5 in 4NL2(.). it (olvs

Ion askin I1 lli [K]rd a pon Ot

b~n~r te r,-rmal deri-vatios yoil- 'r- eden

(28.254) (C* - U hore u is the ra..itiosolhX, os Lt
limi3 integrni equ.Ationl Anifts a unique solir Acc-ording ito Im z. !ths integral eqiua-

tion in LIMf according io tnLo follomaing loxan: tion (8(8! cdaiits a g doilo:slIi ton i

(V

Proof ofl emga h.( - : t ~ ct. I that .isthe eqoAt ilo.
a s dcli,.! io within Iot setveause the

in fact tne s5utisn t,- (V.- .4- ' I)tl~II

ia gull that t, 0 %caSates (Sl) 1'- ,(nstant . w
hence, er-cording to the ptoportyol Jlilesll

rtaleP is th-. es, 2. 0,7-, in isa is note "the- than .. ar.-sAwmuh

-1 4e] (2V there -t (oniqis"ess f.5 ted that the coresr&ding polo. - Al is in.

',fin. (Vl it till-ra then lo 0 Ic 2.20 t2i -

Qimli lena8.2 n that this ter. noti ihutre aThl"I.to I.,th

TS



potential 0+, solution of NKd (Pht). (10) DIEUDONNE J. - FoWsmation of Modern Analy-
si - Pure and Applied Mathematics,

This remark ends ti, ,roof of theorem 3 and vol.10 Academic Press, New York, 1960
it should be noted th., his theorem could have
been ,roved by using the Riesz-Schauder theory. (II) EK&AN V.W. - On Stationary Waves in Run-
Nevertheless in order to use this theorem, we ning Water - Arkiv f6r Mathematik,
should have to prove that V

- 
or one among its Astronomi Och Fysik, band 3, n-2, 1907

itemates is a compact operator and that 1 is
not an aigenvalue of D". We have dispensed (12) GUEVEL V., VAUSSY P., KOSUS J.M. - The
-ili the proof of these proper! s by using Distvibution of Singularities Kinemati-
theorem 2. catly Equioalent to a Moving Hull in the

Presence of a Free Surface - Internatio-
nal Shipbuilding Progress, Vol.21, n°243
Nov. 974
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A LOCALIZED FINITE-ELEMENT METHOD FOR STEADY,
THREE-DIMENSIONAL FREE-SURFACE FLOW PROBLEMS

Kwang June &I
David W. Taylor Naval Ship Research and Development Center

Bethesdla, Maryland 20084

ABSTRACT Ill we-diiiiciiti,iat ship. a lint initegrat alonig (lie ini icr'tto

lie iweeti lite free sirface and !he 'hip, billappecar inl
A linile-elenient rueiiotl is Isreselied Cor solving reatdy (;alt-rkiit formulaiin. However. it Iev watcrlae is

fiv-surliet' flow past thiree-dimnisionial diirl 'ee. lie attimed to he siufficientIly tilfiii ltcon tribuition fromt lie
iite-s i-ce boun dary coildiition it linearized, Ilie boundary- lilt iniegrail inty be igiiovil
value proleii goverined by Laplact'% equiaioin is repliace'd iy
Gaierkiiit iforiiulaiioi with c vrtini etssential condti ills, lie Sonic inmerical results liit the plrestore ditriutin oni
nelliod iiself is at locallized finliic-eiemciit lnielliod. thle 11itid lie irce sorfaje ire preseiited ait comiipareditwi auilytit
,olil where lie iiiiiiicat eiiipntions arc performed it slo ll ob ilitained li Newmnii & Poole I 1962i). Compnia-

re-iuceil to it snvill local doimaiin which surrounds [lie iioii have also been niadt for ;i tip mioviing alig (he
disiirb ncet t his iteduction oif (lie domiaini is ,ichiienvid biy eireriit iia al 0uni. Spttifitaliy wt preseirit here tie wave
iiakiing owse filte knouii solititi spiace lcigetilinieion tir resistanictlie wave protilt, iit blockagt parainter. thle
Gil t% tintiionl in file tlioice iif die trial andtlesi funciein vlii lriito (iehphh iidtt rslroiih
bites. In ihie l's hizledil li e-ceieeit loiolaiii ai simle boitiiii. ile wave ressia ott a I ii.I iip is ciomparedt
polyniiiiiria iiiil tesit fuiioin basis is isei. l'roier Wiili [le result oibiaiiied by Kirsclu 119'66ut Agreemieni
ut (ire cioiiiti,t are atti uised iui matchi Icupe t fiille betwecui lite nuimericat aniti utiatytutal prtdittioins for hitii

euge1luielii antl piVsiuiyiiuual fuuiutiuui hates. 11lie present (ile tiressite diiriiiuiiion aiid (or tit thii shrip is very good.
nutitiot Wit listei previuoly toi suite iwo-iiiieuliitva Iret- Thle sthip huhl bunudary conidition is trealted in two ways.
sortfact proletmu by hai 1i 1475. 19i78). VIlst, tile ship hull boiiudary torit ion is ipplied on tie

ccii irplauie acciortding to tiit thin ship appronxinmation. atid
Soiiie niumierical rciihils Itir a pressure iliiuiiii ii a niest. tile exact hull condition is ustd Withi the lint' iegral

free surface are preseteied ainti enupiaid wIith tilt inaulytic tliig ignotred. We also tested for at few Froiide numbers file
results oif Newman & Poole i I '9vQi. Wavt rcis tu hititul is pruiblem i a lpressure distribuition Withi infiultiy film stile w:ils
are also given for at stiti) nmoving along iit cetv ini li it which is a simplifiled model for a surfaee effect ship St 10
canal and compared Willii the rsiultIs obti net itti Kurtil
Il Plhit). Agreemuen t tbetween nunuerical aiid anluay us I lte main adlvan tage iif ile preset-i I nctti is (hod the
predic tions (iif resistance fori biil li te putestore itritbution -ompilex geome try iif a til;

t 
litttutiary canl be easily

anii for lte ship is very good. the remsu s ii puelimnuary accommonduiated. The method also proviis tues for the
uateniatiins for at surface effeect ship 'SISi. Willi rigitd side- vetocityp poientiat Ili the en tire tluid domiiu !s pa iif thie
wails art aisii discussed. rsul it.

1. INTRODUCTION 2. FORMULATION OF THE STEADY
UNIFORM FLOW IN A CANAL

Steadty flow tif anl ins iscid, inconmpnessibtle tluid past a
body in tile pretence of a free surface is describled by a We consider here steady uniforn i lie" past a fluted
bruoridary-salue problem giwemned by I aiaiesequatioun. thuree-dimueintional disturbance in a tantl with A rectangular
In the past. problenus of this type Were generally solved by uniformi cronss section. Thie icoordinate systeni is fight-banded
distrtbting sources (and/oir itipolest on the bodly boundary arid rectangular. Tie y-axis in directed oppotiil to the
and using Green's theorem to obtain an integral eqluation force iif gravity, and the xe-plane coincides with the
tor [lie sutiilh of these biniary singulan ties or. unidisturbted free surface. The bottom of the canal is in the
alternativtelp. by using sources and higher order miritipole p - H piatie and lte side wails in the z -u b planes. The
expanions at aii iiiteriot poiiit within tile body, lire uniform fiss is coming froni tlie negative n-axis. We negleci
strengths of these singnalariiies keing determined so as to surtace tension and assuine thuit the fluid is invisikd and
satisfy thre body boundary coindition. In all cases, it is incomipressible and that the notions an- irrotational.
convenltrud to utilize ilie sitiguiatiiret which aft- stolutions
tif the boundary-value problem stated ablove. encept that The steady three-dimensional flow is describetd by a
the body bolundairy tonldilion is invoked separateily Ito total velocity purtential
determine the strength of the singularity diutribution,

*Iis, .r - Us +*v tillY Z
As an altemattee: aprproah. olocalized Ijite element

methold wast used by Salt 11075. 197Nit l solve the steady where4# is the perturbation potential, which mast satisfy
two-dinentsional anilormloss problem. (ien & Mel t1W75)
and Met & Utter t 1976i have applied a simila; numerical V2 

*its. p. oh - 0I 121
me thod to isnlse two dimensional problems. In die presentI
paper Noaimedrid is estended to three-dimensionial in the loud domasn 1). It will be assumed that the free-sturface
problemns. When thts mtethod is applied to an arbitrary ditsturtvancesl are all small so that the linearizeit free-surface
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bolundary cuondition 3. LOCALIZED FINITE-ELEMENT METHOD)

0oil S III this se.'io we0, ;,a ll des, ore a niiiiercat mittiod
U! 2.3 + o asedi i j weak tiietuialioii or Gaierki, Iorin. A

- -i- " X Z),itSp escriptin of tie weak formiulation or Calerkin's form will
I' s it o'r ,Ii,* give here %nwv mail rcrne oii titss aiijm

call hxe appliedl. whiere IP,,, . zi is a stecified nonl-lero find ;li ex tensive treaimnIt in Stranig and Fi',I 1973).
Pressuae apllit over aI portionit' th fiv re liri.ce. .S, S,
is the remaining tree-surface. anld p is tie density tit water. I lie Iluid domrajin of oar problem is intfinito along the
thle boundary condition on tire siip hliii, S_, is x-axis, For nuiierical coniputations, it is tesirib h a tilhe

lmi doin he reduced toi :I sinai) aI region is possitle.
Ol V,1  ire S, 1.4 ihe goal ifl reduiciiig tlie original itfiilt doma in It, trlite

domiain is aettiesud hly mtakintg tise oft tile know,, soilutioin
Here' die niiirial veloity V,, is givena sliace ill iroitcated inii)ie siiiiiioiti ail's whichi will li detfined

V. cuiiiiliuiiis is rsdiieed to, a iocai region wihich, iniy unrev
incilude ally oinurce If tile ,iii,iuriance iii ihe ited IVo%.

who, 'l. 1 .11) i [ie utardunt orml ectr, I it p-ewn I numierical imetoi is tern,, ai loaie iii, -i ie-
wher btounar co-. it)i ieotwr iiinraiSc, iken mtetihod since finiteineni onmeriaii~l co illilts
liS iidr Iintin, isl tile tiotioio. Si. anid sile waits, aire oaite ilt for a local domain whlichi will tie uteftin atetai.
SA,. of at canal are titlis pnicuts has, tive appliedtoi steaii, two-ilnrrsiionai

Oil= ('1 it S I jo tlioinn-)low irirtieiti biy Btla 1 175.1478).

lei tus iraw it), imiagiiiarv vertical pinos J , andJ
As tie iaiiiatioin inidiliui, we require that noi diisturbianices which sepmaiaie the or~giiia lii into, tile three silbinsiiaiis:
exist tar tiipireaiii. i.e.. D),,. Ill. and ID,. ,io~n iii tigiire I. We issitile that D),,

iletuits tlie siiti anid or tile pressure distribtiions. t ie
timl I Vo 1 i 1.71 isooiruary surfacs ifl 1),,. Gi ild 1), ad ie no01ted.
5 - rcic lively. by

andi that tile potenttial 0 lie bonded tar downstreami 7)1)., Sil + Still + Silo, +J, J, +5, S" S

ill P< 12.5)= 7)1 , i+ S ll +.2+Sv,0 1.1

filie sohiilioi of equatiu I 'I.2 tirough I1S.) is unique, it, whecre S, ,. I, ant Sij. ulctiote. restilec tivety, tile tree stirtice,
within ani arbitrary addlitive t0IiSialit. 10, C,-iiitiiat tie tilt' llxii n kin, [ltite canl site wval'. iii the miii-iionin
arbritrary cinistant in, tile soioti,,i,, we reqitie a I)iriciiiei- 1), ii = 0, 1.2),,and where Sill (i 2.) urn the bo~undaries at
tyile bsoundary coilition at any hue pint Iin tie flid) illilslit Hre I", i, 11iV interseton line betwee,, tile fitce
domttain hr on, its hoiundary. For this tilpse. we stitily sun it., S, midi ii sil, i nt surface S_ I tic line.s
reliuire I" is, o. )i I"lu is .0.1.i1'1 ix,. oi. 1). andi,) lxi. o. /irme,

0"ix,. 00 1t 1. 91 an Siii , with tile tree surlate. Sp uteimlts tile regioill

wher x,,. y,,. L,,) is ;i poi in tile thuod or il its h'ouiiulry. prsuedlibloni teteeolc.i ayi D,

Now tie soltlin iifeqiiatios 12.21 Iiieuugtt I 2,Q) call hit' It I 0_ 0,an 0, deitile tilt piertuirbatioiiI poeiitiais
dhetermined uniq1uely. itcintl ill the siiidiimaiiilIl, , D, anld 'Ind aitutle ,

bonduaries.,. )_)),. a 7),, it'spltiveV Ili,', uw' tare
tot, ennla ions 12.2) lituti 1 2.9 l mis; satisty

VI
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o  in D., loin - 0j in) ds = 0 (3.8)

U2 0.x (D i

9on 
=

for all )i. i 
= 

. 2. Here Oi and 4i'j i 
= 

1. 2. are solutions
U

2  
U a ,) of Iaplace's equation.

"s pg x P. IX, . Si, 13.2) let . and 0' denote the trial function% in the

S%% ul subspacc of the solution space in the snbdomains I), D,
and D,. respectively and let ,. T1 and ;2 denote the test

n on S o  
funclions in the subspace of the test space in D0, D I. and
D-, respectively. We deline the funclionals F, Fl . and F,

*,1xo. Yo. 7.) = 0 in I),. DI . and ), respectively. as Iollows

and that O, i = I. 2. unst 'atisly F{ T.1 V, dv- " J rn~os ds

V 0i 0 D,, Sl'uSP

U
2  

+3.3)1 P iT, !2 dst - To ', +U ds
iy 0-ixx onS 3.3) g sP

(3.91

Oinoi SIliU iti + x ,,ds- it',, dli

with the upstream ondition J,

tim I'V ol / 'r32
I IIIj ds + gi~ '

3  
Tn dli.

,2 3
and wi, he do"r iraar condition

where the line integration along tire closed conlour I7,, is
lim 02 

<
- understood to proceed in the counterclockwise direction as

x +oo shown in Fig, I. (Note that dz < 0 around the stern and
di > 0 around the stem).

In addit ii. we have the matching conditions

=on J= r i 2 (3.4) Ft

0on + Oin = 0

where dte norma! vector n is taken outwards from the fluid " PF
regon, i.e., (3,10)

02n= -02V On = Oox on J2 (3.5)

It is easy to show, by rise of Green's theorem, that the + g J -x

solutions. ,. 01, 2 of the above problems, (3.2) through
(3.4), are identical in each corresponding subdomain to the
solu foii 0 of (2.21) through (2.9) F2 i, .; t (7, j n - 2j,~ ds

As the basis of the present numerical procedure, a weakformulation will be used, a mentioned earlier. One

important step in the localized finite lement method is the + ( x j,-, - j, - ,
) 

dR
construction of three :oupled fuictionals by applying the g 42
weak formulation iStrang and Fix, 197I? pp. 116- 125) in
each of the three subdomains: (3.11)

+ - 2x P) ds

Jff (,D W i dv.0. (i - 0, 1.32) 0.60 S

for all ij in some lest space. Integrating by parts, 1
3
.61 -

reduces to

In constructing the ,bove 'unctionab given in (3.9) through

Via 9l 0 dv - 0,, dv - 0, for all 00, (3.11). the following "additional" conditions were used to
D. ltkcp the desirable property of eilgeslfuction orthogonality

13,7) (see Rai (1978)) in the ,olution space (eigenfunction space)
to he used later:

and,

i' "



"I lX e ITna. i-e thle doiin over wihich the integrals have to
- at I I X, . Z) I n u~licc will also Ic small. (T li the hand, one has

;i a,:ri eigenfunctions i to represent lte trial
rt- urleljois Ifj; y, and Z,1 or 6 aind 2 itt the

and COTrrllitili o fiile appyrflsinlnate solutions. and vice vetsit.

~~'n~i ho ic tried Cialerkin equit ns (3.14) throutgh (3.16)
a It I', I 3 si, I) 13 yo inti eicratioltil torn, in thec following way. Let qIj. .

~r~r i. i = . 1 ix) b[lie basis for tile M-dimiensional sub'
J.,eof hle solution space and let

i~lese conditions it imiposed to insuirei rlltiilaIm il y' .0

0across thle lines I, and 1, because flit, %eciiI tc, 'live i i ~ 'N'I 0. 1

Oxx is involved in tile tree surtace boundajry conditin.
(Obviously 13.1 ') andi (3.13) are conditioins 1tri 4 i- tha le Ibe flie %iris lor the Ni-dimnnioitai subspace of' tie test
boundary conditions on the surfaces J, :nd I,, 13.411. It is pai~ce dticd ied ife suidoitaitis D,.i O 1. 2. 'lihen the

of particular interest to note that functional I , iveni bry oiluioni is issuimed ti lbe
(3.9) contains a til integral along the Iitersectlion ol the Mi
4utp bull and tile tree surface This line integral is similar to
the well-known line integtral 4also known as tite sheltering sli lii in LEE . 2 . (3.17)

0lfectl which is present in the Gre', tfunction loirniliation j= I
of lte wav-erIsoistac problemis.

where ;lj are coeff1icients to Ire dleterminied. By substitutittg
Finali, e oht ill thle lorliowlug 'tmincioral equlatins (3.1'7i Ills coupled functional eqtuationls. (3.14) through

with certirm csse noda Ircntr cortditions: 13.lwI'inilly reduce to sets of' linear algebraic eqtuatiolns.

I - Since I l;edetailed proceduirese Lan be found in Bi( 11178)~~ri f n l~ 'i 0 or all ~i (31.14) we o111I1ithlese here.

with the essential condition A complete set of' thle eigenfuictioits which szliisfy
Lapiace s equation anrd tile hoinogieons boundlar coudi-

it)s xtI Y. 0',1) 0 li in fil te free surfacc. thle btioloin, y = - HI.an itlie
cainal side walls (I m i, Il re given (see Weliauseii (1973,

F, 0,rs fr alitt1) 10) t

witht tile colnditioni IX (Cos kn '1us I y I eel HEc , b) Il.

lint 'in k0: ' In

exp ki p x cisls1~,ib + III cois (I - 1) . (18)

F, ii) T1 , 0. 1111 all (37 136) where pr >~ 0,r > 0, prp >0 >0. , iiid where

-ia k ln= - inl W2b)2.
with the conditioti that iis bounded ats ux 5

k 2 p'~ +Air/2b1. 0.19)
In Ite coupled functional equation 13.14) through nil ni

f31.161. all the buundary conditions are property taken intil
acconti Lc natural boundary conditions encept 'or tlie File tan must satisfy
essential conditions specified in -lie above functional U2 1 1  t
eqlu;tions. Tb., essential conditions play the role iif an fit it bn 1 tau pH (3.20)
additional condition on the functional equations given Ii gii 2b ) T 1 III
13.14) through (3. 16) nd bane to tsr properly lubell into
accouat when constructing the trial functions, and the Pat nmust satisfy

functions are chosen from a polynomial basis. Specifically, fb -,r ll~ falpi 3.1

8-node isoparatieti fiic.: thicre-'imettsionnl elements were [

.0 used in the present nrircal llrlrcedure. We will omit a If n > 1,. their is a' single solutionu for pi, for each value oif
description of this representationl and of the computation of Ul/gH. If n 0, there is one polsitive .A 'ution ((or pt~ if
13.9). One can read about this element in Wilson ( 197 J. U2/gH -, I, hut none if, u2

lgH> I. 'here are itfinitely

As mentioned earlier, tile trial and test functions If. DI many s14111 ons for pap which we still .undwir with

and D2 wilt be chosen fronlt a siuispace of the solution space p 0.1, 2 ... in older of increa~sitng value. if if It0. there

which satisfies the Laplace equation with the free-soarfai. con. is no r ltulioit a,,, if' Ul/al. <. I . hut Ki~ exists if U
2
/gI' > I.-

ditioir.. the side wall conditton and the bottom 7onditioa . The 'there is r'o steady-starte soultion if U2/01 - I
eigenfunctions or the Gneen functions of the above problem
can represent the solution space. We will choose the elgenfunts- In thie numialr lprscedisre it iS itsiid triat fosr
lion space In this paper for Its simplicity. Fi and F, can hbe convenience tte yn'-plaut is sltift: lo oinceide evith J, artd
given its simple analytic forms except for the integral% along the J2 for the corNtpotlon of I-' iad F..

enpretsnieos for the funactional, are involved 'ai'!y with ss, From the cotmplete set of vifinfuriuve Ilic basis for

'Jomain D, whicie hall call the localizedl tlnile-eletnent the trial functivens is chtosen so. thtat all the- riti fuincitin%
domain. If one takes the tocalized flnite-element domain to sarsip the essential bsounrdary c idilioits. It tule cli.ev .i 3



lite hasis for the test Ivrnctiiiis. we elininate lte terms which Since lite free-surrace el,*eativn ii (lie linear theory is
result in a trivial /ero row vectior. a row vector linearly
dependent onl aiiother row vector, iir an ur~hiiunded integral. U

hie liases lor the upstream region aire chiisen as
the free-surface elevatiiii assiiciateid uili the piotential in

l....iivt )z). es .Uli iytltei ( .h) 4.1 (is then given hy

3.2) 7(X,. =) F krian sin k,,v - hn eios kuntecos Ll (z - hi

U -kx s0 in
14,~ ~~~ hF kil cn ik h) +Iii i i+ r c e 11 cos cost lis -bh1i .. l . ~ si - x c~i t 1,,y + III o% Lp, p up 2h -

(4.3)

ciis i y+ li cos I /- hII lie first summiatlion starts witti ii = 0 iir n =I aecoriling ais

3.2i uijjgH < I iir Ui5Rrgi > 1. respectively. In the seciiid
sii ilte term co.rrespotndiing toi ii = p= 0 is abseit in

where n and it are properly chiiseii friim (lie liiwest sii as to lite first ease. tint present ii (lie secoind. I lere tie
itiake lte total itunther of ternis on hoth sides lie same. csiefficieiis C, an, hn anit c~1, are tile cfflicnts, pj
Siniilarly, tile bases for the downstream region are derived iii 13.1 7).

(1'' ?Im 1. n'rkxcItp y+HIco 7i A fter lie veliicity potential Itis tieen ohtained, the

t 2 I -2hb pressure can IV computed hy Blernoulli's eqtuatioin

,.in k,,,scoshI MiY +H cos 2 i! i-hb. o t 2+02+ 1 4.121h 2 y I

e k,, cos n I y + H) teos -It ; - hb) wry flie hydrostatic pressure has heen omitted. thien tlie
2" ion-ti jiensional pressure cefficient . is defined as

0(..... 0,,,' x(. sin knii cosh p.(y +lH) cos In(z- b).lixp'

kin U
2

V r' cisip (y + H)tcos -j- tI- h;Ij
theiru ic .iivit tlie stagiiatioin point

03.:51 liy !ore aid mnoment acting on a ship hull S. are,

It is iif ititerest it niite that the final total matrix is
banided. Furtmrmmorte. it shioiild he iiited that the snhno!mris
ohtainted front ltme polymimial trial and test hint ionls ;1 D,, tIn tS
and [lie local-ternseiemfunetioiis ii 1), and 132is symnmetric is iS.
well as handed. lII the prevent numerit a) comyaitatimins. t lis
symmetric vubmatrin is solved first in terms of iinknowiir
coefficients of thle free-wave eigenfunciimi and contisants. M pie v tmi dS i4.tt
I'hen, the asynmnmetric suhmatrin of the rest of' thle matrix q
is solved.

4. ~ ~ ~ ~ wtu HYRDYAI PRSURS FOtES r) X, p. 7) is the position vector, atid

4. ~ ~ ~ ~ ~ ~ ~ 1 IYROYNM, PRSURS FOCSi n I) is thle unit normal vector intii the hody.
MOMENTS, AND BLOCKAGE PARAMETER Ih. -,' -l; X ean also he enpesned in terms of the tar-

(hle solution iif the final matrix equiatiotn give- lte d rsr i rew %a

velocity tiotential 0lx. yet7. in the localized tinite elenient L -
donmain D,, as well ;is the coefficients iif lte cigtenfunctuons k- + '
in hoth lte upvtr-amii and downstreamn hatt-inlinite idomaiin%,. ___ i 

5
n tn+

1), and I,. For esatiple. thle potential 0 in the dowe- v i
stlreant reioni can 1w Written as (see Wehauen 1973), IH n tai hn nH I pH
P.II - - 1 + -%in 1 jn 4.71

2L a ih a/

*)X, y. ) C, + (I, eon kn.x + ha. .in kn xt wthere

eo onp(V * H) c nar -II~*~ ~* for in >I

:osh ItsnH 2b It ts of intement to note that, fwr ateady flow in a caital,

rsr' - os i, a -h the mean p-otentuala, far upstreamn and far downstream aret
+j-j CI, e itnt cos I IIIch 4 - different. (Isis mean-potential lump between the two

ny 2 h intities. i e., x - I -, defiestIhe sc-called blockag

14.1) piaratmeter Intch in diacu-aed by Newtiman 11976)t for the

0 U2



two-dimnsional cae 'fill- pottetial jum,,p is tieid iy tile Pressure Distribution on t Free Sairface
difference in the two constants at hothi itttltttics. Iit ls
two-dimentsional analysis. Ntiwman ( 1970l pointed 011 (flat A rectanglar pressurv dlistributin n t the free suirtace
thie potential jump C is retatedi to the doublert strengtht. was used to test thle present numerical method sine there
UH'-112ir p, by exist anltytic expressions loi this simple gcoory. ihe

pressutre alistributtioi is a.irell a~s

U( ~ ~ ~ ~ ~ 1 IS (1~~ 41151 1,,,frI\I< adI/I<

In presenftttl ourl numerical reitttis. we wtill make ume frIx I. r I I
ot thle water-depth Frttxde number Fitan (tlite shtip lengtht (,l 0 ri > orl >
Fsotit mnmber F, . jlpctivctv stetitesi by:

F, = ~Witlet.,I and it3 are il Icigt .tand Ival tsnt, lcisiv ands p,

7g HNewinat & Poosle I Of 11t tI

and1 14.9)t pW~

I 15.-1

whtere i11 a1, act~ fit,, sittr tdeptiii ato ile sipl lcetgit. P IiH un t 1  
~ ~ i -

resitectiset. 'P, Ii tH-(Ittipn H - p1 it it 2 oit

Il i ) of ou ,sr comutatttionls, two, set, (ot Irile-ceetl
mtesht stttbsivossit, w~rc 05111 i rattttsl cljirsc 1, J stiii %siterv c,, is 1 litnet erlier it W4.7). v = g'1. and11 where p,

Oieeti 11001! llW X. , 11 al iss reyitt l d i .1 finei relssest its 'W i, . W,". since life syllinelr, tilli resipc~i
ittest,, with 1120 total eletieot andtt ill. 1,0.1 notte. (o (ie x platne is tssd iii ife atttsse ittrtttt.
t16is 7s t1 eleentts Ahtn the us v id / is, Inth
sets ofr n1iisti subdttivisionts. t1v ittI'Tlruttia My t iii illtiic Ill ilte '2n 1.111 tle 1. Mir1 toittttricat results Ire
lions were ilien( 1 ItO e -ive ill r,sver, ik, I lic cttttparetl witht tile tanaltic reatit given bty 15.2f. As showns't
average CPU eseccotiouu ittlei for cli t FsIIiC 1i'Vtii (111 111i ilt tattle 1. tijvit tinttc-&teoctt Ineshes wereuse foi fituitte ,1
I esas Intstrumt~ent Adivanedi Scienillk )I1L ~It th le irtitsi ntiumbiers. ills I sltowu tilt illk acelirat sit tlie
Naval ResearchIt taitratttrv was 11. ind kIsl- , ntttuericat icslill improvite% if finuer I-itttnitc tt'-it llttsltss ats
for the coerse and tine meshtes, resptlec sustsedi atti tii, titter mctsite shold Ke ilsetias (lie I rstj,-~
(lite costs we~re ;tttirotimawtey. St 0.111 mid~ '10 nttuer ttecreascs. I lite ctltttuari-tt iti I-iptre 2 stit, pitso
resttectivciy. I atirevtttvnt ls-!wcvn tie taical~tet and~ iaytik resutlts itr

tite igher ivuilv tiuisitet'S. I li slightt ttis~ugivittit if-iti
5. RESULTS AND DISCUSSIONS ittr till w Fdituss-,ttiltr case!; resttlts trot inli ictet iv

We itresetl sstttte tst resuilts ttt this section.lit > .,! IV. btlockage paramleter p itetitteu ttt 14.Sl wais at etutustut
apresstttv ,istrittioto otn tile tree sutrftce is trvttet tl, nd titruigtsss the etire tttdcintentltttse rittpe testesi
aparabottlic siino at l ongt1 tiuty e centterl Ita canal is, sled p - llp, il [or 1,l - O's.5. =t~ 1. anti W/t-

dttmain. i.e.. 0 < i < It is contsidereud tlifte Is, tlie %ymttv

wilth respect tol tile xy-pttave. tiere tife width oft lim
W is gtiven as W =2h.

fittie I - C.ottintttiso of Ilifte Wave1 ResIiIansC. pit VX', it.
(uttiluted tiy file Numinca~ul atd Anaily tic Methods or

;he Pressurr Dirsoritulittsi on life Free Sitri:te
lMIL - 1. HI - Wt, W/L 21

0106 - Jmtc Rintt Anelvtc Rtnnlt.

0.0 0.975 0.06110) 0.06
009060 0.0071 0.01370

S . . ..0.00926 0.0678 0 1677
ci 1UMERICAL 0.900 0.0612 0.0680 0.080

RESULTS 0oem Q ow6 0.0619

-BYNEWMAN A 0.860 00475 00671
POOLE (1962) .A ooe 0.066

0 -.-- 0.600 0.0830 00633 0.0612
O.4 O3 0.6 0.7 (1.8 0.0 1.0 0.700 0.0443 0.11 0.0416

U/./jR 0800 0.017 000D72 0.0009
0.8001 0,0110 00354 0.0362

Fignr 2 - Wavie Reiitanee of a Pl01atut Daitribuitt o .60 .)4
tB/I 1 . H/I 0,11. W/L 21 104b1007
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III order to investigate surface effect ship.% ISES). we - - d Kz\ () 5.5)I
also tested thre pressure disiribtition with infinitely thin side 8 u L2 n L
plates Thte computed wave resistance vrith side plates was
appronimatlc doubte M., wove resistant%! without tile side
hutll plates when the draft of the side plates was T =0.02, L whereu K is aconstant of 0(l I. By assuming that the ship
for FL 0.)'. We have some rwwrvation% with regard to is thin. i.e..
thime numerical values. because we did not take very rinc
meshes and because we did not tike into account tiw Knut;, - oil) (5.6)
condition aloug tile edgte of ttie side plates. Neglect of thie
Kuttta condiitioit resuiltedl in an infinite cross velocity along
the paeegi.one can see fron. !5. 5) that tlie tine integral in 13.91 can bie

plate dge~.ignored since it is of O). Similarly one can also shuow
Parabolic Ship that tite rest of the integral terms in 13.9) should he retained

since titey ore of 0il 1i in tite nondimensional 'orns.
Computations tone been node for a parabolic shtip

moving along the centerline of ;Icanal. A mathetnotical bull I le coimplutedi wave resistance using bothl the linear
sturface fin. z.) with symmetry ibotit the n- and 7-axes and and exact bsoundary condition, on tite biull surface are sthown
w',*1 rectangulor cross sectlion is diefinedl by in Figure 3 and also givn itt Table 2.

F Ix\2lTable 2 - Computed Wave Resistane*n Obtained
fix. Z) z [Il o, for o > y > - T. 1 5.31 by Using the Linear and EXaCt HUll

L Conditions for a Parabolic Ship

Here B and L. are the beam andi length of thre %hlip. MBIL* 0.2. T/L = 0.1. HiL = 0.3. W/L ii
respectively. it draft of the ship is T and the depth and
width of a canal are H and W. respectively. This buil form Linear Boundary Enact Hull

was chosen since there exist extensive results for this model F odtinnsndtin
in a canal by Kirseb (I196h,). We mode two sets of computa- 726 Nodes 149. Nodes 1496 Nun..
tions. one using the linearized btullt oundory contdition on-. -

the centerplane. and the other ung the exact tall I oundary 0.O 600 0665
condition. In both cases the line ntegral along P', the 0.570 t.0250
intersection between the ship htull and the free surface. in06m 321 3.5 .22
(3.9) is ignored. We wtll give here a bietf discussion for wniy 03 3t .15 562
thtis line integral usoy he ignored uinder certain assumuptionn. 0 500 2.7764 2.8M9 3.200

0.475 2.260 2.3287 2.7352
It is convenient to nandimensionalizr tite functional Fu,040 t73 .84 241

defined in (3.9) by UOP. i.e.. .5 .60 .64 241

F 0.425 1,3847 1 2240 1.4026
F. !500. 400 0.7371
F .0.350 0. 1791

Then the line integral along the intetnection boundary ru oo0~x
from 13.9). can be written as 0 11 085

*The nnndinnrional we" risistone. is defined a

X/!Pil!

4

a EXACT

0.3 0.4 0.80A

F~gan 3 - Wa" Riislavue of a 11"saaolic Shlp ha Cassal
4 0/. a 0.2, T/L - 0.I1. H!L 03,iWIL a I I
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The linear results are compared with those obtained by as well as life local-disturbance terms!. Tiu, coefficienti of
Kirsch ( 1966) in Figure 3. The agreement is good. for both tltc tcu-nuxisl rrec waves ffrom (he lowest nGde) are given
sub-critical and super-critical flows. However. the results in Table 3 for FIL = 05S. and for thle linear and enact ]full
obtained by using the exact bull boundary condition are conditions, respctfively, It is of great interest to note that
higher than thise obtained by using the linear [full condition tile results in table 3 provide not only tile wane resistance
on thc centerplane. Titis qualitative tendency can also be from 14.71. but alist) provide the wave amplitude spectum
observed in tile results shown by lInui H1957, p. 3481: see also for discrete wave numbers. T his wave amplitude spectrum
Wehusn, 1973. p. 1 95). is an interimediate result commonly obtainted in the towing

tank wave meastement by the trjllsverse or longituadinal
The velocity Potenttials and thme free-surface elevatioins wave-cut mnethoids. Therefore. since this method can

along thle ship bull surface. lbe canal centerplane forward amid simulate closel y the, towing tank en perimentls. it can he
aft of the holl, and along the canal side walls for F,, (10.5 are re-garied as 'a nonlem cat towing-tailk es peritietiC.
shown in Figure 4. Thme mean potential jump is also shtown in:
Figure 4. It is of iterest to note that tile zerotli-moite f ree thei velocity vectors. V1 Us + 0). on thme hull surface
wave tie.. 5u,,H = KoH = 0.790284 in Table 3P is domoinant Ii.e.. time tagenial velscityl arc! computeid from tife potell-
along tIle canal sile watts whereas along thme hull surface. the tiat obitained using lte onact hill] boundary ctoniitiion. they
tiher-'nodce free waves, are significant as we" as thle zerothi arc shoiwn in F-igiure 5a fiur a Fruide nimter. Fl. = 0.5. fihe
mode (ile1 lowest model. It atitmars that the tipgler-nsode simle of tile hlll surfa 'ce is divided lito three panels along thle
free waves have not quite propiagateid to thme side walls esei ilitli and tell Paniels aliong thle length. IThe ciorrespiinding
though alt modes of' tree wnaves las welt as time lucal- utnile eleint nodes tin tile body tltn are shtowni in Figure
disturbance terms) have txeen genterated iy ltme hull surface. Si. Thfe acuracy (ifl tile velocity vectors can easily tie

impirosei by taking liner nestles tpIailels. Such results call
As at part ofti le numerical souloit. we also otiaittei theicte used as input viaiues fitr compuitation oh' ltle viscouts

tile coy-fm cuits of tlie eigetifunctions (tile free-wave terms tiunuary Layer on a shtip [full.

Table 3 - Tile Coefficients of tbe Downstream
Free Was-es in 14.11 for FL = 0.5

(B/L -0.2. T/L - 0.1. NIL -0.3. WIL - 1)

Linaiied Cndition Exact Hll Condiion

o pH K, - ion the Cenieplanel

,,/UH tilUH n,/UH bn/UH

It 0.790284 0.790284 0,435529 0.736210 0.372829 0.728139

1 2.569032 !.745526 -0.014165 0.tt6152 0.017700 0.026130
2 4.417158 2,301966 -0.028785 -0.007674 0.030042 0.067348

3 6.2880M 2.746611 -0.000608 0.000673 -0.064492 -0.000875
4 8.163687 3.129618 -0.003859 -0.008078 0.007485 -00106914

5 t1.043856 3.471880 0.310569 0.000784 -0.006729 -m0OD645

6 11.825&V0 3.78285 -0.0(1566 0.005677 0.019063 -0.015158
7 13.10M6 4.07062S -0.O01 t05 -0.003588 0.008250 0.030843

6 15.491578 4.339341 0.000962 0000311 -0.01894 -0.008766
9 17.578720)6 4.1092412 0.000723 1-0.000285 -0.006122 1-0.002168

0.4

-0.2 -- NL U At -

POTCENTERLIN

-- CANAL SIDE0-WALL

-05 -0. 41125 0.0 026 0.1 0.8
xlL

lmu 4~ - 7b Velocify Futeallhb amnd Free Surface Eilearu
l111L111 0.2. TIL -0. 1. HIL O .3. WIL I)
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Figuare 5 - lit Velocity Profiles, and
ibi Finite Elenment Nodes on the Body Plait

-1.2 Table 4 - Blockage Parameter ip of a

Paranolic Ship in a Canal
fB/L - 0-2 T/L - 0.1. H/L - 0.3. W/L 1)

-r -- ~~0.53 0a.l1alBa6h749 d~n

-0.4- -0,475 016026
0.4150 0.16223

-0.2 - -I0.425J u low6
Withi th linissuriad Baaindaiy Condition an

0.0 th 4.--aaii,1 0185itrutoi

he pennre uemeeni W!Lall the Fraud, numbers tanted

Figure 6 fitareew kn on the bottom the relation. if any, between tIlse hokalle parameter
cjalbiiin.h ly th -etrine Iy -I i thvc her and that eplUoyed wnEMaA gsown

to/u - 2ren . T L .1c . tHI 3 e Ioiltr thjii tank heein i In the lelie a t er nu~ cw ei in eenivs
presure uetjleti ap~e~rndowstrem ci thehulland nctis n d eprn ormlas m neth previent PFUte
not ,iowr in hin lium I hs inbecase 1W ies~ir mte InfOiavninle ontal flow ccua oewtel.Iaslkerl

t be poit smgci eficint ni tre mns- in e4 5iiii in thelrennrro lleeeielm-b.aeue.I m

Fan, -hnk 0.1 the %howl tha theur caact the computers lie., th
oicotunltui~thth svn sar heralrnimnai getutig large ins the pius

pitir tIoietart"c aser d osremo the hull savnd in eecnton tie resetniffaiten menhd prois s a i gisith
laoe 4hownin ofhinrs 'ipnr I l t eauste Ile jrof isid msnan irth ile to lii utent noicatedo ita reiemay

tonstant, thr,,,snhoul the Fronde nrwie tested. whrenr the preseint nunenal method. flite present comnputationst
usiing the linear hull boundary condition. this is similar to required approximately If. and 96t secitnds of ('PU time
the case of the prrmiure distinhulvi on the free surface I coaing S110.00 and $129.001 respechively foe 72fi nodes and



1496 nodes. Since we can nu: claim fil thle present
computer program is rlie most cilicient tt trw as a lrrrsic-
ron compulter-program, one cart easily reduce thie cost more
xignilrtavrlly by optimriuing tite presetrt code.

It sihould kv empitasized thtat tire foilowirrg :rddijtiortal
invest iga tions cart arnd sitould he readily undertaken:
I I lrnclrrsionr itt tire methrod trt tire line-integral term given
in 05.
(2) Ex tensionro tilrie rmeitd ito strlve tire exact nrnrineir
xteady-tlrrw p-roblit by satistyling tire exact free-stri'ace
contdition locally arondn tire shtip rod fly rusing tire cigen-
furnctiorn% or sirngularity distributtiors l I ;r ut tdamerr al sourre
or a comrplete Greco furnctirmn) arrrrrrd tire jruncture
boundary ott tire localized finite element strb-dttrnaitr.

ACKNOWLEDGEMENTS

iThis worrk was surtted by lire Nummerical Naval
Hydrodyrnanmics Prorgramt at the IDavid W. taylor Narval Sip
Researcht arrd Ueveiortpnrt ('enter. 'Irhis Program is Jirntly
supported by tie DiYNSRD( ,tnd tlie 01i"e or Navaal
Researcli. lire authottr alstt thtanks Mr. Richrdr 1. V'ar Fsel-
tinle mt DTNSRIX [rrr iris assistance it ctonvertinog lthe
triginci (",)( 1 irrtprler Pro'grarm to tire tI -AS( Comtlrrer

P r o g r a m .R 
E F E R E N C E SI l

t ~~~ai. K.J . 1975. "A t uh:,tlt5 t rrrit'-/ herrernt 3,i/r/

lwlth Vadatirtra f't t bcmwiht/ttra. ' Proc. :tlrtIrt.Nur
Sims [t.drod Nnim. Sbp Ioso b% liavd by~ ttt NavSdr
laewarcNavalhip vRirrtrr (enter. etesdaM, lii

lRati, KTt 197, -A rtttlk' itrr ae-rtlani j/rrrart

tSitir. " sobted J. rflSip Jattar hutAlt, . 5r

Dirsina Marip a. e hrir ba/lute hr Eeitur 'IehC ha1rttc
q~r (tirt Waroa Pntitr ." Jr. ist Ret. V(r l. No 1

Nttir Methd in Iongat itter 153- cta 117 -15 1

ntom, raJo N97 titid ~t aig'tajig tervXrtar.
1. Shi Re. o.2 Na. 4uc, Japat. Wil0.1..,Se

Kr~irchni. Vori. I t, 1 afn Wae an2Cane

ehauron. We . 9.1ase. hitt Wat ,, Vrol1. No/ ./tpr

Attsanc. eoi pin uLetngi. 11, 43 - 117.

Nwmasn, J .. 17, &r/irJ Lip. tqh. SISM VIQ,.
J.Shipctm. Votl~n . tab N. 4n ol (li , er03y.(

Newm n, I.N..1141 P ole I A P.,1% 2."Th Ii



NUMERICAL SOLUTIONS OF TRANSIENT THREE-DIMENSIONAL
SHIP-WAVE PROBLEMS

Samuel Ohring and John Teltat
David W. Taylor Naval Ship Research and Development Center

Bethesda, Marylard 20084

Abstract from an abrupt start in calm water. The abrupt
start is viewed as a very rapid acceleration

An efficient 3-Ij finite difference from rest. This numerical technique can easily
implicit scheme based on a fast direct matrix handle accelerations and decelerations of the
solver has h-en developed to obtain transient ship although this has not been done in this
solutions of the flow about a ship translating paper. However, abrupt changes in the ships
with uniform speed in a channel from its uniform translational speed are considered.
abrupt start in calm water. Both "thin ship"
and exact body boundary conditions are consid- The numerical technique described in this

ered. The problem is linearized in terms of paper, in addition to being very efficient, has
the free stream velocity. Abrupt changes in the advantage of delivering the potential flow
the ship's uniform translational speed are solution and the ship wave pattern in the entire
considered in addition to abrupt starts in channel at each time step. Such a solution
calm water. The present method can also handle permits the calculation of wave resistance from
ship accelerations and decelerations. Higley the wave energy. Although analytic approaches
hulls, characterized by small beam and draft- to the accelerating ship problem based on linear
to-length ratios, have been used to represent theory exist (see refs. [1] through [3]), these
the ship. For Froude numbers based on ship approaches must ultimately resort to numerical
length . 've .5 it is found that the transient evaluation of certain series or integrals which
approach tL ' locally .teady state about the require a large amount of computation. This is
ship from an abrupt start is rapid. This especially true when the exact body condition
approach becomes significantly slower with is satisfied. Thus the development of an
decreasing Froude number with the wave efficient technique [such as that In the present
resistance oscillating in time about a mean paper) for handling these ship problems is well
value vhich is approximately the steady state justified.
value of the appropriate comparison method.

Both the "thin ship" and exact body
1i addition to a hull integration of boundary conditions are conside.-eo in this

pressure, wave resistanc has also been com- paper. Linearization of the free surface
puted for locally steady state cases by equations with respett to the free stream
integrating an expression over a transverse velocity was used. The numerical technique
plane aft of 'he ship based on energy conserve- used is based on fast, direct ,atrix solvers for
tion for the steady state flow region upstream Lapleces equation. ror the "thin ship" body
of this -,lane. Wave resistance comeuted from condition the fast solver is diagonal decomposi-
these two methods as well as wave resistance tion as described in [4] but applied to second
versus time curves and ship wave profiles for order differencing. Fo the exact body
Ill Frojde number cases considered generally condition an imbedding ,chnique is used as
agree well with available co parison methods described in [5] and [61. The numerical
(analytic, observed, etc.). Energy conserve- technique used at each time step couples the
tion is monitored and wave patterns are fast solution of Laplace's equation to the
computed in the entire channel at each time solution of the free surface equations
step. accomplished by fourth-order line inversions

The coupling ordinarily involves a few

1. Introduction iterations in a "predictor-corrector" manner
with convergence on the vertical flu;d velocity

The problem of wave making and wave at the free surface. Therefore the overall

resistance of ships has been one of the central numarcii techniquem is imliit in time and is

area: of marina rc-.earch for many years. Tie second order accurate. Results are obtained

wave 'esistance of an arccelrating ship has with this technique for tigley ship hulls
been of particular interest in connection with characterized by small beam and draft-to-length

ratios and are compared with those of other
towing-tank eaperimts. This paper presents available methods.
a vury efficient numerical technique for
obtaining the transient solution abcut a ship
translatin with unifom speed In a channel

as



II. Mathematical Formulation variables, o(x,y,zt) is the velocity potential
relative to a non moving reference frame,

We consler a right-handed Cartesian n(x,z,t) is the free surtace elevation, t is the
coordinate reference frame fixed to a ship time, h is the hull function, and L is the length
translating with uniform speed U in a channel of the ship. The free surface eqcations have
from its abrupt start in calm water (Figu re 1). been linearized in terms of the flee stream
(Note that the origin of the reference frame velocity U with the dimensionless Froude number
is placed upstream of the ship.) Fr - U/v', where g is the gravitational

acceleration. In Equation (8) n refers to the
direction of the unit outward normal vector -4

o LI from the ship pointing into the fluid. When the

0-0 "thin ship" boundary condition is used, the
exact body boundary condition of Equation (8)

-T is replaced by' exact b~ no dar cntone zoato(8
n Oz = hx at the hull's projection (11)

2 - - -a onto the centerplane z=O

The wave resistance coefficient is given by

CR = 2( f f -p'nxdS)/(pU
2
Ld)

pU
2
Ld ship

Figure 1. The Reference Frame 2L (12)
-L -J (¢t ¢x)(nx/n )dxdy

Assuming potential flow of an incompress- A
ible fluid the problem (which is symmetric
about the centerplane zmO of the channel) can where R' is dimensional resistance, p' is

he represented mathematically _y the following dimensional dynamic pressure, p is the constant
set of equations: density, d is the draft of the ship, n,n , and

nz are elements of the unit outward normal

nt = -!x + 0 at y=O exterior to (1) vector A, i.e., A = (nx,ny,nz), and A is the
y the ship projection of the ship's surface onto the center-

plane z=O. The nondimensional dynamic pressire

t= "Ox - n/Fr
2  

at y=O exterior to (2) p within the linearization is given by
the ship p- +%) (13)

x 
+ 
yy 

+
zz = 0 in the region 0 (3) pU

2

exterior to the ship It should be noted that the integrand in Lqudtion
(12) is evaluated at the ship hull, although the

subject to the boundary conditions integration is performed on the projection A.

x 0 at xO, Ll (4) For steady state free surface flow about a
ship translating witn constant speed U in a

* 0 at y=-h (5) channel, the dimensional wave resistance R' is
also given by

z= 0 at z=L2  (6) j n yo ],dz
P_U_2

W  
, dz,

0 at z-0 exterior to (7) R' 2g , (14)the hip
w. 0 (14)

On h/ /l+h'+hy at the hull (8) f dz J tx' (2
z -z h(x,y) - W, h

, 
'

The initial conditions representing the abrupt as derived in Lund, rfl. Here the integrations
start are are performed on a ansverse plane aft of the

ship and perpendicular to its motlon (W' is the
q-0; *-0 at y-O exterior to the (9) width of the channel). The derivation of (14)

Ship; t-O is based on considering eneigy conservation in
the region upstream of the transverse plane.

All variables in Equations (1) through (9) Flow in this region i% assumed to be steady.
have been nondimensionalized according to the Nondimensionalizing R' In Equation (14) and
scheme considering only one-half of the channel because

Lof symmetry in the centerplane z-0 we obtain
(x.y'z') L t' -t the wave resistance coefficient CR

o' - LU n' *Ln h'- Lh C 4 Wd

R " 0 a an.(0x) .]Y
"Od
i

and the limits LI, L2, and h of the computa- LW 0 - (15)
tional region D (representing half the channel) - dz f ( #')4' vAxx)dy
in Figure I are already nond ensionfl. In 0 -h
Equation (10) the primes denote dimensional
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Wave resistance computed this way is usually "thin ship" condition (Eq. (11)) was applied on
considered to be more reliable than computing the standard grid at points (xj,yt zk) with
it from integration at the body surface. j-31....,50; 1=1. 8; k-0 for a total of 160

points. However, the ship was assumed to
Energy conservation can be used to check extend from x - (30.5)(Ax) to (50.5)(Ax) and

and monitor numerical solutions. The noiu- from y - 0 to 8.5(Ay) since the unit normal
dimensioaal time rate of work performed by the vector to the ship's surface is undefined along
ship on the fluid is given by lines of intersection of the ship with the

centerplane z-0. (See Figure 1.) We shall call
SdW'/dt' - 2 (t+x) dx dy (16) this a standard ship placement. Those cases

pUJL 2 ff tx z with different ship placements will have theA Z xplacements described.

with the integrand evaluated at the ship's The free surface equations (Eq. (1) and
surface. The nondimensional time rates of (2)) ware discretied In accordance with Euler's
kinetic and potential energy of the fluid are, modified method, i.e., they were replaced by
respectively, difference equations of the form

KE I at :,,- m+l m + At(ml+ F (20)
PU*L F~Syd: n j i tf1+ FT'

nf~x y (17) mrl ,i. t(gl +I) (1)+ ff # -dxd J . Om
A z 2 =*j ii

d(PEidt d 1 where the suparscripts refer to time levels, At
P UE F - 2 dxdz] (18) is the time in-,"ment, F tnd G are finite

Fr S difference approximations to the right-hand sides
of Equations (1) and (2) respectively, and the

In Equations (17) and (18) FS re'Jrs to the free subscript j refer, to the jth grid point in the
surface and the integrand of the second integral x-direction. (The subscripts i,k have been
in Equation (17) Is evaluated at the ship's suppressed since 1-O and k can be considered
hull. Energy conservation Its expressed as fixed because Equations (20) and (21) involve

finite differencing only in the x-direction.)
W KE + PE (19) The derivatives nx and #x In F and G,

respectively, are replaced with fourth-order

Il. The Numerical Method central differences. Given # at the m and m+l
levels, Equations (20) and (21) can be viewed

The ship problem was discrettized with a as one-dimensional finite difference equations

numerical grid defined as follows: (xJ'yt Zk for the unknowns n 
+ 1 

and # +1, respectively

denotes a grid point: [xj -jux, yj *i(-Ay), (for k fixed), i.e.. for each k, k-O .... n-I
zk- kez] witm J-0,,2 . -I; i-0,1,2 ... m- and for j-O..-l, Equations (20) and (1)
k-0,1,2,. n-1 where (o-1)Ax L, each yield a set of simultaneous inear
(m-1)(-ay) - -h, (n-l)u - Li. (See Figure I.) eqatied o se uofnsiane+ u lnem+
For most cases trei.ted ir th s paper the grid equations for the unknowns 7l and
parameters for what we shall call the standard respectively, which are solved by direct inver-
grid are Ax - az - .05, Ay - 1/136, t-I - 128, sion along a grid line in the x-diroction.
m-I • 128, n-I - 16. Thus the standard grid

represents a channel 6,4 ship lengths long, The complete numerical scheme for each
one ship length deep and 1.6 ship lengths wide. time step is described as frllows. Second-
When different grid parameters are used, they order extrapolation for (y) l is followed by
will be specified. Y~infr(y-0oIsflowdb

line inversions of Equation (20) (for all lines
The numerical method consists basically of k., .. ,n-l) to obtain nm+

1 
which Is tnen used

coupling at each time step the solution of 'e '

free surface equations to the solution of in the line inversions of Equation (21) to
Laplace's equation through convergence on the obtain # Subject to this irichlat
vertical velocity at the free surface with a S

few iterations. T;e numerical metiod, when conOition for * at y-0, Laplace's equation is
using the exact body condition (Eluation (8)) solved to give y+l at y-0. This constitutes
is a substantial alteration of the numerical y
method for the "thin vhlp" condition. Tnert- one iteration and the cycles through Equaticns
fore the two body conditions are discussd (20). (21) and Laplace's equitlon are repeated,
separately in more detail, using the latest vilues for # 0+1 nmMl, and

m~l y
"Thin Ship' Condition *mI as soon as they are avallable. Thq

iteration process Is halted after the jth

loplcce's equation, subject to the Iteration when
boundary conditions of Equations (4) through
(7) and (11), was solved on the box region of mlJ+l .4. 1 41 .J+(
Figure I by the diagonal decomposition tech- y ' y at y-0 (22)

nique described in [4] bt applied to second-
order finite differencing. For most caset the
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where ,rl.J~l~ - c2. For all cases, c1 and two fast direct partial solutions of thewere .0# and .1 Fo r ely. T c oase ulet anunperturbed matrix system and the solution of a
were .05 and .001. respectively. The complete small full "capacitance" matrix system whose
numerical scheme is second-oruer accurate in order is equal to the number of irregular
time and space. stars. The direct solver for the two solutions

of the unperturbed matrix system was chosen to
Exact Body Condition be that of [4] but applied to second-order

differencing. In addition to the 160
irregular stars just discussed there were an

Laplace's equation, subject to the boundary additional 36 perturbed Laplacians centered on
conditions of Equations (4) through (8) was the plane z-0 surrounding the hull's inter-
solved in the region D by an imbedding technique section with z-0, Thus the order of the
known as the "capacitance matrix" technique .capacitance" matrix was 196. Since the ship
[5],[6] in which the ship was imbedded in the problem we are considering is time dependent.
box of Figure i. Finite Cifference approxima- it was necessary only to compute rod store the
tions to this boundary value problem for inverse of the "capacitance" matrix initially
Laplace's equation result in a matrix system for and then replace the solution of the
# which is perturbed by perturbed finite "capacitance" matrix each time it was required
difference operators or "irregular stars" in the by multiplication of a vector ,ith th s inverse.
neighborhood of the ship hill. The formulation
of these irregular stars is quite arbitrary but The free surface equations were solved by
must include the body condition of Equation (8). line inversions as described for the "thin
The curvature of the ship hull as well as the ship" condition. However, the grid line along
body condition (Eq. (8)) is represented in our z-O was interrupted by the ship and required
formulation of the Irregular stars which are special treatment. Figure 3 shows this
second-order accurate and given in [6]. In all interruption behind the stern of the ship. For
cases having the exact body condition the the derivatives nx, #x at the point 0 in
irregular stars were centered at grid points
(xYizk) with j-31,...,50; i-,...8; k-l. Figure 3, upstream differencing given by
(;4; ship had standard placement.) Briefly our + n +

formulation of the irregular stars (see Fig. 2) + 0(h2)
+

(23)
consists of (i' Selecting two out of three arc- nx2h + (h

2
) (23)

length directions on the hull surface passing
through the hull contact point a (which is not was used; the surscripts refer to evaluation at
a grid point) of the irregular star centered the numbered grid points, and h-ax-ez. The
at the grid point 0. (Our selection was sj and line inversion of the shortened line behind the
s2 which lie in )lanes parallel to the y-O and stern could then proceed without being a closed
x-O planes, resptictively.) (ii) Taking a linear system. Similar considerations would apply to
combination cf ti e expressions for #, #nsi' other grid line ti't might be interrupted by

ns2' nx evaluated at the point a to eliminate the ship.

the cross derivatives (the choice of *nx from

among # nxt ny. nz Is arbitrary).

(III) Replacing the derivatives In the resultant
linear combination by finite differences centered h l-Oi

at the grid point 0 to certain orders of
accuracy and also incorporating Laplace's
equation. This formulation cannot be used if at
least one fra among €n ansi ns2  nx at the Figure 3. Grid Neighborhood of Stern

point a Is zero. (Aerial View)

The comlete numerical scheme for each time
step proceeds iteratively as for the "thin ship"

ycondition and is second-order accurate in time
and space.

I IV. Results

The results discussed in this section ware
obtained for the Wigley 1805A hull [Z) giwvn by

z - h(xy) - 3 (-256y2-6.4(x-xc)2
h (24)

+ 9.6(x-x ) )

Figure 2. An Irregular Star
where I is the x-coordinate of the center of

The perturbed matrix system for # was the shi4. For all Froude number cases using
solved efficiently using en algorithm [5].[6J the standard grid, ship placement was also
based on the Woodbury forma for a perturbed standard with sc - 2.025. When other grids are
matrix. Tht alcuritlm consists essentially of used, xc is specified. The Wigley 1BOSA hull
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is characterized by a half-beam-to-length ratio This asymptotic expanson up to terms of 0(1/t
2
)

of 3/64 and draft-to-length ratio of 1/16 so gives the following dimensional wave length in
that, on the standard grid representating the dimensional time of the oscillations.
half channel In which the computation takes
place (because of symmetry) this hull is not U (26)
as wide as the mesh space, i.e., 3/64 <Az- .05. g

It was found that advancing solutions in Nondimensionally the wave length is
time caused numerical "noise" to emanate from
the leading edge of the bow which is singular. = Fr

2
W (27)

This "noise" caused low-level upstream waves.
To prevent this emanation, a filtering scheme The wave lengths of the resistance curves in
based on [7] was applied at the free surface Figure 4 satisfy Equation (27) fairly closely.
from the bow to the upstream boundary at each The behavior of Fr - .385 is a little surprising
time step within the Iterative process. A since it was not an abrupt start from rest.
second-order filtering function [7], which
removes the shortest wave component but The analytic values of resistance in
preserves the longer wave components, was used Figure 4 are from [8],(9] and are for infinite
for q = n and averaged with the calculated fluid. However in all cases the channel is
n = nc within the Iterative process for each so wide and deep that these analytic values are
time step. This weighted averaging at grid valid for comparison. Wave resistance Ce In
points (xj,O,zk) upstream of the bow's leading Figure 4 was calculated from Equation (1) with
edge was ror k=O,...,n-l. nondimensional time representing ship lengths

traveled. All cases were calculated on the
n 

= 
.
9
nc + . f for j=28,29,30 standard grid with standard ship placement

except Froude numbers .32 and .385. For .32,
n 

= 
.Bnc + .

2
nf for j=25,26,27 Ay - 1/72, m-I = 64 with the other grid para-

meters those of the standard grid while the
n =.7nc + .3nf for j=22,23,24 "thin ship" condition was applied at grid points

(x8,Yi,Zk) with j=31. 50; i=l...4; and
n .6rc + .4nf for j'l9,20,21 kC with x = 2 025 For .385, the parameter

t-I.2i6; te others were standard with the "thin
," .5n, + .Snf for j=O,....18 shin" condition applied at (xj,yl,'k) with

j=101..10.; -1. .; and k=0 with xc=
5
.
525

.

The same weighted averaging was applied to o at All cases were run on the IBM 360-91 in
y=0. This filtering scheme worked very nicely. double precision with time step At - .03

The solution could be odvanced several (except for Fr - .32 run on the CGC 6600). A
units in time, i.e., the ship could be advanced time step with two iterations on the standard

several of its lengths, before waves reached grid took 1.21 secords on the IBM 360-91 so

the downstream boundary. In some cases, when that the case Fr - .503, for example, used

necessary, the numerical solution was advanced 145 seconds to compute 120 time steps in attain-

somewhat beyond this point in time without log locally steady state. Increasingly less

affecting the local solution about the ship. computer time is required to attain steady

Results for the "thin ship" Londition are state for the higher Froude number cases.

pi'esented first; for the exact body condition, Finally, we mention that for Fr - .32
second. only the upstream filtering scheme already

discussed was applied to the entire free surface
"Thin Shi ' Condition with the weighted average n - .5 n + .

5
nf. It

was felt that such filtering for Fr - .32 only
Figures 4 through 16 represent "thin ship" was necessary since the standard grid might not
Fonditou resulthu resolve the shorter waves resulting in numerical

noise. The calculation of resistance and wave

Figure 4 shows wave resistance versus time profiles for this case is not believed to be

curves tor five different Froude numbers, significantly affected by the filtering.
Analytic, steady state values are taken from Numerical evidence supporting this statement Is

[8],[g]. All Froude number cases inv.lved presented later in this section.

abruot starts from rest except for Fr • .385
which involved an abrupt start from a locally Approximately steady state wave resistance
%teady state solution for Fr - .503. After the was also compouted for Fr - .503 and Fr - .557
initial transient effects, the oscillations in using Equation (15) at three consecu*ive trans-

verse planes -Ivan b j • JAx(Ax - .05) withthe wave resistance curves about the steady J,12S, 126, and 127. (These two Froude number

state values are of constant wave length tor cases were a n on a grid t ndrd nucbet
each F ,ude number, the wave length increasing cases were also run on a grid, standard except

with increasing Froude number. In addition the for -I - 56 with the "thin ship" condition
amplitude of the oscillations decreases with api .....
increasing Froude number and with increasing i-.._ 8; k-0 with xc ' 5,525.) for Fr- .503,
time. All of these results are in ayeement the calculated re-istance values at planes
with an asymptotic expansion for large time J-125, 126. and 127 were CR - .005102, .005108.
obtained by Wehausen [3] for the wave resis- and .005006, respectively. This coew" res with
tance of a thui ship started abruptly from rest, the computed value from Equation (12) at t- 3.6
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Fr .45, energy is not conserved as well afterSPRESENT
NUMERICAL E E t 4.2 as it was earlier because waves have
SMETHOD reached the downstream boundary. However, this

2 boundary is so far away as r. to affect the
-- ANALYTIC, local solution about the ship. The quantities

STE.\DY STATE ,IE , and P'E in Equations (16), (17), and (18),

*°  respectively, were computed numerically with
second-order finite differences replacing

F,-C.557 derivatives and the rectangular and Simpson's
-t2.7 rule used tu compute the integrals at the body

-2 * and free surface, respectively.

- Free surface elevation contour values

* •obtained numerically have been plotted by

-4 - compu,2r on the Stromberg Larlson 4060 as shown
in Figures 7, 8, 9, and 10 for Froude numbers

.32, .385, .503, and .557, respectively. The
free surface of the channel is plotted in all

2 -1 pictures 'or a region extending from one-half
/ a ship length upstream of the ship to two and

Fr-nO 03 one-half ship lengths downstream of the ship and
*t3.6 / from sidewall to sidewall of the channel

0- (channel walls are not drawn). The ship is

traveling to the left. The ranges of the free

\/ surface elevation contour values plotted are
\/ "tabulated:

-i/ Froude No. Range

S.52 -. OOF to .007

U4 .385 -.017 to .016z
.503 -.020 to .017

S g .557 -.021 to .018

Fr-0.46 e Contour values were incremented by .001. Solid

01-2,7 and dotted .ontour lines correspond to positive

- tS 0 -~ and negative contour values, respectively, i.e.,
o 0 they indicate wave crests and troughs,

-respectively. Divergent and transverse waves
are present in all pictures. Any waves tip-

.2 stream of the bow in any of the pictures are of
8 very low value and insignificant.

In addition to the abrupt start from rest

-4 .4 for Fr . .557, Fr - .557 (in the same manner

as the Fr .385 case) was also abruptly
started from . locally steady state solution
obtained numerically for Fr - .503. The two

2 ,8. solutions are compared in Figures 11 and 12.
0 F.-n15o s The steady state solutions are virtually

0 t- 21 identical.

-- Because the filtering scheme used for
Fr - .32 resulted In a loss of energy, It was
decided to determine its effect on a higher

'4 eFroude number such as Fr • .503. The result
was a significant loss of energy with some wave

I--- distortion. However, the wave resistance is

affected to only a small degree as shown in
Figure 13. the conclusion Is that filtering
over the entire free surface for the hlgh.r
Froude numbers is not necessary and should not

-1-5O 0 / be isd because it dampens the larger

S . ,..- ---- - ........ tude waves. At the lover Froude numbers.
. r • .32. this effect Is diminished

Q/ . altnough less filtering could be used.

ia I •One solution for an abrupt start from rest
6 4 2 0 of another Wigley hull [10] given by

ITERN STATIONS I F APART am

Figure 5. Ccanarlson of Numerical and Analytic z h(x,y) " O- (I-256ya)(!'
4
(x-xc

)
2) (PS)

Wave Profiles for Selected Froude Numbers
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Figure 6. Conservation of Energy Versus Time for Selected Froude Numbers

for Fr * .3162 was obtained on the same grid to obtain the velocity potential at the hull
used for Fr - .385. This hull has a block by applying the exact body condition (Equation
coefficient equal to .44 compared to .39 for (8)) at grid point 0 (Figure 2) using finite
the hull given by Equation (24). The filtering differencing. This method is easy to imple-
scheme for Fr - .32 was used here also. Results ment but only first-order accurate. In
are presented in Figures 14, 15, and 16. Note Equations (12), (16), (17). and (18) the
that wave profiles in Figure 15 are compared rectangular rule was used to compute hull
with the measured (not the analytic) wave pro- Integrals; a double application of the trape-
file. Contour values in Figure 16 ranged from zoidal rule was used to compute the remaining
-.010 to .011 with values incremented by .001. integrals. Results wee obtained for Froude

number .32 (without filtering) and for Froude
Exact Body Condition number .503 on the standard grid with standard

...... -- ship placement.

The major difficulty in editing accurate Figure 17 shows numerically computed wave
flow results at the hull surface from the field resistance CR (Equation (12)) plotted against
solution when the hull is imbedded in a time and compared with steady state, observed
Cartesian grid is that hull surface points are (free to trim) results L8]. The time behavior
generally not grid points. Thus although the ot (:R, as expected, is quite similar to results
numerical scheme (which is subject to a Neumann already discussed for the "thin ship" condition,
conditiun for # at the hull surface) Is second- However. for both Froude numbers Fr - .32 and
order accuratp at field grid points and is .503 the numerical editing predicts a smaller
efficient, the velocity potential # and surface wave resistance than expected. This situation
elevation n at the hull must still be most likely would be improved by finer
accurately determined.. These quantities are Cartesian grid resolution about the body.
used in computing Co, W, KE, and PE of
Equations (12), (16), (17), and (18). On the IBM 360-91. using double precision
respectively. They therefore can significantly arithmetic, It took 295.81 seconds to compute
affect the computation of wave resistance and 90 time steps (with At -.03) in obtaining
energy conservation. Determining # and n at steady state for Fr - .503. Almost all tim
the hull can be accomplished through finite steps for this case used two iterations. Thus
differencing of Equations (2), (3), and (8) each such time step on the standard qrid
and/or through interpolation to desired orders required 3.18 second% of computer time. Figher
of accuracy depending on how many field grid Froude numbers would require less total computer
noints one is willing to uso. We have chosen time in achieving steady state. lor Fr • ,3?,

. w • q w i um w w .• .



819.06 seconds were used to compute 170 time
steps (most requiring three iterations) with
6t - .03. Preprocessing the capacitance matr<

t:0.16 (of order 196) and its inverse took 90.11
seconds. This preprocessing was done only once
since it is independent of the Froude number.

Approximately steady state wave resistance
for Fr = .503 at t = 2.7 was also computed using
Equation (15) at three consecutive transverse
planes given by Y = jax (Ax = .05) with j = 55,
56, and 57 (ship lacement was standard). Since
wave resistance CR (using Equation (15)), ;s
computed to second-order accuracy from a sezond-

t=0.52 order accurate field solution, this calculation

is more accurate and reliable than that for
obtaining C9 using Equation (12). The calcu-
lated resistance values at planes j = 55, 56,
and 57 were CR - .004265, .004441, and .004811,
respectively, with a mean value of .004506.
This value compares favorably with the observed
(fixed to trim) value of CR .00444 and with
the computed value from Equation (12) at t =2.7
of CR = .003756.

t 2.30
Wave profiles along the ship hull are c)m-

,/ pared in Figure 18. The numerical wave
profiles were computed from the following
expression obtained by taking the outward
normal derivative of Equation (2) at the body.

Inn  -(Fr)
2
'nxlbody (29)

Second-order differencing for nn using second-
1/) 3.6 order Lagrange interpolated free surface values

=' /Il j , '' of q (with *nx)body known analytically) was

, / ,/ ,' // ~introduced into Equation (29) so that the
S' " '' ! 

A , .. unknown Wn body could be solved for in terms
tJ) ,,, of known quantities. It is seen in Figure 18

that most numerical errors occur in the stern
'-- ,- area of the ship. Also most of the change

with time for Fr- .32 is in this area as it
was for the "thin ship" condition

t5.00 I' Figure 19 shows the attempt to prove energy
1.. a Lconservation in the channel. It is evident
' : ttnat the numerical editing has failed to

resolv-, for the initial transient effects, the
rate of work and energy growth. It is likely
that the discretization, lncludinq the time
step (,t - .03) ano mesh spacing, was too
coarse to make this resolution possible.

Free surface elevation contours have been
Ulotted by coi~puter on the Calcomp 936 PlotterI 4l.11, " / : , ' (Fgu re , 20 and 21). With contour values

(ncremented by .001 and solid and dotted ines
indicating positive and negative rontour values,

respectively, the ranges of contour values forI ,<< 0<; ,Il Fr..',32 and .503 were -.007 to .010 and -.017
to .022, respectively, As expected, the wave'""".'-''; ',!:,,. , .. :.,patterns produced by the exact body co,,dition
are similar to Patterns shown earlier in this
aper for the "thin ship" condition.

Figure 7. Time Sequence of Free Surface
Contours for Fr - .32



2.70



0=.60

t 1.20

Fig~ure 9. lm Sequence of F. ye Sur-face Contours for rr 503
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Figure 10. Free Surface Contours for Fr .557 at t 2.7
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DISCUSSIONS
of three papers

EXISTENCE, UNIQUENESS AND REGULARITY OF THE SOLUTION OF NEUMANN- KELVIN
PROBLEM FOR TWO OR THREE DIMENSIONAL SUBMERGED BODIES

J.C. Darn

A LOCALIZED FINITE-ELEMENT METHOD FOR STEADY, THREE-DIMENSIONAL
FREE-SURFACE FLOW PROBLEMS

Kweng June Bal

NUMERICAL SOLUTIONS OF TRANSIENT THREE-DIMENSIONAL SHIP WAVE PROBLEMS
Samuel Ohring and John Talste

Invited Discussion is no reason why it should not be tried, just in
case this happens. As a mathematician, I can

E.O. Tuck only applaud such efforts. However, it is an
University of Adelaide expensive undertaking, both in professional time

and computer t'me, so that one would exoect any
proposals for research on such an irrational but

I would like to commence with a few words mathematically interesting approach to be sub-
of general congratulations o the authors pre- ject to a searching evaluation, compared to
senting papers at this conference using direct other perhaps mere rational approacheE.
numerical computations, whether by field
methods (finite element or finite difference) or In additicn, there is serious doubt that a
by boundary-integral-equation methods. I have bounded solution of the Neumann-Kelvin problem
found, on discussing ship hydrodynamic problems even exists for the surface-piercing case. If
with my mathematical colleagues in the area of true, this would be an instance of nature making
numerical analysis, a lack of appreciation of us pay for being irrational. For example, the
the extreme difficulty faced by those attempt- free-surface elevation at a forward stagnation
ing direct numerical solution for free-surface point is necessarily U!/2g, and is not small
problems. Professional numerical analysts tend unless the Froude number is small. Hence
to be rather timid characters, who are ever- lineariza*ion cannot be justified near such a
ready to tell us what we cannot do for fear of point. It seems likely that the price to be
leaving ton large an error term, and who tend paid for such a forbidden action is a singu-
to confine themselves to well-behaved and under- larity in the Neumann-Kelvin problem, at the
stood functions, difference schemes or kernels, very least, or at worst a lack of existence of
Our problems are beset with difficulties in- any solution at all.
volved with the non-linearity and unknown shape
of the free surface, with rapid variobility and Doubts of this sort have been expressed in
singularity of the kernel functions, and with the past by workers such as Brard, and Dr. Oerr,'s
the radiation condition at infinity. Many fine paper here is a continuation of research
herculean successful or almost successful of- along the lines of Brard. However, the present
forts have been made, a number of which are paper confines itself to submerged bodies. In
reported in this meeting, including the papers that case there is no such localized singularity,
by Bai and by Ohring and Telste in this session. and few of us would hav doubted existence of

the solution to the Neumarn-Kelvin problem. I
The organizers have perhaps been a little am sure that Dr. Darn is as keen as I am to see

perverse in asking me. a known enemy of the this issue settled for the uurface-piercing case.
Neumann-Kelvin problem, to be the official dis-
cusser of three papers in which this approxima- I also draw Dr. Dern's attention to an
tion is used, at least in part. Before existence question with the fll non-linear con-
returning to more complimentary discussion, dition. For example, in the paper by Vanden
IEt me state once agsin my extreme view on this Broeck and myself at this conference, we spe-
topic. culate on non-existence for a particular class

of near-bow problems. However, our evidence is
There is no rational justification for purely numerical, and of course one can never

linearizing the free-surface condition for non- prove non-existence numerically; rather one can
thin surface-piercing bodies. If the body is only demonstrate one's failure to find solution,.
hiuff. It makes big waves. If this is not the Careful function-space analysis such as that in
case, then not only the free-surface condition, the present paper by Darn could perhaps settle
but also the body boundary condition, should this issue also.
be linearized for consistency.

The paper by Dr. Bed continues his success-
Now an inconsistent problem Is not neces- ful series of studies of free-surface problems

sarily an incorrect one. The Neumann-Kelvin using the finite-element method. The most
problem must give results at least as good as notable feature of the present paper is a full-
Michell's theory; it Tmt give better results, fledged attack on a three-dimensional problem
In the spirit of pare scientific research there for a translating ship, a heroic achievement.



The "localized" sense of the title refers to the knowledge in this area. I have the greatest re-
fact that the finite elements can be terminated spect for authors such as Dei who are able to
on control surfaces quite close to the ship, pursue deep mathematical analysis to a rigorous
the region exterior to these surfaces being re- existence conclusion, and for the other authors
presented by series of elgenfunctions whose in this session, whose tenacity in the numeri-
coefficients are appended to the list of nodal cal area is no less remarkable.
unknowns. This approach seems to me clearly
superior to one where mesh elements must in prin-
ciple continue to infinity. Discussion

by T. Francis Ogilvie
No details are given of the "matrix inver-

sion" or linear-equation-solution procedure used. I agree with Tuck that the authors at this
As mentioned in my discussion of the 1974 paper meeting have not presented good reasons for
of Bal and Yeung at the 10th Symposium on Naval undertaking the monstrous chore of solving the
Hydrodynamics, relative-efficiency comparison Kelvin-Neumann problem numerically. But I feel
between field and boundary discretization methods that Tuck's negative comments are too strong.
depends crucially on the efficiency of iterative There are some good reasons to expect that the
inversion of the large (order of thousands) but solution of the Kelvin-Neumann problem may be
sparse matrices in the former, compared to decidedly more accurate than the solution of any
direct inversion of the much smaller (order of of the usual "consistent" first approximations.
hundreds) dense matrices in the latter method.
This question applies also to the paper by One such reason is that information has
Ohring and Telste who simply describe their in- become available in recent years showing that
version as a "fast" Laplace solver. As a pro- diffraction of the ship-generated waves by the
ponent of boundary-integral-equation methods, I shi; itself has a significant effect on, say,
tend to be skeptical of claims for speed for wave resistance. This effect is close to what
field methods, which necessarily involve an or- is often called "sheltering effect." It should
der of magnitude more unknowns due to the extra be possible to make a fairly good prediction of
dimension. However, I am prepared to be con- such diffraction on the basis of a model in-
vinced, providing the "time to invert" varies volving the linearized free-surface conditions,
as not more than the 3/2 power of the number of and the Kelvin-Neumann model should suffice for
unknowns in two dimensions, or tne second power this purpose. We cannot say that ether higher-
in three dimensions. These estimates assume a order effects in thin-ship theory are not also
conservative n

3 
time to invert a small dense important. But we do know that this one dif-

matrix of order n; any improvement on that time fraction phenomenon is important and should be
would make it even harder for the large-sparse- included in our theories. This is enough
matrix methods to compete, reason by itself to consider the possibility

of solving the Kelvin-Neumann problem.
Both Bal and Ohring and Telste, use the

Neumann-Kelvin approximation implicitly, when !f the advocates of the Kelvin-Neumann pro-
they solve with the exact body condition, but blem are successful and if the results are an
linearized free-surface condition. I am sure improvement over existing procedures, then we
all would accept that they would really pre- might better spend our time in trying to justi-
fer to use the exact free-surface condition, but fy the problem formulation than in trying to
want first to try their method on a simpler dispute its validitv.
problem, and I certainly have no quarrel with
such an approach. In both papers, linearized
body-boundary conditions are also used as test Discussion
cases. Of course there is no need to use direct WjTTi-ilweber
numerical methods for such problems, since
analytic solutions either are already available, According to Dr. Tuck, the Neumain-Kelvin
or are easy to compute by just evaluating inte- problem is only of mathematical interest and of
grals. little value in solving the exact irrotational

gravity-wave problem. in a recent paper by
In contrast to the paper by Bai, In that by Francis Noblesse, It Is shown, however, that the

Ohring and Telste the finite-difference mesh N.-K. problem can serve as a good first approxi-
must be truncated at an effective infinity. I mation In an iteration procedure for solving
am surprised at the accuracy obtained by Ohring the nonlinear free-iurface problem. (This paper
and Telste with truncation points as close to has been submitted to the Journal of Ship Re-
the ship as tiey chose. Further evidence as to search.) He shows this by demonstrating that
the effect of changing the truncation points the nonlinear terms of the free-surface boun-
would be welcome. Of course, the fact that they dary conditions are small relative to the linear
are solving a transient problem helps, the choice termr even for the observed bow wave, at low
of truncation point then mainly affects the Froude numbers.
transition to steady state. In both numerical
papers. I would have liked to have seen also Prof. Ursell has indicated that Frednolm
evidence regarding the effect of reducing the Integral equations of the first kind are of
mesh spacing. I1ttle value because a theory concerning the

existence and nature of their solutictms is lack-
In con lusion. in spite of doubts expressed ing. Actually, there is a theorem due to Piccard

above about the significance of the Neumann- which gives necessary and sufficient conditions
Kelvin problem, I feel that the papers under dis- for the existence of a solution for tredholm
cussion represent a worthwhile advance in our Integral equations of the first kind. When a
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solution exists, this theorem displays the solu- ber of operation steps in the present method is
tion, but this is of little value since it is comparable to or less than N

2
/
3 
in two dimensions

expressible in terms of the elgenfunctions and and N
2 
ia three dimensions. However, one should

elgenvalues of the kernel, as an infinite series, not emphasize too much the time to invert the
It has been shown, however, that numerical solu- matrix by considering only the total number of
tions can be obtained by means of an iteration unknowns. There are more Important factors that
forrmula which can give useful approximations, govern the computation time: they are, for
even when an exact solution does not exist. An example, the size of the central-core memory
example of this is the van Karman method of space, the time in 1/0 operations when an out-
solving the irrotational, axisynanetric flow of-core memory is used, and any capability or
about a body of revolution, which, it is known, features such as the vectorized execution used
gives reasonably good solutions when a moderate in the present computer program written for the
number of intervals is used, but yields poor ASC of Texas Instruments Company.
solutions when too many intervals, say greater
than 20, are employed.

Author's Repjy
by Sameiriing and John G. Telste
to discussion by E.O. Tuck

- -",ld like to mention an imoortant point
that wa: no, emphasized in our papE;u and there-
fore was overlooked in Professor Tuck's dis-
cussion pertaining to the computational time of
field methods. The high speed of computation
of our finite difference technique is due in
large part to the fact that only a very small
portion of the grid, mostly in the neirnborhood
of the ship and free surface, is "inve-ted".
Being direct (noniterative), the fast Laplace
solver used for the field equation permits us to
do this as shown in reference 4.

AuthorsRel
by Kwan JuneyBai
to discussion by E.O. Tuck

I would like to thank Prof. Tuck for his
comments. I would like to reply to his question
about matrix inversinn. In my paper, Gaussian
elimination is used in solving the matrix equa-
tion.

The number of operation-steps required for
solving a banded symmetric matrix is proportion
al to NM

2
, where N is the total number of un-

knowns and M is the half bandwidth. As an
illustration, the fluid domain is subdivided
into 4-point quadrilateral elements. The total
number of nodes are I and J along the x- and
y-axes, respectively, so that the total number
of unknowns is N - IJ. The half brndwidth M is
approximately I (or J if J <I). The time to
invert the matrix is then proportional to
N1

2
! N

2
. In three dimensions, where K is the

number of nodes along the z-axis, the half band-
width becomes M • JK4N2/3, where N - IJK, and
the time to invert is proportional to N(JK)

2
4

NI/. In practical ship problems, JK is consi-
derably less than N

2
/
3
, since a ship is much

longer along the x-axis thin along the y- or
z-axes. Furthermore, all the matrix elements
are zero except the nine non-zero elements in
two dimensions,. In other words, this banded ma-
trix is still vary sparse. This fact can be
taken into consideration in the computer program
by using an 'if test' to reduce the computation
time substantially. Another feature in the
finita-elment method is that the time to com-
put* the matrix elements is much less than the
time to invert the matrix. Therefore, the nup-

i0



NUMERICAL SOLUTION OF THE NEUMANN-KELVIN PROBLEM
BY THE METHOD OF SINGULARITIES

P. Guivel, G. Delhommeau and J. P. Cordonniler
Ecole Nationals Supirleure de Mcanique

44072 Nans Csdsx, Francs

Abstract The equation (1.1) expresses the gliding condi-

tion over the hull (M).
We present the main lines of the method used The equation (1.2) expresses that the free sur-

for setting up the oomputer piograms giving an face is a material surface.
estimate of the wave resistance of a surface The equation (1.3) is the ,ernoulli equation
ship moving at constant speed in calm water. We in which the pressure is a constant over the
use the Neumann-Kelvin model based on the folIo- free surface.
wing hypothesis : the fluid flow derives from an The equation (1.4) is the non-radiation condi-
harmonic otential ; the free surface condition tion which expresses that the fluid stays still
is linearised and written on the horizontal pla- at forward infinity.
ne which is the water level at forward infinity. The cquation (1.5) expresses tha' tt fluid does
The gliding condition on the hull is exactly sa- not move at very large depth.
tisfied. The problem is solved by the method of
Kelvin singularities distributed over the
hull surface. Their density is obtained by
solving a Fredholm integral equation. The sur-
face ship case is treated using the noti,,n of
line integral. The numerical solution of this
equation ir approximately obtained by consider-
ing the hull as a juxtaposition of plane polyg-
onal elements, bearing a constant singularity
distribution. The wave resistance is computed by
the Havelock formula, We perfected three computer
programs using respectively sources, normal di-
poles and mixed distributions. The computing
times being extremely long, we have only made
tests on the easier caseof a completely submer-
ged ellipsoid. The stability of the results is Figure I
obtained if the hull is discretised with a very
large number of elements. The xOy plane is the horizontal plane which is

the water le-,el at forward infinity
I. Introduction The Ox axis, situated in the longitudinal plane

of symmetry, is directed towards the ship's bow.
If the influences of boundary layer and wake The Oz axis is the upward vertical.

are neglected, the problem of evaluating the The free-surface equation is z z - h(x,y) - 0.
wave resistance of a ship moving at constant 4 - *(x,y,z) is the absolute potential expressed
speed C on calm water, is reduced to determining in the (O,xy z) coordinate systerc attached to
an harmonic putential function 0, defined in the the ship.

* whole liquid domain and satisfying the following The iee-surface conditions (1.21 and (1.3) can
boundary conditions be replaced by the following comdition-, in

- which V (a the absolute speed modulus
a C.n on th hull surface (E) (1.1) 1 g

2L-' , L€ -1 .v
2  

V2 3zC3 2

an -C.n on the free surface IS) whose Ix 1x Z-h
equation is s-h(x,y) (1.2) h v2 (

y ax a -h in which k -

0 - ".5 x (1.4)C
2

4t 0 se - - (.5)

syuols are explali- n figure i).
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In spite of the great simplification which 51. Computing method
consists in classing the real flow as a perfect
fluid flow, the free boundary problem, defined The idea on which the method of singularities
by the system of equations (1) is still too is based is suggested by the fact that all the
complex to be numerically solved. It is there- equations, fonulating the Neumann-Kelvin pro-
fore necessary to introduce new approximations ble, are linear ones. The potential function H
aimplifyjng the mathematical model. The one we can be considered as a superposition of elemen-
adopted is the Neumann-felvi model [41 which is tary solutions 'f satisfying the Laplace equa-
nased on the follosisg hypotnesis tion, the free surface condition as well as the

conditions at infinity.
- The fluid, considered as a perfect one, is
the seat of a flow deriving from an harmonic These elementary potentials can be generated
potential ; this flow is steady with respect to by Kelvin singularities such as sources, dipoles
the coordinate system attached to the ship. vortices or multipoles, placed either on the
- The camber of the free surface elevation is ship hull (E) or inside it. The singularity dis-
-mThenoashr tof te fre suwrfae eevatontribution must be determined, in each particular
small enough to be able to write the boundary case, in such a mannur that the gliding condition
condition, not on the real free surface, but on is satisfied in each point of the surface (E)
the plane z - 0 which is the water leel at for- When this is so, the singularity distribution is
ward infinity, said to be "kinematically equivalent to the moving

- The absolute speeds are small enough so that hull". Here, we only considered superficial dis-
squares are negligible over the whole free surface. tributions of sources and normal dipoles.
In fact, we also neglect the derivatives of the
absolute speed squared; this approximation is To sum up, to use the method of singularities
v-y doubtful in re vicinity of the ship bow. we will have first to solve a Kelvin problem
On the other hand, the gliding condition is ocnsisting in building elementary operaLoui 'Ij
exactly satisfied over the hull. nerating harmonic potentials satisfying automa-

tically the linearised free surface condition
The equations of the simplified problem are and the conditions at infinity.

A1 0 (4.1) Then, in n ixing these operators, we will sa-
sfy the gliding condition over the given hull;

C.n (4.2) this last problem is an exterior Neumann pro-
)r blem.

*5 h --- 4)I In the exposition, we use the following symbols+ _ . 0 (4.3) (4)
ax Ie€o [ O(M), the absolute potential in M(x,y,z) ex-

pressed in the coordinate system at-

0 * 0 as x - (4.4) tached to the hull.

f O as Z - (4.5) C C ix the speed of the ship.

L , an arbitrary reference length
The non-radiation condition at forward isfi- A , the outward normal to the hull surface

nity Is implicitly expressed by allowin the (Q)
fluid to be slightly snerg-dissipat ve]. X - , the wave number associated with the

The equation (4.4) can be suppressed and the speed C

equa ion (4.3) is then replaced by the free sur- K - L nondimensionl wave number

face condition corresponding to nearly perfect C

fluida - _ - o , the Froude number

a2 2C JO + at - 3' - a(M'), the superficial density of sources at
x2 F T a oi T. ''. 0 M' (x, y' , z1) on the hull surface.

P vsM')o the superficial density of normal
where Is a fictitious viscous coefficient, dipoles in M'.
vwry small and essentially greater than zero. 11(0,k) the Kochin function.

The second true surface condition , X (O,k) , the modified Kochin function.

ce f(O,k) , the direct Fourier transform ot a
h " (5) f'inction f(x,y)

p , the mass density of the fluid.

is no longer expressed in the boundary problem III. Kelvin operators
this will be used at the end of the computations
when the potential is already determined, in Kelvin source
order to evaluate the tree eurface elevation.

80 is called a point singularity, placed
To solve the Neumann-Kelvin problem, we used at ' (x' , y' , s' s 0), generating in each point

the methoI of singularitie. M of the apace a < 0 an harmonic potential whose
particularities ,re

It automatically satisfies the linearleed
free surface condition

It goes to rre as x -and xe

108



Its principal value as M - M' is such that

%(M) =- M' I - -. secM 3- A e dO if y-y' 0

which is the potential generated by a source of J
intensity Q in an unbounded liquid. 2

h f (16)

The potential I having these properties can

be epressed by.d if Y-y' 0

4 (M) = I,(M) + '(M) (6) o e eif '

with and

$ (M) - + ---M-1 (7) t n-i 11'
1 4v IMM-I jMMjj F t -f

M' is the point synetric to M with respect to We show, after some elementary caleslations,

t plein z 0. that h
P 

goes rapidly to -ro wher we go fa- fron

S2(d0) k(z+z + iz- the source in any direction its asymptotic va-

2,, 2 Re 3 do 2 idk (8) lue is equal to
n k-k O  2 + i (0)

x- I,.)2, q 3 r n ) + (y._)2

asumi ngr
assum)ngh

P  
dcreasing at least as I when r in the

= (X-x')Cs 0 + (y-y')sin 0. (9) clevatio,, of the nearfield waves.

Calculating the integral corresponding to the
variable k, we finally obtain The asymptotic expression of h is obtained

by using the stationary phase method; ht goes
M h to zcro as l /r outside the Kelvin dihedral, asIe  1 ' j€jT tada ol M te)ona

a ry of this dihedral. h ,which goes to zero
2-Qk R e  [ec t ~ , ) d 0 0(I) mu h s lowe r than hP ,is the e lev tion o f the fa r-

27, 3 field waves.

The figure (Ha) shows the free surface eleva-

with tion corresponding to a point source, immer-
ned at a depth 5l, oving -+ constuilt speed such

4 r In (li) as koH I .and having a - Itant intensity

khsec2h{z+z' + I (X-x')cos 04 (y-y')sin Q - C 112 On the figure (2h), we have drawn

(r, ) b g uthe contribution of the nearfielci waves ; we can
being a function we call "modified en see that the corresponding elevation is locali-

ponential integral" which is related to the sod In the vicinity of the soue proection onto
classical exponential integral ly the plane z 0 0. This remark will be used later

1 (0t.i = EI(FI) , if In(t) 0 on,
Jr (12)

(Ci - E 1 (0 - 21r ,if 11)ti '0

where

t
T) . d - A

Th -jot advantage nr introducing this modified k
exponential Integral '6l(C) is that the poten-
tial 0 can be expressed by an integral defined
inside an interval independent of the relative
position of M and M' ; moreover, the integral

kernel is continued inside this interval. There
is no particular care to be taken in differen-
tiating or integrating under the integral sign,

From (5) and (10), the wave elevation is

h hp 
+ h (14) 1r

2 a

9k 2
h& t I 2 .i l re30 •t i(t)l (IS) Figure a
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Fol a soure distribution of intensity O(W),
localised in a domain (~), completely suisnerqed,

he(ave:

arid

- r -- l d6O {) k (20)

22d

kh-k sec On i(0)

where 11(0,) is the Kochin function:

4, (21)

(evi dipolelx Co 'sn" M

Let mx rr, li hnp-tffadpl In the cane of a diponle disitribution, of density
ihaigaconrstant. intensity and a fixed direc- M

tion in vin wih anborzonal cnstnt seed 10'). the potential 'fin still given by the
tion rn clg wth s lErienta costat seed forula (20) if 11(0,k) is cplacpd by

Wo an inonediatell enxprens every quantity f0  10) -h( -d i )
dependlng linearly on n knowing the enpression 4,
of the name ruantlry due to a source of intensi- (22)
ty Q we only hare to use the relationr

-, f k ez'-i (x cos On+ y' sin )
qeai .g'd" ( -). PtB)

Iparticular, the potential, obtained f rom the Particularly, if we consider, orn a surface ()
formula (1c), is with a normal vector A , a sltrerficiat distribu-

tin of aources nd normal d, roleo of inteni-
- -M r~dM fles o( M ) and op(M-) - 0 M').in(M' ) respectively

1(M) n M T~iT ~iT ~we (rave

2H)O,r) - Ml0'

n--I see 2 Ic4 -i(m CoSJ+m Sin n)l 41r

2. z iv co nt

x 2 d (23)

Wave field qpnerated by a singularity dltrtru-
lion X D (. -1i(a Moee +yl mineI))d('

1. (ochin: function. or an , I)r '

ILei ul; repall tee following formulas corram- HOM 4 W
pondlnq to tire potential due to a KelvinsBourte: J

NP 1 + f a *k~'-lls' crme *y' sin ')] dr (MI )(2

4, W- I10)

X'+ (I (x * Z -' mos 0 +y' a In 0)) dE(M,

s ' 2
2lr k i atn a + 1 (0) p' q' ,r' being tho components of the normal

2 ovector t-)
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This superficial distribution of sources ano We can still simplify thoexpression (25) of

normal dipoles, considered as an ordinary sinou- H(,k) ncticing that 1,, a regular functior in

larity distribution, generates in the wcle spa- tie wtole domain z n 0, can be written as
Ce a PotentialI;

If ihese singularities are distributed over de 4-.-,kd

a closed surface () entirely situated in the

domain z < C, this potential has two determina-

tions, ;e and pi corresponding to the exterior r

and the interior of (E) (Fig. 3). X -,e
-
.i (x cos q + y sin 9 k A z 0

Z from which we deduce

( k F' k
2s -I -,

X e i
k ( x c

o
s o
m

y
sin

) 
tdk

and there.for

AA

0 l,k) = - h (),l26)

Figure I substtituigq in 2 )

The discontinuities of and are related to 1(0,k) k , (Ik) (27)

the densities o and p by or A

C i% 11(0,k) 01 - " ,k) . (28)I, _ St o+ i, 1 12)1z
nI n ' = - -24)

Substituting in (23) one finds Let assnt' thnt if 1 in the potential due

t a li-n ditrib.lon 1 - , associated with

I k e h x 'i s k y sI a nv-c e i-tr-hati's I ) placed on a sue-
H(0,k)~~ym, r' i , ta: 0") iy'ti Io ( )i r, sj-,t to t he

1llO~h) - plan' : O, w hvse - 2q, for = O; froth

_ e e,+ _i ... O~y l ,I]},, 127) we , tensae

- kt [z-i le, con Ii + y sin 0)] 11
In k A3n +l{((,k) : l(O~ ). 291

- if r h [z-lisxen y,,,inslij
1 n The wave resistano, pferated by a sinilari-

il ty Ilintri blUt io is livn, by Hahvelock's formula:

k (,[ - ilx -o 0 4 y in,h io - ts n k2 Se i
2

- , R, in, vi'- l|(mkb - ccl)) dv (I0)

These intearals cali atill be modified anlnq
Green's second equation. For the first one, we 2

choose the domain (Dr) exterior to (Y) situated

beneath the plane z - 0 1 for the second one, in whc 11(0,ko Src-'1) - 1](0) i, the sal,,u of

we choose the interior domain (Di). the Kochin function for k - k s0.

Noticin th.- n 
k z i 

(x cos 0 + y 8 in o

Noticing tat and P (The compultation if the function 11(0) call be
are harmonic functions, we have maie usflh the defining formula 123 or one of

til formulas; (17), (1) or (29 )o.

H(O,k) - 3 (k -L - 2. Moditfied Kohinoul. i

The prrcding results cannot b gentral i-ed

X .
- i k (x 

com 0 + y in0) dx dy without care if the singularities are distrib-
ted over as open sirface (I cutting t hr plane

i ~ ~~~~ th. on:; ope s O~Ot()I i
that i i 0 alo a contour c. in fact, the theo-y

used to obtain tIle previous resuls Is i.eSen-

H(6,k! - 0",k) - ~ k) (25) tiatly based On the Identity

00,k) and tO,k) denoting respectively the itd le t

direct Fourier tran.sfors of 
e 
and--- for I 24/I

z 0 . "0 - t
202

iill

I i



which is no longer useful, if z' = 0. Comparing formulas (20) and (34), we can see
that

A particular study is therefore necessary 2
for evlluating the contributic.n of the singula- !LL) - - Ol ik) 5)rities placed close to the plane z - 0. 2k I

Let t (M) be the potential generated by the plays, for a singularity distributio, ending at
double model made of the surface (!) and its the free surface, the same role as the Kochin
synmetrical (EI) with respect to the plane z- 0 tunction H(O,k) associated to a completely im-
(Fig. 4). mersed singularity distribution ; we call it, a

"modified Kochin function".

We can now show that the difference
X(O.k) - HOk),can be expressed in term of a
line integral in which we find the values taken
by the superficial densities o and p along the

(X) waterline (c).

Figure 4 3. Line ntegral [1], [4], [7]
The solution of the problem is sought in .

the form; The Fourier transform I(,k) of the function

O(M) 0 1i(M) + (M) (32) lx2 1 is defined by

with 0=0

2f 2(M Re do €oI) O -iklx cos 0 + y sin 0) dS
(Mi I SL Rea

S e

I iei -ik (. con +y ) Y dSX e 
k  z +i (

.
c o

0
+ y s i n 

0
)]  

k dk d s x

2, SF I

T9(M) being a regular potential in the whole e
space z 0 0 which has to be determined so thit ¢t is the value of €I on th, free urface (SL)

1(M) satisfies the linearised free surface con- outside the hull

dition 4.3'). 31 is the value of 1 on the free surface (SF)
inside the hull. (Fig.5)

The harmonic function Tsatisfies the folo- Y
wing condition ; (5L)

!- 21t k2-- 32rax 2 C ax z zO 2 
1

for every x ind y.

It follows immdiattly that 2, ~Figure
kfk-k0 See20 + 1(O) We can modify this expression of 410O,k):

k 

2

iy e- ik(x con 6 + y sin 9) dS

W h e -c t'h e s o l u t on w e a r e l o o k i n g f o r i n + 2 a x a x --

tf(01 $ (h

hrk) 
+ Wr -this a o

~2 2 SL

e + ( O (6,k) -o kN Cos + Y sinnB)S o
i n 

34I d2 oc ysn( 34l + 1 (( -{ik ct.a 0 e',

X k(z+ll s 8 i 1lrT 
[a

k-k see0 . 1(0) X o
lk x 

om 0 + y sin 0)
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The two last integrals can be modified using For a superficial normal dipole distribution
the Green-Riemann equation in the domains (SL) of intensity u, we hne
and (SF) where they are respecti vely defined.

Thus, we have: " n (4-)..1 (41)

0. I OkI l [212 2r " 2 0  M -'

6~) .) -cn 60k(6) e 
0
i (36) x '+ x -[t {ti x

- i cs0(e - 0 ) -_ I -) jfis the unit mentor tangent to the contour (c)

2 1 1 oriented in the positive direction.

.. (xcosO+y sin B) s = n ' f' is the unit vect.noemal to n and to
X e dy ? such that the trihedral ( s, , ) is right-

the contour (c) being described in the positive handed (Fig. 6).

direction,

From the defining formula (35), the modified
Kochin function is then expressed by

, (k) = k 0 (0,hi + sec

X ~7 A3 co 7 i
I I C

X 04 in ) dy (37) Fijur, 6
The pntent-n( Of associated with the line

integral, ie xpressed from (20) and (A9)
The equation (29) can he general,. ... .. the
sane proof cnn, always bar:

)IM. ) Rdy :a'< 0 dO
1(0 ,k) = l(6 ,k) (29) 2 j, 

~ 
) dy

2' Ml

even if the singularity distribution ends
on the plane z 0. k(z + in)

XI -i- ... --- k dk

Suhstituting in (37), we obtain : h-h c e i2 1

t (6,+) 6)6,k) n 0H(0,k) (f01

with ( g

OtiO,k) = ik .oso -6 ) I ( - Kw 
3
n y

X catXon -- y ino ) 1)k( + k i)

The lile integral 611(0,k) appears to te a k-ko -v 20 t 1(0)

correction which !as to be made to the clat;i-
cal Kochin function to train the ".?di fled hoth integrals correspondinq to the vailabl, k
Koehin function'. can be (ntifornrd using the -dified *s(,s.n tl3 36'| inte~jrl : iii factr, we bane

The terms ('t - . and(- - -- ) in 6H01,k)

aire directiy related to the nature nf saperri- ,k~zc iw)2

cial singulsrity chonen fo generating the. -- k -- k 2,--- -. ... - 6 se'i) 1 :1

potential I 
iF k-k 

PIc 
ii i () o -U

For a iuperficial enurce distribhutiov of In-
teruity e, we simply have :- k, * in)

I- ... ... . ... . .. . . d , ,k-ks~'O+ i0 * e 1 '
1 l o

e '10 .(40)

n is the outward normal to the uorface (1) in a
point bhlonging to the contour (c),

i 1:1



F-ail ly, oe deduce tie exrss ori of the po- (M) 1(W) A(MMi dEW14)
litta -ssuiiitvd with th' lint :ntirl1a rM)i 1,' eMi (4

2 r k

W do

-_ 2

IIm

if tile 'n-reflc,l ' In-,i I,, fjli-n dins ,ItnIru

over the hullI surfae t I' tI ,nnr otrr rit

n t l l r l ' . o i M h ,n - i i i r t ori n i l f-,ii s r ( ) i , ( 4 1)I -

In III th- ornu)a (M', Knni (M, M'. Wuf ii is I o
lout KIlvi ~ to hal,

I1, h.n llILIIy t ii-i.t IT ,nIIy I,

- 11 ni 1 (mtsf liii I nce).oers,'i 1MM 0

W Idi Ia1 " ,M nn14.-tr' Ii~ I4 I,,I t )-.-n -
a K lis m iii ,,ia i y (1 t i~ i t i- i i I y tlt - ~ l - I h 1 1 LIo t'~ - O

- tinipI-1 intotity ii-11 hnitti liti -1i ,i inil u hii MM , i-Ii1 iiiIMf i, ' i--t * y , h

Wi'tin a iv . , lint). I .i ...in it Ilni I- I"',i s i &. ,irib iy -- -n~ liitt,ibuinriI

otIn i i iji -at isf i i on j l i'( -u iti ir 1n 1 (, M, I .n' tc r m i f t' , liiiri

of~ i(( nli'l IMM'idl-M'

nrcI,, I, iy thp ints- ii.. .?fI ihi'nnlI i

(nwn 110- ,~ uttnt i Inn .iil (4nin () mlpr -I

irit n-al (m,'I) lipt r iIn - t - rr,

HI.) with A msitna- t) tIn ith plai.' - nt t,-tt
tl I"nnu h.. ,1 O. 'Sn 'e'av I n j'ttiitl
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trihutilon -( I EiA')hMM'C.dC tM)

fron (18) 1), (43),,a ssperf,.ial noenwi

pol (4'riux of . .''C')nd isprfca ittutoso or

rae a cepaotential.is:hsedestis r

im'CM. (50)C

N'o (MCM'h M (.

where ACMM' (Ms the- alrad oefise fthtto GrCM) =iie - 1(M

The .sorc i s osensi s swn sie, from

threor (75

whr ( ,m' th alrad w'fno i- o to stil usnwom eurs ha h

Gree inre insit y is qnowe cul ' t!,C '

to (I fn te, i a l ti whc" to" torte ti and er

X ~ ~ ~ ~ ~ ~ ~ m e=~C (C. W5)o Y .C M

Mere orhe qilin corditit, ine directl ex-tlbl
presse is setn that theown p veia writ qette-ll
rateu ~ ~ ~ ~ r- inside therlW- hulltv iseultoteladn MM C

rcfential ME wCa,1 1s-rt"'l ~r

each Msin I C of, th hull Cf)ai thIs cA r nt(r q

4. EM) uIxa I t searmsM sTxW

Whe th am, )C t . 1 Co wn moagt i- ttn ( m mf

nse by oxl Cx tittt. r (m dettatie

Heto ttuqidn tell. sdircl ex-al tetei rtt
tplsst'lst It, ri tltt inar to''o hatI'sttent', r-

rata isid th hllis qua tothele iin



bearing a uniform singularity distribution ; the But it the particular case of a hull surface
elemnt' i j numbered from I to M, ending a' the ending perpendicularly at the free surface,
free surface, cut out of the waterline M ele- this stratagem doesn't work; in fact, the inte-
ments of ar fj. qral which depends on (.P) , dJsappears due

TheJ, in the case of superficial distribution to the fact that the product (s.i x ) is zero.

of sources, the integral equation (49) is repla- Up to now, we limit ourselves in considering
ced by the folicwing linear system of N equa- U havng thi ch reisi cthsdere
tions with N unknowns, the glidinq condition hulls having this characteristic : thus, we are
being satisfied At the center M, of each le- not able to assert that the proposed stratagemment so e scan be easily used to solve the general case.

0 L)i N5. Epi.cit form of the influence coe ffi-"7 0 Ni + (CJ= Kn X M cients
~ 'l _ I ~1 -H

Before writing a computer program solving the
Ne-mann Kelvin problem, we have to perform ana-1 1,2... N 1)) lytical computations as completely as possible

in order to fonm numerically only the quadra-
tu,es which are absolutely necessary.Ki - (M , M').dZ(l') 160)

The surface and the line integrals occurring
inside the influence co' icients corresponding( to source cr dipole distributions cannot be

X1, = x(M i , M, .de(Ml) (61) xactly campied unless the elements sj are pla-

le polyqona' elements.

The hull surface (F) will thus be discretised
The coefficients Kij are called "influence taking care of thus necessity ; besides, it

coefficient"(f the element s, upoc the point Mi; seems that this ap,roximtion, which is discre-
lihewise, Xj is the Influence c, fficint of tising the hull into plane elements, is cjnsls-
tie arc t1 upon the point Mi. tent with the one which is assuming that the

sincularity density remains constant on each of
In the case of a superficial distribution of these elements.

normal dipoles, an additional di fficulty appears
c ti, te fact thit, in the licie integral, Whatever the type of singlarity adopted,

,h(, ie terms depending not only on the drnst- all influence coefficients are practically

ty, u{M'
)  

but ahqo on the derivaci,,s al, )compt.ted in the same way. Thus, we only explain
'(37 .)M' the method used so express the coefficient Kit

and 'occurring in the 
t
inear system (59), from equa-

Asp tions 0 5), (47) and (60), this is:

Concerrina the term o-M (M.M').,I'lt( K k + 'k (62)
N' 13 ij il(2

which Is II equations (SS) an;) (5f,), th, diff,- with
culty is ilnmmdiatly removed iii intecratin
by parts ; As o is a .n) form funct i)n, at Ve.t... ' ( • +
tot a symmetrical hull n...inq without inrld...c, -, i d jj-. j)
we simply 1cn- jA iI 11

5 8' c(M,M').dtiM') ) dFiM') h)

hk 4'1 2, 2 ,2 H [ r1 i'peoah*q,9in

ti the other hand, unlie cttribution of th trm *1

is h." so easy" to co'mpute. X se,40 1i ;,w di(M' 6 ()

A way which cculd be usee. to solve the diacr-
tised prohtlom is to cone-dor the tensui (J for

In , j. q i are the compoes.it of the norzol vector
I .j " M -, Additional uniknowns t at that ,- i"'t C) i. the funtion ef 't 1 

(
1 and ()4)

sent, tile condition - a or Cm - 0 hould be its second derivative.
satisfied cut only at the cent, of theI element

mi but also at the midd)e of the gi Jme] (,. Thu coefrt tent k Is imply the c)rsiThis ethOuli qtv," a line-r system tnf N+M equa opeed e-erat-d, in ihe p,.Lnt Mi on the olemont
tions with N+M unknoWns. al , by ths element a and its symatrical one a'

with respect to th Diane b. 0, it ttey are baa-
3

ring a roesftant dleLribution of ,rd.naty source
kith a unt. ittensity.

lie



This coefficient, which occurs also in solvingthe problem of a moving solid inside an unboun- cos28 0 _ i Ls8ad ( 0

ded fluid,is easily computed from the Hess uid = 6 2 2 G() dx (70)

g+Smi 2 cosfr 1 C

Then, we only have to put the coefficient lij The comparison of (69) and (70) gives a way to

into a form as sophisticated as possible; as express I in a form vich is always valid:
it cannot be expressed in an anslyticl form.

we compute only thle surface integrsl; 2(r
I C i(e) C(C) dE(M') (65) Jo c) [{g

- (p -ir cos 6)dy (71)
Let 0 be any point of the element sj and Pj a

moving point of it. The equation of the element This equation is valid for any plane element

plane is then cf any shape : we go on with the computations in

the case of polygonal elements.
nj .OPj - 0

The contour C is then made of m segments 31,
k

or whose ends P
1
,k P k+ are numbered from I to

m, turning in the positive direction ; I is
Sp(xj-x

o ) 
+ qj

1
(yJ-y

)  
r --z) =0 (66) then 20 (

con2 - (72)

nj, whose components are pj qj r., is the unit ko k 1j,k

vector normal to the element.
with

On s
7 
, the variable , : (xih+i

C =. sec z -zj+i[(x -x )cos 0 1 -q irsin 0) G d.) .

+ y
1
-y

1  
0 (67) j,k

is only a function of two independent variables. ( y,k+]

To begin with, let assine pj # 0 ; from (66) (
we can write yj,k

x (v-yo) + (

pj p On a straight eiement, 4 is a linear function
p of one of the variables xj , yj or zr; we have,

so that 4 could be considered as a function of in particular,on the segent
two independant variables y, , z

1
. J,k+l - (J,k I 0,

Therefore, the surface integral I can be writ- l j1  d

ten in the form; dxs - d

k+i r'J,k

I c o s O l 1 I ;

p i + , ly1  I'>;---i , dr .
j ~(,k+I - J,k

We can use tle Stokes formula; we obtain:

I -
c o  

l68 and therefor

kI * G) ) dy 1  (J,
k 

( 68 i - j sin O)(sJk l -

(p - irI to. 0)(y k+
1 
-Y

1
,k)

or .

cIs
2 

p8 - ir rose 0 __-___P____s_ x - - (74)
( ( d (69)G ,k+( - 0(,

C being the contour of tle element s, descri-
d in the positive direction detormie d by th.

normal vector nj

If qj 0 0, we can write in the saw way
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For CJ,k+l -
C
jk , 0, We hae 

sources of unit strength ; from the defining
equation (21J. we have

il~ k = (q i- Ir, Sine) 8, .k -xJ, k )  N (8) - et ek 0 sec 2 8(2- (h ous 8
+ 

Y sine))d- K -ir~sine~x 
5

jk (75) H1 a)=-d

(pj - ir Cos 08) ( Yk -YJ , k)j G ( 1) 
1

This integral can be compared to the one in
Finalily, we can Write the influence 0,effi- I

cient k ; 
IM " ( ) drko 2j

iJ e 
which is computed to evaluate the influence- coefticients.

The results can be transposed without new cam-X (a) sec
2

0 dO putation u5ing the following substitutions

Kis q i(-r sinex 
1 

8) (x , {x G (0 [e ~ scs i )

m (71) w e

Ki ( ir cn 8)( j kl -, k) C k . se e0 [Z ,- k (x , Cos e + yj sin 8 )

S(p-ir j Cos 0)(Y J,k+ -yj,k ) K ij, k) From (71) we deduce .
(76) Hj (8) ff - iros0

ij __ - j ) G(C.)1 (6 H )(qj r, sin a dxJ ,k+l -Jk [.

i f 1 1 C J lC .k j C ( p i -i r 1  o u s d5

and, in the case of a polygonal element with m
sides

Kijk L(J )G( J~k Hj()- ~26 m ( .Ir

4 k - - is n )(x +j,k'] bt 
)

j.k+l 
1 kJ 

J

JJ f

is a nmerial constant generally equal to if

0
- 4  

It j.k+l-Cjk>

6. o mutaton th e v~ess tanc e 
(78)ItI .

6. co o(78)
[j" .CJ k+l+.4

j ' k
]After deteriini.g 

the sin"ularity 
distributionki~nmtc ly equivalent to the bull, the wave it jj.k~l-Kj.kj €resistance is calculated using Havelock's for-

sec 0 3C 3
JI(0,k ae0 eI d. I77 Jk -. k0  k

2 o15 obtain In the seaw way, the contribution of

a2et*I
y Nutm~rgd lment bearing a conS-

in which V (O
oktec6) U (0) ia the value tant distribtion of eorele dipolestaken by the "ModifLed Kochin flinction" fork 2 2l(e m ~sk I 9ec 9, TO start With, we write the vals Hi) J.;[ainO(s

4  -xkN6) ode to a plane elegmt a o',upletely w k. -.auM.rqd.cI beering a constant Aiatribution of 
- Cuaosa

1  - RJk) k

tts8
!H



where HJ, k is the function defined in equa-

tion (78).

Finally, for a segment I belonging to the 4F(8)
contour cintersection of 

4
1w hull with the pla-

ne z -0. we lace frame (39). 140) and (41) :

+ For a superficial distribution of sources

of unit strength ; _

S(e) -7- op: (yj~ H )

(90341 1(80)
pj = n . i

Figure 7
with:

H +- (e l a This case corresponds to an influence coeffi-
11 j cient due to a i-ctangular element, bearing a

for -Cj+ T constant distribution of normal dipoles, whose
vertices Pk are

H "J+ + eC) for x0.01 - o 0 , - --0.2
j 

2  + 0.0 Y 2 -0.2 z 2 = - 0.02

2X 3  + O1 Y2 
=

-0 Z 3 = - 0O

- ik asece cosa +yX
4 

sn- 0.01 Y42 - 0.2 Y4 - 0.01

+ For a superficial distribution of normal di- The influenced point Mi 
is

poles of unit density, when the hull is perpen-

dicular to the plane z - 0 X - I Yi . O Zi = 0.0)5

(8) sec y -y )H the wave number being K, 25.

It appears that the influence coefficient coi-

putition needs a lot of care; when w study

(a1 -x C C the whole hull, there exists a great diversity
+4w k pj e - 1(82) in the ten thousands of functions we have to

4 P1  integrate.

H being again the function defined in for- To achieve the computatione, we used various
I istratgemes and we tested a great number of clas-

mule (81). sical quadrature methods ; but, up to now, the
computing time necessary to solve the problem

is still very important for any chosen solution.

IV. Solution of the discretised problem We then realise that it is very disappointing

to spend a lot of computing time for a result

The is no peculiar difficulty in establi- showing great discrepancies depending on the

shing the computer program solving the Neumann singularity type and the way of discretising the

Kelvin problem for a singularity distribution hull surface.

made of sources, normal dipoles or mixed, Mowe-
ver, the computing times are extremely long, due

to the fact that each influence coefficient is
given by an integral whose kernel F() is a 5 . To Lcopute separately the farfield and
very oscillatory function of the variable 8; the nearfield contributions.

when the influencing emement sj and the influen- . To use asymptotic formulas valid when the
cod point Ni are situatd near the free surface influenced point iii very far from the influen-
the high frequency sacillatlone occur when the cing element.

kernel values an still of imortance. On figu- . To integrate by parts in order to put
m (7), we show the kernel variations we had F(O)d8 under the forue (8) d[Q(8)J, whare 7)8)
to consider In a concrete example. is a function having no capid variations.
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To our knowledge, only the Japan researcheis,
using superficial distributions of singulari-
ties made of sources, gave coherent results able
to be compared with experiments ; however, their
papers are generally illustrated b1 curves sho-
wing a very few number of points obtained by
numerical computations. We may, therefore, ima-
gine that, if their programs are operational,
they must spend important .zmputing times, even
on big computers.

A priori, the resultant dispersion, observed
using our own programs. can be due to one of the
following facts :

. The Neumann Kelvin problem is not, mathenia-
tically, well formulate since we are not
sure tlit it does admit onp solution ; the solu- Figure 8
tions obtained numerically are then without
sense.

. The computation of the influence coeffi- Stability of Numerical Results
cients has not been performed with enouoh accu-
racy in every "ases; it is not totally exclu- Here, we ate looking for the numerical rcsults
ded that peculiar difficulties could escape for sensitivity to the way of discretising the hull.
certain relative dispositions of the influen-
cing element n9 1ad the influeuned point Mli. The tests are made on an ellipsoid of length
Now, it is sufficient to render the solution L = 14 meters. of main radius r 1 I meter, who-
completely aberrant if only one influence coot- se revolution axis is submerged to the depth
ficient is not very well computed. H = 2 meters.

• The Neumann Kelvin problem needs a very finely
discretised hull surface. The table (I) sums up the results obtained

In order to localise the difficulties, we gave for HE - 5. is the wave resistance
up, for the moment, the idea of solving the case expressed in kgf, N is the num.ber of elements
of a surface ship. In fact, when we consider a in the ellipsoid discretisation.
completely submerged hull, we get rid of the
two first difficulties, pointed out above. Table I

On the one hand, we are nearly sure that the
Neumann Kelvin problem has a unique solutions. -.
On the other hand, the influence coefficient Program Prog Program
computation is much easier than in the case of S + D
a surface ship ; the computing times becoming
reasonable, it is then possible to perform sys-
tematic tests. 60 888 7151 708

To achieve those tests, we adopted elongated
ellipsoids of revolution 1 they are placed near 144 920 781 783
the free surface in order to obtain a signifi-
cant wave resistance when they sove in a direc- - --" - - - -
tion parallel to their resolution axis. The
ellipsoids are disc:etised with plane elements 192 894 782 786
such as shown on figure (8). - ---

The computer programs are those established It appears that the results are nearly ides-
for solving the case of surface ships I we sim- tical when the problem is solved with a dipole
ply suppressed the special instructions for distribution or with a mixed distribution
elements ending on the it-. surface, We denoted by however, the wave resistance value obtained
(S), (D), (S+D) the programs solving the problem with a source distribution is very different
with sources, normal dipoles and mixed Greec from the preceding one.
distribution respectively.

Besides, the values of R,, given by the pro-

gram (S) and the program (D), are very rapidly
varying with N.

a Kochin showed the uniqueness of the solution It Would be obviously of a great interest to
except for some values of he Froude number, see if R tunds to the same limit, whatever

the type of singularities chosen, when the hull
is d&scretied with more and more elements.
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We had to give up temporarily this idea, the Table III

estimated computing time to perform this work

being too important with the present Formula-
ticn. 1

N 60 144 192 288 540

We preferred systematic tests, mu~ch less -------------------------
expensive, using the zero Froude nunber hypothe- -t mean 924 984 9 982 986sis. i j ;

The wave resistance values, obtained always Ranalyti- 82
for the same ellipsoid, are in the table (I) m. 5  al

the theoretical value given in the last colunn Cal

is the result of an analytical computation per-

formed by C. Fareil.
b) For a singularity dietrbution of a given

Table 1I type, the gap, iR w 
, between the values computed

at exict Froude number and in the hypothesis of

(zero Froude number hypothesis) zero Froude number, seems to be little sans

e to the hull discretisation (Table IV)

Program Program Program Rw Ana- Table IV
N S D (S+D) lytical

60 (028 320 /N6 4

1037 9ARw (sources) - 140 - 14I - 143

I .- I ~ _______ ______

por N = 288, we again remark the identity of

the results given by a dipole distribution and R

a mixed distribution. This fact cannot be a 1100 0C

result of chance since both curves shoving the 0 0 0 Theory 0
variations of the Kochin function io0 _O

H(8, k
O 

.ec
2
l( - H() are nearly identical along c. Farell 0

the interval - 2 8< + . 900 8
This is the reason why we did not use any 80 0 0 Sources V exact

more the program (S+D). o sources $ e:o

Here again, the R
w 

values, not the same ac- 7U M Doublets V exact

corling as they are obtained by the program (S)

or (D), are rapidly varying with N ; for N- 5',0 0 Doublets zro

there is still a divergence of 6 % between the

values obtained with a source distribution and i I N

with a dipole distribution. 1oo 200 300 400 500

The reeults of tables I and II are also
given on the figure (9). The examination of Figure 9
these curves suggests the following remarks,
which can very well be coincidence since we are

not yet able to justify them Co 
2
risons with experiments

a) With the zero Frouds number hypothesis, the
men wave tesistance, B,,ea, computed by aking In order to perform these comparisons, we

t e n chose an ellipsoid tested by C. Farell for which
the half sumn of the values obtained with a sour- he gave an estimate of the wave resistance coef-

c distrlbution and a dirole distribution is not ficient C
W .

very sensitive to the hull dlecretieation, at
least for N a 144 (Table 1I).
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The geometrical Characteristics of this el- Due to these facts, we modified our plan of
lipsoid are the following: work. To start with, as we had a rather poor,

but safe, computing tool, we tried to take ad-
L - 10 meters , r - I meter , H - 1.6 meter. vantage of It immediately in order to compare

the results with experimental data ; to reach
The pointj computed for only N - 60 are drawn this aim as fast as possible, it was not umrea-

on the figure (10). sonable for us to spend a lot of money on com-
puters, leaving for a following stage the un-
inspiring job of improving the cost of our

3 computer progrm . Now, it appears that experi-
Cw omental comparisons are not significant unless

a 
2  

( e t the hull is very well discretised ; hence, we
y(i)-r * ,2 exact have to concentrate on the following points

p .Rw . Find a new formulation of the influence
w coefficients, in order to integrate more rapid-

exact ly the very oscillatory functions. For that,
- C O),)V zro many solutions are available , actually, we are

developping two computing methods based on
various ideas.

D(D), Y zro After determining the discrete singularity
0 densities kineeatically equivalent to the hull,

make a numerical interpolation in order to be
0 sure that instabilities are not only due to an
13 inadequate way of computing the Kochin function

we are now improvi.ig a program performing that
I nerical interpolation.

0,35 0,375 0,40 Finally, the computer programs, already built,

will solve the Neumann Kelvin problem if there
Figure 10 is no limitation on computing time or on c&mpu-

These results, given by an inexpensive compu- ting cost.
tation, show that theoretical values, though
they are scattered according to the program (S) But comparisons with experiments, to determine
or (D) used, are not extremely far fiom xperi- if the mathematical model represents well
mental values, as they should be in computing physical reality, will not be done unless nuse-
them with the zero Frcude number hypothesis. ricil difficulties are overcome. Even if this

experience were unfavourable, we are sure that
the efiort made to solve the linear problem is

V. Conclusions ueful; in fact, to improve a perturbation me-
thod, whatever its principle may be, to take
partially care of non-linear terms, seems to be

This study on completely submerged hulls, without any success if there is numerical doubt,
even if it seems to be far from our initial goal about 20 %.on the results given by the linear
gives us some lessons i it shows that theory.

a) the difficulties, me' in the case of a
strface ship, are not totally due to the junc- Acknowledgements
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Our emotion and our sadness, due to our intima-
te relationship with Professor Brard for many

years, brcame more acute precisely because we
* When we determine, with enough precision started our study wuder his advice and because

for practical use, the hydrodynamic coeffi- he recommended our paper to he presented.
sdents of a f1oatin7 hnly subj ..l W forced
oscillations, only one hundred elements are ne- Professor Brard wanted to apply a pea turbation
cessary to solve correctly the Neumann Kolvin. method hI recently put into shape, i, order to
problem, the hull should be diacretised with improv the results given in solving the Neumann
at least SOu elements. Kelvin problem.

We want to dedicate to Professor Brard's mem-

ry our present work on the Neumann Kelvin pro-
blem as well as the continuation we are going
to give to it.
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COMPUTATIONS OF THREE-DIMENSIONAL
SHIP-MOTIONS WITH FORWARD SPEED

Ming-Shun Chang
David W. Taylor Naval Ship Research and Development Center

Bethesda, Maryland 20084

ABSTRACT been expanded, but the speed of computation has been
increased and the relative cost has been drastically reduced.

A singularity distribution method has been developed With further improvements of the computers. the computa-
to calculate the motion coefficients ant: wave exciting tional advantages of strip theory will become less and less
forces and moments for shis with forward speed. This significant. Techniques'

.5 6 
for calculating three-dimensional

method accounts for the speed effect on the hoi!! ship motions have been under development for a number of
boundary condition as well as its effect on tie free-surface years: while general application of some of these techniques
boundary condition. tlence, the ztao-speed motion compu- .,, still restricted by the limitations of rsrrent-generation
tation and the wave resistance computation are two limiting computers, the method should have potential for practical
cases of the present calculations the former corresponds to applications in the very near future.
the case of forward speed ap, aching zero while the
frequency of the oscillation remains finite and the latter The method of three-dimensional singularity distribtu-
corresponds to the frequency of osci;lation approaching zero lions developed by (hang and Pies4

. 7 
has been successtfly

while the forward speed remains finite, applied to wave resistance and time-dependent motion
computations for submerged bodies. Since this method does

Numerical results for the wave resistance, motion not require a large memory space, it is workable on
coefficients and wave forces are presented. The wave most presently available computers. Extension of lite
re itance calculation for a Wigley hull has buen compared singularity method to the calculation of ship motions at zero
to the experimental data 6s well as to thin-ship theory results. forward speed , trivial while its application 't non-zero
Agreement between the experiment ad the theories is speed cases rec, cs modifications. [his paper presents
satisfactory. ,'culations of motion coefficients and wave-excitation forces

for I, dies at both zero and non-zero forward speed. Sample
Motion coefficients and wave forces for a Series 0 calculations for a Series (i0 hull,

t 
with a block coefficient.

hull have been computed and compared to experimental (', of 0.70, are compared with strip theory predictions and
data and to strip theory results. The present calculations are experintental data. For the zero speed case the results of
very good for the case of zero speed and are much improved the motion-coefficient comparison indicate that the present
over the strip-theory results at lower frequencies. For the method gives good results with a small number of control
case of a Froude number of 0.2, the present computations panels, Is tihe iulermcdiatc-frequency region computed
are not as good as those for zero speed. Yet the results are moteon coeffic;ents agree well with both strip theory atd
satisfactory and are also an improvement over strip theory experimental data. In the low frequency regior, the
predictions. computed motion coefficients agree well with experimental

dala whereas the strip theory approximation gives less
INTRODUCTION satisfactory agreement. A comparison of ewave-excitation

forces shows good agreement between the present and strip-
Since the development of a two-dimensional roll- theory calculations and experimental data over a wide range

damping theory by Urselt and the introduction of strip oft' wetve frequencies. Comparisons of wave-excitation moments
theory to ship motions by Korsin Kroukovsky,

2 
the strip- show deviations between the two theories and between the

theory method has become the most universally used theories and experiments. This discrepancy may be due t,
technique for analyzing ship motions. The most extvuusively experimental difficulties in determining the rotation centers.
documented six-degree-of-Ireedom ship-molion prediction Non-zeets speed calculations are presented for Fronde
procedure based utn strip theory was developed by Salse,,,. number 0.2. Agreement with experimental data in
Tuck and Faltinsen.

3  
Good agreement between strip-theo) not as good ea for the zero forward-speed-eane.

predictions and experimental data Iras been found for many
classes of ships, it essnce strip theory converts a three- If the steady part of lite free-surface effect is neglected,
dimensional body into hydrodynamically independent two- the inltence of ship spee' on the calculation of unsteady
dimensional sections, and the numerical computations of hydrodynamics forces on a ship appears through its
Ilow about these independent seclions ar quite simple. The m, 'ifications of the pressure calculation, body-boundary
compulatiot time and the memory space required for strip- con. ,'sn and lite free-surface condition. Inclusion of the
theory computations are very small in comparison with speeJ rfect on the pressure calculation and the body
those required for three-dimensional flow calculations. bound., v condition is simple for both the strip theory
Strip theory represtnted a very practical approach to tte approxn tion and the threv-ditnensiontul calculation,
calculation tsf ship motions on digital computers availsble However, lhe speed effect on the fte-surface conditon car
ten years usago when computations for a three-dimensional not be easili 'slahded in strip theory. Most strip theory
body in a free-surface were impractical if sot impossible. calculations to, a.,n-zert speed cases neglect lOe speed teems

in time free-surfac ondition by assuming tht frequency is
Computer technology has been drastically improved sufficiently high, s, -hat u,' /x) << o. For a fully three-

during the past few yeas. Not only has the 'nory space dimensional theory, o effect of forward speed on the
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free-surlace condition can be taken into account by m+odiiy- and the free-surface conditions
ing the fundamental singularity. In comparison to the zero-
speed case. this modification only leads to an additional line- U a a
singularity distribution at the intersection of the ship and +x4
tie free saurlace. Numerical evaluation of the modified
fundamental singularity k similar to thz computation: of + x- *+ m =

wave resistance. Hence, tie effect of the forward speed in and . 1 U +g z 0 at z 0. (6)
the free-surface condition only increases the computation an at
time for a three-dimensional theory without introducing any wheic g is the gravitational
complications. This contrasts sharply with strip theory. acceleration
Forward-speed computations are presented here both with
and without speed modifications to the free-surface condition. (nI, n2, n3) = N are the components of
In comparison with the experimental data, the calculations the normal vector N
that neglect the speed effect on the free surface are not
good. The calculations that account for the modified free- (n 4' as , n6 ) 

= 
r xN are the components of

surface conditions are satisfactory except in the cases of the normal vector with
* predicted coefficients of pitch and roll damping. fhe respect to the rotational

discrepancies between the calculated and the experimental motion, r x N
pitch damping coefficients are possibly due to neglect of
the steady part of the perturbing potential in the present (in, in. m3) = + T V(X + 0) are the normal velocity
calculation. But this is not certain at the present time. and gradients of the steady
requires further investigation, motion

FORMULATION (m4 'm5,in) rx mn - V(x + 
) 
xN are the rotational parts

of the (M Inm 2 ,m 3 )
In calculating the ship motions the major difficulty is and ( ,,V3) and ( 41,J3') are the displacement

to determine tire hydrodynamic forces due to the presence amplitudes of the linear
of a free surface. If viscous stresses are neglected, the and rotational oscillatory
hydrodynamic forces, F1 and MT. can be described by a motions, respectively.
pressure field, P, determined from a potential field, O"T
that is The system of equations 13) to (6) is. in general,

applicable to three-dimensional ships. If a ship is slender and
ff (U/a)0(a/ax) is very small, one may neglect the x-derivative

F T 
= 
-J P dS and MT = -,Pr . N dS, tl) terms in (4) and (6) and reduce the problem to a sequence

Si Sa of computations for two-dimensional sections. This is the
with strip theory approximation. It should be noted that the

P/p t (9a)2 (2) neglect of (U/)a/as) on the free surface is the same as the
at OT - 2 T pneglect of the speed effect on the free surface, since the

speed term appears only in the form of (U/ca)(a/ax). The
where SH denotes the hull surface and N is itr normal vector present paper will not assume that the x-derivative of 0 is
directed into the fluid, I is the displacement vector, t is the small and 0 will be found by a three-dimensional source
time parameler, V is the gradient operator, and p is the distribution method. Note that since the cross products
density of the fluid. Thus, the analysis of ship motions can between the steady potential U4o ail the oscillatory
be derived from solution of a potential field with boundary potential 0 are of higher order, 0o may be neglected in the
conditions specified on the hull surface, SB, and the free computations of m i in the hull houndiry condition (5).
surface, Si,. The boundary conditioas corresponding to a For the results presented in this iaper this simplification
ship moving forward with small oscillatory motions in other- has been made.
wise calm water have been given by Timman and Newman.

9

The system that governs the potential field, OT, can be SOLUTION FOR POTENTIAL
summarized as follows,

A fundamental singularit, . which behaves as I /R
Let (x, y, z) be the right-hand coordinate system with and satisfies the free-surface condition (6) is

z directed vertically upwards and origin at the water line of
the center plane of the ship. For a ship moving forward in J r
the x-direction with speed U and oscillating at a frequency G(x, y, z; X',0, z. 7.) = - + dO dlF(6,k)
o, the corresponding potential field, OT, is the sum of two R Rt - n

potential fields: a time-independent potential field, U0, i/a r
due to the ship's steady forward motion, and a periodic + 4 dO dkF(0, k) + do0 dkF(o k),
potential field, 0, due to the ship's oscillatory motions. If j J L I JL
the gradients of the steady potential, U o , and the oscillatory 2  (
potential, 0, are both small, the system of equations may be where
linearized; the potential fields U4 and 0 then become bile + an)+ Ifs - x0 c 0 1
uncoupled and can be solved independently. The governing ke con ibly - Yo) sic 0)
equations can be written as F(s, k) -

gk - (w + k U cos 0)2
OT - U(x+k) 0 Celnt, (3)

with Laplace equations 0= UW/g, (8),

1 if 0 <

V
2
o -0 and 90.0 in the fluid, (4t =i

the hull boundary conditions arcos - if 0

6 i.

(x + 0" 0 and-t l - ini'l + Unitti)on S ,
an

j



k1  k2

Li
k3

'g /g- 20 cos t iS

I/g2-' 
+ v/

I - -4cos 0 0<014
, cos 0

R
2 

= (X - Xo)
2 

+ (y - y)
2 

+ (Z - Zo)
2

i
2 

= (X-o)
2 

+ (y_ yo)
2 

+(.+Zo)2,

and

(x,, yi, zo) is the position of a singularity.

With this fundamental singularity, from Green's theorem, and
the fact that the potential 0 satisfies a radiation condition
at infinity and the free-surface condition (6) qt z = 0, it
follows that the potential 0 at any point p inside the fluid
can be expressed 

2 
as

0(p) = j IG(p, q) (q) - 0(q) 1 Gp, ql dS0>1/4

I mFigure I - A Schematic Representation of the Wave
-- Jf 2icUG(,. ,) 0(q) - UG(p, q) €sq) System Associated wsith a Moving and Oscillating

Source (from reference t0)

+ U2 0(q) -1 G(p, q)j dy (9ax p upstream. When P > 1/4 the wave upstream disappears and
waves are only downstream. In the initing case when

where the contour intgral is over the intersection of the 0- 0 while uj
2
/e remains finite, G approaches tiehull surface So and the free surface. For a submerged body fundamental singularity for body oscillations at zero forward

or the zero forward speed case, the contour integral vanishes sped, When P - 0 while Ua/g remains finite, the
identically. Examination of equation (9) shows that the singularity G approaches the Kelvin singularity for
potential 0 is the sum of contributions from two types of steady motion. Thus, the solutions for 0. and 0 with zero
surface singularities in addition to the contribution from forward speed are two limiting solutions of equations I10)
the line singularity: one source distribution and one doublet and (5).
distribution. These two su.face distributions can be reduced
to either a source or a doublet distribution when one extends CALCULATION OF U,'I".. .DY
the potential field into the ship hull and applies Green's HYDRODYNAMIC FORCES
theorem)

2 
For the case when the line integral vanishes, it

has been pointed out by (hang and Pien that the doublet One can evaluate the hydrodynamic force and moment
distribution representation is a more direct and convenient from equations (I ) and (2) after the potential 0 is obtained
approach, However, for a ship at nonzero speed, the from (5) and (10). These hydrodyisamic forces are composed
presence of the contour integral makes it uncertain whether of steady and unsteady contributions as well as linear and
the doublet method is more efficient than the source non-linear contributions, since the pressure has a velocity-
method. The present paper converts the surface distributions squared term. In the following only the calculations for the
into a source distribution so that the line ;irigularity and the linear unsteady force will be discussed. The calculations for
surface singularity are of the same type. Equation (9) then steady force have been discussed In (hang and Pian,
becomes reference 4.

0(p).- FfG(p, q) Q(q) dS Substitution of equation (3) into (2) and neglect of the4w S non-linear terms in 0, results in

+ !- G(p, q)Qlqlna qldy , t101 P/ jo 
t - 

[UVlx 0n) V(l ed
tc
' 0

9I f 2 Y] I -
where Q is the source distibution determined from 2
boundary condition (5). where the last term on the right-hand aide of equation (t)

is time-independent and aaaociated with the wave resistance
The fundamental singularity G defined in Eq ( 4is a and the lift. The other terms in equation (I ) are time

function of parameters P - UwJcg and wilg. The behavior dependent due to multiplying by gIwt and give riae to
of this function Is similar to the Kelvin singularity but unsteady forces. Now, let us denote the amplitudes of
produces fiur free waves.

t0 
A schematic representation of these unsteady forces aNd moment y

its wave system is shown in Figure I. It is swen that with
< 1/4 there are three waves downstream and one wave

i



PJ [Iiwo+ U[V(x + 0) • l dS (12) and € .eplaced by Ow + OD in the calculations of the
unsteady forces given in equations (16) and (17). This is
because Of is determined in the same manner as 0 but with

and different hull boundary conditions. The diffraction potential

= and wave-excitation forces are calculated directly in the
ISix'l + UIVix + 0.) - Vol r 'S. present method, while the strip-theory approximation calcu-
jS (13) lates it from the Haskind relations.

Then, from the fact that NUMERICAL RESULTE

( = on Theoretically, equations(5), (t), (t), (16), and (17)
o s n complete the formulation of inear ship motions with forward

one has speed. Numerically, further approximations are necessary in
pr order to represent a three-dimensional body and to determine

" F p t
3 
+ tU[V,,(x + Qn

) 
V€]} "N dS ((4) the singularity distribution. For the present computer program,

S, the reprssentation of a ship is taken to be the same as that for

and strip-theory computations, except that the input offsets at each
station are further connected to the neighboring stations to

M pf fiw + UIV .x + o)" VoI) rx N dS, form three-dimensional panels. 1
4 

In the determination of the
singularity distribution, the fundamental singularity is evaluated

-a (1) using the method developed by Chang and Pien,
4 

and only

where VT denotes the gradient along the hull surface. minoi modifications are made in the fundamental singularity.
5As discussed previously the wave resistance and the zero-speed

Calculation of F and M from equations (14) and k 15) will motion problems are the two limiting cases of the present
involve the calculation of gradients of V., 0 and VrO along computations. The computer program was first applied to
the ship hull. With proper choice of the pan.s used to these two cascs, for which reliable and extensive information
rel resent the three-dimensional body, the calculations for is available for comparison.
V, )b and VrO present no difficulties. However, with a
small number of panels, numerical evaluation of Vr may not A. WIaN Resisane
obtain sufficient accuracy. Alternative expressions for The wave resistance of a submerged body has been

F and M, which do not contain the form Vr,, have been evaluated by Chang and Piea from a doublet-distribution
given by Tuck.'

3 
They are method. The present program with wU/g = 10,

3 
and

p1a/g - 10-6 .g/U
2 

was applied to the calcu!ation of the

"F = pJ iW¢N+ UOV [V(x + No)] dS wave resistance of a submerged sphere and the results were
So compared to those of (hang and Pien. The two results were

shown to agree well. The present program was t,'n applied
to ship forms. The resulting wave resistance for Wigley Hull

p UO dRx V(x + 0) (16, 289215 is shown in Figure 2. In comparison with the experi-
mental data. the present calculation agrees well with the

and data for a fixed model at high Froude numbers. At low
r{ .Froude numbers the calculation tends to agree better with

am p e rx N + Uc,r X V)[V(x + 0.)
] 

N the data for the model which is free to trim As pointed
SB out in reference 15, this is because at low Fioude numbers

the experiments for model 2892 did not achieve steady-
+ U0 V + 0)xN state flow conditions. In comparison vith the results of thin-

ship theoretical calculations, the present calculations show

PJU r x IVix + o) x d 1. (17) the wave resistance to have less-pronounced hollows. Iis is
as expected because in thin-ship theory the source distribution
is pre-determined and neglects the interactions among the

where the contour integral is over the intersection of the ningularities. (lhe present calculation method evaluates the
ship hull and the free surface, These expressions fr singularity distribution as well as the wave resistance. It

F and 9i are especially useful for thin ships where the includes the wave interferences between the singularities
steady potential # and the contour integral may both be which in turn snmooth out the hollows in the wave resistance

curve. More comparisons on the wave resislarce conmputitionsneglected. The common strip-theory calculation for non-
zero speed possesses this advantage. Also, the strip..theory will be reported in the future.

approximation replaces the potential 0 in equations (16) and B. Zmeo-Slpt Motion Coaflllsta
(17) by a correspouding zero-speed two-dimensional
potential. This is because, as mentioned previously, the
neglect of x-derivatives is equivalent to the approximation of b ari ah d -rnt o eries hv b -on0u&ipcero forward speed on tse free surface, by CGerrltsma"

s 
and VugtS

1
' fosr Series 60, (i II .70+ ship

models. Experimental data as well as srip-teory predictions

WAVE EXCITATION FORCE for this ship model are given by both Gerrittsma and Vugts.
It is known that, In the practical frequency region, strip

Whe a ship moves forward in a given wave field yields gd motion predlitlons fur this class of
shipsl Hence, the present program is applied to the same

oweiwt, having encounter frequency w., the ship creates ship for verification. Figure 3 presents the added-mass and
not only the potential field 0 but also a diffraction hield, damping coefficients. The strit-theory results showr, In
Ob. Sincs the wave field is periodic, the system determities Figure 5 were taken from reference 17 and the present
the diffraction potential #D; and the asociated wave forces calculations were obtained by representing the hall'ship by
are the same as thoe for #, but with boundary condition 49 panels.
(5) replaced by

The solid lines in Figure 3 denote the strip theory
a w + )0 on (l8) predictions while the filled and the opened symbols denote

in 
(

the results of the present calculation and the measurements
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STRIP THEORY
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Figur 3 - Motion CoeffMcents with Sirmph Speed Correction
for Sodae 60. Ca U .70 Hutll Model at F, m 0.20

0. Alotio Caefflelante with Foewat $pod applied to caLw~ilte motion coefficients at this Froisde
number. The meusurements, the strip-theory predictions and

Reference 17 also provides motion coeffcients fr a the reults of the present calculations, neglecting the steady
Series 60, C, 0.70, ship m,,del at a Froude number of panst a the perturbing motion. are presented in Figuires 5

Z2 The preseent computation program ha4 thus been end 7 for comparison.
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As has been mentioned, the forward speed -c--- Fr =
effects on the computations of motion coefficients come - Fr = 0.20
from the free-surface condition, the modifications of tthe
body boundary condition. and the modification of the 12
computation of pressure on the body surface. By neglecting
the effect from the free-surface condition the motion E 10 -

coefficients with forward speed can be expressed in terms of
corresponding zero-speed ccefficients. The formulae for 8
calculating the unsteady hydrodynamic forces, equations
(16) and (I 7). then lead to simple speed corrections,1

3 
i.e., "0

for the heave added mass and sway, sway-roll and roll 6
damping, the coefficients are speed independent. The simple 2
speed-correction formulae are applicable to strip-theory 2 4
calculations as well as the three-dimensional computations. a
Thus, neglect of the speed effect on the free-surface condition 0
makes the method for computing three-dimensional motion , 2 PITCH
coefficients with non-zero forward speed the same as that
for strip theory, except that the two-dimensional zero-speed 0
coefficients are replaced by their corresponding three-
dimensional values. Figure 5 shows the results of three- 30 I I

dimensional calculations using the simple speed corrections.
It is seen from the figure that, in comparison to the measure- -E 25
ments, the present results denoted by 0, do not agree very
well with the experimental results., denoted by 0 and 0: I 20
this contrasts with the zero-speed results, where the compari- x
sons were quite good except for the roll damping coefficients. 15 a
The predicted magnitudes of the added masses at a Froude 15
number of 0.2 are too high in comparison to the measure-
ments whereas the predictions for zero speed were very good, 0 10

was was shown in Figure 4. a

In examining the strip-theory predictions, it is seen 5 HEAVE
from Figure 5 that the predictions of the added masses for I I
pitch and heave at F'oude number 0.2 are good. and much 0

better than the corresponding zero-speed predictions. In 0 1 2 3 4 5 6 7 8
spite of the fact that strip-theory predictions for the other FREQUENCY,
modes are not good, it is clear that at a Froude number of
0. 2, the strip-theory predictions of pitch and heave added
masse, are better than the corresponding three-dimensiorml Figure 6 - Measured Pitch and Heaving Added
predictions which employ simple speed corret 1;,,ns. This Masses for Froude = 0.0 and 0.20
r-sult is rather astonishing because. to the order of the linear
approximation, the formulae for the speed corrections are Consideration of tire measurements at Fronde
exact and the three-dimensional predictions for zero speed numbers of 0.0 and 0.2, suggests that the speed effect on
have been show!s to be very good. Thus, one would expect the free-serface condition snay not be neglected in the
better predictions from three-dimensional calculations than present motion.cofficient computations. Motion cefficients
from strip theory, whose .:ero-speed predictions for heave were, thus, recomputed with the inclusion of the speed effect
and pitch added masses have been shown to be considerably through the free-strface condition. That is. one computes
lower than the experimental values. In order to better the perturbation potential, 0, from the fundamental
understand the reasons for this contradiction, the measured singularity distribution using the exact values of wU/g
added stasses of pitch and heave at Froude numbers of 0.0 instead of seting it equal to a very small number as itt the
and 0.2 are plotted togetlher in Figure 6. It is seen that previous calculations. The resulting predictions are plotted
front a Fresde number of 0.0 toi a Froutte number of 0.2, as Figure 7. In comparison with the measurements, the predic-
the added masses of both pitch and heave are significantly tions of added masses at a Froude number of 0.2 are almost
reduced, except at high freqlue+ncies wherv no significant as good as the corresponding zero-speed predictions. It is
change occurs. One may conclude fr: m these measurements interesting to note that the curve for the measured added
that the speed effect on the pitclr and stave added masses mass for yaw has changed from convex at zero Froude
over the freqency region presented is t1a reduce their number tor concave at a Froud- number of 0.2 and this
magnitudes. Now, if one examines the farmulac for the simple change of characteristic is correctly predicted by including
speed corrections to pitch and heave adrrcd masses, it will be the speed effect of the free-surface condition. This was not A
found that the heave added masses are speed independent predicted from either strip theory nor three-dimensional
whereas the pitch added masses should increase with intreax- theory when using simple speed correclons. Note that the
ing speed since the measured heave added masses at zero measured values, denoted by 0. are the sutm of sectional
Froude nrrmber lake oin positive values, This implies that nicasurentents which may not be identical to the measure-
the behavior of tie uteasurements dores not Iollow the simple ments for the whole ship model, denoted by 0; for example,
speed corrections for pitch and heave added masses, which for the yaw added mass, the valtes of' the measurements 0
may explain the poor three-dimensional predictions using at zero speed are lower than the values of the corresponding
correct zelo-speed predictions. It is then clear why the sertional sum 0. In view of this, tie present prstdiclion of
strip theory predictions were improved at a Froude number yaw added mass might have been considerably improved if the
of 0. 2: the zero-speed predictions from strip theory were measurements 0' had been available. The predictiont of swap.
underestimated so that when the measured added masses roll and sway damping coefticients at a Froude number of
decreased with increasing speed the agreement between 0, 2 have about the same accuracies as their corresponding
strip theory and experiment became better. zero Fronde-number predictions. The predictions are not
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only better tha those from atrip theory, whichl are speed predictions of roll damping coeftIcients do not appear to be
independent, bust also resemble fairly well the measured good. However, the speed ef.ect in increasig the rol
speed effects a functions of frequencies; that is, above a damping coeffcient at low vajuso of frequency is cleary
frequency of about S er I the speed effect decress the shown In both the experimtental results and the predictions.

the speed effect incruass the damping coefficients. The damping; coefficient is not good. It is hard to understand

vau~ofth amin ceflistnan elw ha feuecy Th omarso btee te rdite ad esuedpic



why the predicted pitch damping coefficients at a Froude in the present mathematical model, e.g., the steady part of
number of 0.2 are so much lower than the measured values the perturbations. non-linear effects, etc. To further improve
in viev of the fact that tie corresponding zero-speed predic- the computation of pitch damping coefficients, one may
tions are very accurate. To check the present numerical have to include these additional speed-dependent terms.
results the computer program was ipplied to calculation of
the pitch damping coefficients or a modified Wigley hulli

s  
CONCLUDING REMARKS

specified by:
A computer program developed for calculating the

- {[ (2sl F[ {i2xu steady and unsteady forces on a ship moving in waves has
y = 2[ - il- L\L/ been described. The program calculates the wave resistance,

4] I[lift. motion coefficients and wave forces from a source

- 0.3 0.7 (I'll distribution method. Unlike thin-ship theory and strip
( L theory computations., the present computations employ three-

dimensional source singularities which satisfy the body
where L, B and D are the length. breadC .ir draft of the boundary condition at its mean position. The computer
hull, respectively. Figure 8 shows comparison of pitch program has been used to evaluate the wave resistance of a
damping coefficients determined ',y the presit calculation Wigley hull tested by Shearer and the motion coefficients
method, measurements'

5 
and the thin-ship calculations by and wave forces of a Series 60. (

= 
0.7 ship hulh. Compu-

Newmat.19 It is seen from the figure that the present tations were also rnadc for a modified Wigley hull tested by
calculations agree quite well with the measurements and also Golovatc, in order to verify pitch damping coefficient
agree qualilatively with the results of Newman. which wire predictions.
calculated from a polynomial representation of the hull.
It seems, then, that the measured pitch damping coefficients For Wigley Hull 2892, in the Froudc number range of
for a Series 60, (B = 0,70, model hull at a Froude number 0.25 to 0.60, it has been shown that the wave resistance
of 0.2 may include physical effects which are not includzd predicted by the present method agrees well with experi-

mental data. It has also teen shown for this case that the
wave resistance curve predicted by the present method has

. R Nmuch smaller "humps and "hollows" than those predicted by
. ... PRESENT thiss 'hip bco.

II -a-J CALCULATION

| [Ii - - NEWMAN major effort rks iat in the present work to
.II - MEA u,,~tC investigate rise po,irle impriver....ts of a three-dimensionalM i r ltheory for r, .. _: ...... Al 0 ship motion coefficients and thewave exciting forces and mtinerits. It was found frou the

- z eero forward speed calct,tri.ns. that, for most of the
! /// ' freqserrey range, the agreement between the added mtiass

coefficients computed by the uresent method and the
0,03 experental data is better Iran foi, strip theory. In general,

ii iislts irrtictcd hy the present method and by strip

thcory aic shown to agree well with experinmental dala, bill
Sior tihe pitch damping cc'fficient it was found that

F- strip tihe-ory agrees i - v wilts botth the penis'it iseliidFr and the experiment ol.i. Ffs r ti e roll case thsre are some
0.00 inrerlved discrepasrciss tetween the present rielhod, strip

}O.2 N theory and exteriments.

0.02 1 inally, it is shi.wn that tire snirtpl-sped . orrer c ction
,2 -- Ol noriatilly used in strip theory does not adequately characler-

ize tIre actual speed effects ote reed in tlie rseasuremenIs,
I N The sleed term in the free-surfacc coirlition has to IX.
I 0.09 included in order to obtain reasrable qantitative andS0.00 quilatitat ivc predicions. When the speed terms are included

.. 0.00 in tie free-surface condition, it is shown thaI tlre present
I / ~~ resn Is agree qurite welt with exterimnsetal itata excepst irs

N 0.19 tire cases of the roll-damping and pitch-damping coefficients,
11 seen hai the discrepancy in tihe predicted pitch-dampirg

0.01 . 0.30 coefficient of Series 60, ('e = 0. 7, hill form at a Froude
number of 0.20 may resulI front sone physical effects

$A I ;  -" 0.36 which hi;,v- ii, been included in the present tnalheinaticalFRE0UENCY 0rpodel. hi improve file predictions fir il pitch-damnping
F / siefiticienls consideration slould hi given it nrclusion if tile

F,- 0.36 0,. 1 c tI' rirdrl tcrisis twelwirli rise tcillting potential and the
stcady ,t,urhrtin tpotential which hirve lie negleclei, it
l~ile' present c allatioll,

hic nunmerical resells presented in this papler were0 obtained frois the Texas Instrument Advanced Scientific
0 1 2 3 4 (ompller at tire Naval Research Iaboratory. The comiputa

FREQUENCY, r ALT lii illne fir a zeeo Itrwaro speed case (or zero frequency
casel was apprsximutely 50 seconds for each frequency (or
each Froude ntntr). The cost is about $15. For non-zero

Figure 8 - Pitch Damping Coefficiens speed and non-zeri frequency cas the required computing
for a Modified Wigley Hull
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COMPUTATION OF THE FIRST AND SECOND ORDER WAVE
FORCES ON OSCILLATING BODIES IN REGULAR WAVES

J./. Pinkster and G. van Oortmerssen
Netherlands Ship Model Basin
Wageningen, The Netherlands

Abstract and submergence and submersibles, it has
becu,.

- 
obvious that second order wave

A method is described to obtain first exciting loads are of importance here
order wave forces, hydrodynamic reaction also.
forcos, mean second order wave forces on, The first order wave exciting loads
as well as toe wave induced motions of, and motion response in irregular waves
floating bodies in regular waves by means may be predicted from the normal fre-
of linear potential theory. The first quency Iransfer functions which can be
order potential function which describes obtainec from computations or tests in
the flow is obtained numerically using a monochrtmatic waves, The low frequency
singularity distribution on the wetted wave exciting forces in irregular waves
surface of the body in its equilibrium should be determined from knowledge of
position. The mean second order wave the wave excitation in bichromatic waves
drift force is calculated by means of (regular wave groups). See for instance
direct integration of the pressures on Newman [I] and Dalzell j21
he hull as derived from the first order At the N.S.M.B. a program is being

potential, developed to predict the second order
Results of computations are presented wave forces in bichromatic waves. The

for a pipe lay-barge and compared with first phase of this development com-
the results of model tests. The agree- prises the calculation of the mean sec-
ment between theoretical and experimen- ond order forces and moments in regular
tal results appears to be satisfactory, waves. In this paper, results are pre-

sented of calculations of first order
Introduction wave loads and motions and mean second

order forces on a free floating vessel
In offshore activities, stationary at zero forward speed and compared with

vessels play an important role as work the results of model tests. First and
platforms, storage and proiuction units, second order fluid forces can be ob-
In order to design such units from the tamned from a first order j,proximation
point nf view of vessel motions and moor- of the potential function, which is ob-
ing loads induced by environmental rained numerically by means of a three-
forces, prediction of the behaviour of dimensional singularity distribution
the vessels is essential. (Green's functions) on the body surface

A major part of the environmental in its equilibrium position.
forces is due to the action of waves. This technique has been applied fre-
The forces due to waves may be split into quently during the last few years for
two parts, viz. large volume structures and many com-
- oscillating wave forces with zero mean parisons with experimental results have

and frequency equal to the wave fre- been reported. See for instance [3] , [4].
quency. (First order wave forces.) The method used to predict the mean sec-

- mean and slowly varying forces with ond order loads is based on a direct in-
frequencies below wave frequencies. tegration of pressures on the complete
(Low frequency second order wave forces) wetted surface of the body, while most

The first order wave forces are respon- existing methods (Salvesen [51 , Michel-
sible for the well known ship motions sen and Faltinsen [61 ) make use of the
with wave frequencies. The second order far field behaviour of the fluid. The
wave forces are, in many instances, the advantage of the present method is that
cause of low frequency, large amplitude it provides more insight into the phys-
horizontal motions of moored vessels. ical processes involved and will allow
This low frequency behaviour is of Impor- evaluation of the second order wave
tance from the point of view of mooring drift forces in bichromatic waves [7]
loads. From observations, both in reality
and on model scale, of low frequency com-
ponents in the vertical motions of for
instance gravity platforms during towing
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Description of the theory infinity.
The potential function Y. can be

First order wave loads and motions represented by a continuouE distribution
of single sourts ur the boundary sur-

The ship is considered as a rigid face S:
body, oscillating sinusoidally about a 1
state of rest, in response to excitation '(x 1 , x2, x3)=-. oj(a 1 , a2, a).
by a long crested regular wave. The am-

plitudes of the motions of the ship as
well as of the wave are supposed to be x2  x3 ' a1, 

a  
a)dS

small while the fluid is assumed to be (j=1 ............. 7 (6)
ideal and irrotational. A right handed, where yj(x1, x2, x3, a1 , a2, a3 ) =
fixed system of coordinates OXIX 2X3 , is = The Green's function of a source,
defined with the origin in the mean po- singular in a,, ag, a
sition of the centre of gravity of the a ,a a t vctor, des-
body and the OX3 axis vertically uwards. cribi~g S2' 3=
The oscillating motion Qf the ship in .(a1, a,, a,= the complex
the jth mode is given by: source streng~h

xj = je
-  

= i ... ,.6 (1) For the Green's function a function is

in which is the aeplitude of motion chosen which satisfies the Laplace equa-
in the jth mode and m the circular fre- tion and the boundary conditions on the

sea bottom, in the free surface and at
quency. infinity. This function is given by

The motion variables x1 , x2 and x3  in
stand for the translations, surge,sway (see Wehausen and Laitone L8] ):
and heave, while x4 , x5 and x6 denote + I
rotations around the OXI, OX2 and OX3  = 

+  
d

axis respectively. =2(6 + v)ec
- d

The free surface at great distance + Pv h +
from the ship is defined by: co snh d v cosh Ed

= r, eik(xI cos a ' x2 sin )-it cosh C)xl + c) Jo(R)d4

(2) +i 2 (k 2-v 2) cosh k(a,+c)coshk (x c)
where: k

2
d -v

2
d +v

= amplitude of the wave
k = wave number =2s/A, where A is 0 (kR) (7)
the wave length
a =angle of incidence in2_

T)2+ )x2-a2)
2

The flow field can be characterized rl=/(xl-al)
2 
_(x 2-a2)

2 
+ (+3 +2c+a 3)

2

by a first order velocity potential R=/,(x cai)2 + (x2_a2)

-ittx, x2, x3  t) =P(x, , x2, x)e (3) John [91 has derived the following series

'The potential function ' can be separated for y, which is the analogue uf (7):
into contributions from all modes of mo- 2-k

2

tion and from the incident and diffrac- y=2 v2d2 cos h k(a3+c)cosh k(x3+c)
ted wave fields: k 2 d-4 v 2d+ Y°(kR)-i J°(kR),

6 2(1 1+2 \OkRi )k}
'P= iuvr)'P + 'P (-iw F. 'P+ (4)u7 1

0 0 7 = I +i- 2_-- . cos 11i(x 3+c)cos (jac)

The incident wave potential is given by: Ko (1,in,

,=,cosh k(3+ c) )
'P 1os kx 3 + ik(x cos a + where pi are the positive solutions of:
O - coshk e sin a)

2 (5) tan (jid) + U 0 o (9)
in which 2

V = a /g Although these two representations are
c - the distance from the origin equivalent, one of the two may have pref-

to the sea bed erence for numerical computations, do-
d = water depth pending on the values of the variables.

The cases j = 1, 2. ........ .6 corre- In general, equation (8) is the most
spond to the potentials due to the motion convenient representation for calcula-
of the ship in the jth mode, while 97 is tions, but when R=O the value of K be-
the potential of the diffracted waves, comes infinite, and therefore equa~ion
The individual potentials are all solu- (7) must be used when R is small or zero.
tions of the Laplace equation which sat- The unknown sovree strength function
isfy the linearized free surface condi- u must be determined such, that the
tion and the boundary conditions on the boundary condition on the body's surface
sea floor, on the body's sucface and at S is fulfilled. Due to the linearization,

this boundary condition is applied to
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the surface in its equilibrium position According to common practice the hy-
So . drodynamic forces are represented by

- , x2  3 aao) means of added mass and damping coeffi-- X2 ')47t''ai/ o(a,, a 2' a 3 )  cients:

0

Y.(x ,'1 ,,a 2ao) dS akj =-o Re {ff 4j n k dS) (15)
an j 1 or 31 23 s ....

n n1  for j = I.........6 bkj = -0w Im {f! Tj nk dS} (16)

= - 0 for j = 7 (10) SO

n
n, through n6 are the generalized direc- where:
tion cosines on So, defined by: a kj= the added mass coefficient in the

k-mode due to motion in the i-mode

= cos (n, x) bkj the damping coefficient in the k-
n2 = cos (n, x2) mode due to motion in the j-mode
n3 = cos (n, x3) Finally, the motion response to
N4 = x2 n3 - x3n 2  first order excitation is computed by
n5 = x3n2 - xn 3  means of the well known equations of
n6 = xln 2 - x2n 1 motion in the frequency domain:

To solve equation (6) numerically, 6 2
the surface S is subdivided into a num- T {_2 (Mkjlakj) sin (wt+c.) +
ber of finite, plane elements on which b W t
the source strength is conrtnnt. The +bki w cos (ut +1:)
boundary condition is applied in o..- on-
trol point on each element being the +Ckj sin t+r)4 = Xks +6k)
centre of the element. The integral equa- k=1 . . 6 (o)
tion (6) then reduces to a set of alge-
braic equations in the unknown source
strengths. In general, the Green func- in which:

X =wvexie foc in th
tion 1 may be computed with sufficient k = wave excited force in the k
accuracy as if the source strength is mode
concentrated in the centre (control Cj, 

6
k = phase angles

point) of each element. When, however,
the influence of an element on its own Mkj is an inertia matrix. Since the
control point is evaluated, y has a sin- origin of the system of axes coincides
qularity of the type I/r, which can be with the centre of gravity of the ship
removed by spreading the source uniform- in its rest position, it is found that
ly over the panel. When the influence of r 1
a panel on a control p. -t which is at a m o0 0 0 0
close distance of this nel and not ly- 0 m o 0 0
tig in the same plane, is considered, M 0 0 m o o
the source is spread uniformly and inte- k o o o 1 -1 46
grated numerically to obtain its contri- -0 0 0 o5
bution to P or a.N

After solviF the equations for the 0 0 -I64 0 16 j
source strengths, the first order po- (18)
tential function is known. The pressure where:
on the surface S can then be found from m = mass of the ship th
Bernoulli's theorem. The linearized hy- Ik = moment of inertia in the k
drodynamic pressure is given by: mode

all Ik - product of inertia
P(xi, x2 , x3 , t) .- p.- k

2t - Mean second order wave loadsJe-lut
In vector notation the mean second

I order wave exciting forces and moments
(12) about the fixed 0X1X2X3 system of co-ordinate axes are as follows:

Subsequently, the first order wave ex-
citing forces and moments can be found T-2)# 

1
g I2 n dl -

from: WL __()Rdl

Xk - ,o e nk dS (13) f P I 11 n dS
So

The oscillating hydrodynamic forces -ff-((1) .VS( ) ndS
(k- 1 2, 3) and moments (k- 4, 5, 6) in So 1C
the kth direction are: + R ( (19)26

Fk - e-f t nk dS (14)soi i k
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and half length of each line element.
- The calculations were carried out
(2)= ,Pg ,

(
1) 2 (x x n)dl for 15 frequencies. The average compu-

WL ting time of the FORTRAN program for one
- ff - 1 ) n) dS frequency amounted to 210 seconds on a
so  CDC 6h00 computer.

-f-p ( V(I). - ) (x ' n) dS Model tests
S9

The model tests were carried out in
+IR ('a(l)-g(x 

5  
) the shallow water laboratory of the

• 2 Netherlands Ship Model Basin. This basin

where the heavy bar indicates that the has the following principal dimensions:

time average has to be taken. The above Length 210 m.
expressions are derived in the appendix. Breadth 15.75 m.
In the above expression quantitiesm.
marked (1) are first order quantities Water depth 1.0 m.
derived from the solution of the linear
problem described in the previous sec- A paddle typ-, wave generator is fitted

tion. The potential 1() is composed of at one end of the basin. A perforated

the first order potentials of the undis- sloping beach at the other end of the

turbed incoming wave, the diffraction basin serves to damp out the waves.
The model tests were carried outpotential and the potential due to body with a scale 1 : 50 model.

motions. The relative wave height Ir
( c 5

at a point along the mean waterline is All tests were carried out in regu-

composed of contributions from the ver- lar waves. The wave amplitudes varied

tical motion of the point, and the po- slightly with the wave frequency. The

tentials due to incoming waves, diffrac- amplitudes amounted to approximately

tion and body motions. 1.0 m. in reality.
The following terts were carried out

Calculations and model tests -. Tests with the free-floating model
moored between soft springs to deter-

The vessel mine the frequc -y response of the six
ship motions anu the mean longitudinal

Calculations and model tests were and transverse wave drifting forces

carried out for a lay barge type vessel and yawing moment. The test set-up is

with the following main particulars. shown in Fig 2.
- Tests with a captive model t- deter-

Length 150 m. mine the frequency response of the
first order wave excited forces andDraft 10 m3  moments. The test set-up is shown in

Displacement 73750 m Fig 3.
KG 10 m. Measurements. During the tests with

Roln 20 m the free-floating model, the linear mo-
Pitch 39 m. tions of the centre of gravity of the
Yaw 39 m. vessel were measured by means of an op-

tical tracking device following a point

A body plan of the vessel is shown in light source mounted in G. The pitch and
Fig 1. The water depth amounted to 50 m. roll motions were measured by means of

Model tests and calculations were gyroscopes in the model. The yaw motion

carried out for regular waves with fre- was measured by mean; of an optical de-
quencies ranging from 0.3 rad/sec to vice mounted on the model which tracked
1.1 rad/sec and wave directions of 900, a fixed light source.
1350 and 1800. The mean second order drifting for-

ces and yawing moment were determined
Calculations from the forces measured in the softmooring system. Since the mean yawing

For the calculations of the first moment is derived from the measured lat-

order wave exciting forces, added mass eral forces fore ani aft, and the hori-
and damping coefficients, first order zontal rods containing the force trans-
motion responses and mean second order ducers remain at a fixed distance fore
wave drifting forces and moments, the I aft of the centre of gra vity of the
mean wetted surface of the vessel was vessel, the measured yawing moment ap-
subdivided in 138 facets as is shown in plies to a vOLtLcal axis through G and
Fig 1. For the calculation of the rela- not to the vertical axis OX3 of the
tive wave height contribution to the fixed 0X1X2X3 system of axes. In ordermean second order forces, the water line to make a proper comparison between cai-

was subdivided in 48 length elements, the culations and measurements, the calcula-
lenth of each element corresponding to tions of the yawing moment are carried
the length of the facet below. The rela- out for the same axes. This means that
tive wave height was calculated at the in eqn. (20) the last term is omitted.

During the tests with the captive model,

139



the model was connected to a rigid six waves), the mean longitudinal and later-
component force transducer as shown in al forces ana yawing moment are shown in
Fig 3. The forces and moments measured Fig 29 through Fig 31. The calculated
in the transducers were transformed to mean longitudinal force predicts peak
apply to the body axes through G. Force values at roll and pitch resonance which
measurements were carried out using appear to be confirmed by the measure-
strain qauge transducers. ments. Some scattering 'f the measured

data occurs at higher frequencies.
Test conditions. Both series of tests The calculated mean lateral force

were carried out for a range of frequen- predicts a peak at roll resonance only.
cies from 0.3 rad/see to 1.1 rad/sec full Unfortunately, no measurements were
scale and for wave directions of 900 available at this frequency to confirm
(beam waves), 1350 (how quartering waves) this peak. Considering, however, the
and 1800 (head waves) overall agreement, the occurence of this

peak is felt to be realistic.
Recording and analysis of measure- The experimental values of the mean

ments. The measured signals were record- yawing moment in quartering waves (135c
ed on FM magnetic tape and subjected to are calculated from the difference be-
harmonic ,nalysis. tween the lateral forces measured fore

and aft (see Fig 2). This yawing mcmeut
Results of Measurements and Calculations is small and consequently the accuracy

of the measurements is less for this
The results of measurements and cal- quantity.

culations are shown in Fig 4 through In order to show the effect of the
Fig 32. In Fig 33 and Fig 34 a break- four components in the mean wave drift-
down is given of the calculated mean ing force given in eqn. (19), a break-
longitudinal and transverse drifting down of the mean longitudinal force in
forces in head waves and beam waves re- head waves and the mean lateral force
spectively while Fig 35 and Fig 36 show in beam waves is given in Fig 33 and
the calculated mean vertical wave drift- Fig 34 respectively, The numerals I to
ing forces. IV shown in these Figures refer to the

first, second, third and fourth terms
Discussion of the results in equation (19). In both cases, it is

seen that the contribution due to the
First order wave exciting forces and mo- relative wave height is dominant. The
mentr contributions due to the product of mo-

tion and angular displacements have, as
In general, the agreement between may be expected, largest values when

calculations and measurements is good. there is a considerable amount of mo-
In all cases the trends suggested by tion risponse. At higher frequencies
the measurements are predicted by the these contributions vanish and only the
calculations. For a wave direction of relative wave height and the second or-
1800 (head waves) the agreement is bet- der pressure due to the fluid velocity
ter than for the other wave directions, remain. For frequencies tending to in-

finity the vessel acts as a vertical
First order motions wall. In this case the relative wave

height concribution is double the velo-
Here again the agreement between the- city contribution, the sign being oppo-

ory and experiment is good. As is usual, site. This i!l confirmed by the trend of
the roll motions, at the resonance fre- the calculations.
quency for beam waves (900) and quarter- The calculated mean vertical drift
ing waves (1350), are overestimated by forces shown in Fig 35 and Fig 36 are
the calculations due to the omission of small and will not result in a signifi.-
the effect of viscous damping which oc- cant change in draft of this vessel. In
curs in reality, the case of floating structures with

relatively small waterplane areas the
Mean second order wave drifting forces change of draft due to this force need
and yaw moment not Le insignificant as has bean found

from model tests.
The agreement between measurements

and calculations is, considering the Conclusions
magnitude of the forces involved, good.
The agreement is beat for the longitu- The results of the investigation
dinal force shown in Fig 32 for a wave have confirmed again that accurate pre-
direction of 1800 (head waves). dictiona can be made of the first order

For a wave direction of 900 (beam motions in rejular waves of a floating
waves) the calculations predict a high body by means of a three dimensiond)
value of the mean lateral force at roll singularity diztribution on the body
resonance (see Fig 28). This is due to surface in its equilibrium position.
the fact that the first order roll mo- The method of direct integration
tion is overestimated by the calcula- over the wettel part of the hull of all
tiona. contributions to the second order wave

For waves from 1350 (quartering exciting forces and moments leads to
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results which are confirmed to a large ics of marine vehicles and struc-

extent by the results of the model tests. tures in waves, London, 1974.

Results of calculations show that,
in the case of horizontal forces on the 7 Pinkster, J.A.;

body, the mean second order wave drift "Low frequency second order wave

forces are predominantly due to the con- forces on vessels moored at sea".

trlution originating from the relative Eleventh zymposium on naval hydro-

wave height. Contributions due to second dyna;ic , London, 1976.

order pressures on the hull counteract
the relative wave height contribution 8 Wehausen, J.V., Laitone, E.V.;

and are directed into the incoming waves. "Handbuch der Physik". Vol. 9,

The predominance of the effect of the Springer Verlag, Berlin 1960.

relative wave height has also been noted
in previous investigations concerning 9 John, F.;

the low frequency surge motions of a moor- "On the motion of floating bodies".

ed barge in irregular waves (see ref [7]. Comm. on pure and applied mathema-

A direct, practical, application of tics, Part I : 2, 1949, pp. 13-57;

the theoretical formulation for the sec- Part II : 3, 1950, pp. 45-100.

ond order wave drifting forces is being
investigated at present at the NSMB. 10 Stoker, J.J.;

This involves the instantaneous evalua- "Water waves".

tion of the relative wave height contri- Interscience publishers INC.,

bution to the second order, low frequen- New York, 1957.

cy, longitudinal and lateral forces and
yawing moment through the measurement of 11 Joseph, D.D.;

the relative wave height at a numbei of "Domain perturbations: the nigher

points along the waterline of a station- order theory of infinitesimal water

ary vessel in arbitrary wave conditions. waves". Arch. Rational Mech. Anal.

In this way, a partial wave feed forward Vol. 51 (295-303) 1973.

control signal is generated which may be
of practical use in, for instance, dy-
namic positioning of vessels in irregu-
lar waves.
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Appendix: Second order wave forces on a and
body floating in waves

all = cos x5 c"':6
For the determination of the second a12 = sin x4 sinx 5 cosx 6 - CosX 4 sinx6

order wave drifting forces and moments a13 = cosx4 sinx 5 cosx6 + ainx4 sinx 6
it is first assumed that the body is a21 = cosx 5 sinx6
floating in arbitrary irregular waves, a22 = sinx 4 sinx 5 sinx6 + cosx4 coax 6
Although this is not necessary for the a23 = cosx4 sinx5 sinx6 - sinx4 coax 6
determination of the mean drifting force a31 = - sinx 5
in regular waves, it has been followed a32 = sinx4 coSx5
here since the expressions derived will a33 = coax 4 cosx 5  (23)
be more general. The restriction to
regular waves will be introduced at the If all angular displacement are zero R
end. becomes

Co--ordinate systems R = R 0)= 1
L o (24)

Use is made of three systems 
of co-

ordinate axes (see Fig 37). The first is If the body is carrying out small am-
a right handed system of Cxlx2x3 body plitude motions the linearized (first
axes with as origin the centre of gra- order) displacements follow from
vity G and with positive Gx3 axis ver-
tically upwards in the mean position of ]= X

1
)+ R(

1
). 2

the oscillating vessel. The surface of 
(

the hull is uniquely defined relative where
to this system of axes. A point on the 0 -X( x)

surface has as position the vector x. 5
The orientation of a surface element in R (1)= x

(
l
)  

0 -X
(

this system of axes Js defined by the
outward pointing normal vector n . In x(1) x() 0 { (26)
the development of the expressions for 5 4
the wave drifting forces we assume that If the body is carrying out motions which
the motions of the body consist of a are a combination of first or~ttr motions
part which is due to the first order and small, low frequency motions induced
wave exciting forces (motions indicated by the second order wave drifting forces,
by (1)) and a part which is due to the the second order displacements follow from:
second order wave exciting forces (mo-
tions indicated by (2)). R(2)= R() (2). (27)

The second system of co-ordinate g
axes is a GxI XIX system with the centre
of gravity as origin. The Cx axis coin- where
cides yith the Gx axis of t(e body axes. w b b b
The GX3 axis is at all times vertically 11 1
upwards. The GXl axis is at all times (2) b b
horizontal and at right angles to both R b 21  22  23
Gx! and GXl axes. The angular displace- b2

meA ts of t~e body x.,x 5,xI (roll, pitch, b3 b31  b32  (28)
yaw) are about the 6xi, 'G 2 and GXJ axes
respectively, in which:

The third system of co-ordinate axes 2 2
is a fixed righthanded OXIX X3 system b - _ (x 51 6
whlc .oincides with the Gxlx 2x3 and (2 ) (1 )
GxX X systems when the vessel is In b12 -- x 6 + x
the mean position. The linear motions
X of the centre of gravity of the vessel b -)+ (2)x(x
a~e defined relative to this system of b13 5 4 6
axes.(2

The position vector relative to the b2 1  x 6
fixed system of axes of any point on - 2 2
the hull which has the position vector x _(x()+ x11)
relative to the body axes follows from 22 x6

( 2)+ x (x( )

X - Xg + R.x (21) b23  4 5 6

where R is the matrix: b3  -
5

a(2)
U 1: :12 &13 b 3. -s
a21  ~22 423 h -3 ( (1) 2+ (1(2

a1 a 32  a3 (22) 4 5(29)
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Fluid motions Using the small amplitude motion
assumption the pressure in the instan-

The fluid domain is bounded by the free taneous position may be given in terms
surface, the surface of the body and the of the derivatives of $ in the mean po-
sea floor. Assuming that the fluid is sition. Up to second order the pressure
inviscid, irrotational, homogeneous and p becomes:
incompressible, the fluid motion may be (o) (1)+c2,(2)
described by means of the velocity po- p = + rp p (36)
tential € rLl] :

( (where:

=CO(ij+ 2 (2)+ ... (30) p ()= -pg(X 3-d) (37)

The potentials are defined relative to p(1) M- (1)the fixed system of OX X X. axes = g 4 (38)

The first order polential P" con-
sists of the sum of three potentials p2= -gX (( ())
associated with the undisturbed incoming 1 i

2
_P,(2

waves, the diffracted waves and waves due _ t)-l (39)
to the first order body motion respec-
tively: Up to now we have assumed that the point

is moving within the fluid domain. The
w() =()+ 0(1) +() (31) same expression will be used to deter-
w d bmine the pressure on a point on the hull

Both the first and second order poten- of the body. This means that derivatives
tial must satisfy the equation of con- of the potentials are taken at the mean
tinulty within the fluid domain and to position of the hull which is alterna-
tirst and second order respectively the tely within and outside the actual fluid
boundary condition on the moving sur- domain. This appears to he permissible
face of the body and the fixed horizon- if the potential functions are suffi-
tal surface of the sea-floor. ciently "smooth" at the boundaries (see

The boundary condition at the mean ref. [ii] ). This is assumed to be sat-
free surface becomes: isfied in this care.

( ) = 0 (32) fluid forces on the body
x 3  tt

(2) The forces exerted on the body, rel-
gO(2) + 2( = _24(1).5(I) ative to the fixed OX1X2X3 system ofx3  tt t axis follow from:

+ ( %0 (g) ) + !I.( -

g t x3 x3 g ttx3  F = -ff p N dS (40)
S

For derivation of eqn. 32 and eqn. 33 where S is the instantaneous wetted sur-
see for instance ref. [10] - face and N is the instantaneous normal

Since this paper is concerned with vector of the surface element iS rela-
the first order and mean second order tive to the fixed system of axes and p
forces in regular waves , the is the pressure given in eqn. 36.
second order potential 0(2) contribution Since the budy is moving in all six
disappears, (see ref. [5]). For furtper degrees of freedom, N is also an oscil-
details of boundary condition for 0 1) lating quantity of the following form:
and its components see for instance - -(o) -(1) 2-)2)
ref. [4] . N=N +rN + (41)

Pressure in a point mooring within the where N(o) is the normal vector relative
fluid domain to the fixed system of axes in the mean

position and hence equal to the normal
We consider a point witin the fluid vector n ry ttive to the body axes

domain with mean position R 0) relative Gx1x 2 . N is an oscillatory compo-
to the fixed system of axes OX X2X. We nent of N due to first order oscillatory
furthermore assume t:at the poInt Is angular displacements.
carrying out small oscillations relative -(1) ).
to tize mean position: R " (42)

S(O)X+ X(1),,'2X(2) (34) in which R
(
) is according to eqn. 26

A siTfar equation to 42 may be set
The pressurb in the moving point follows up for N :
from the Berno'.li equation: 0(2) R (2). (43)

-= pg(X 3 - )Pt 1 (35)
Cin which R(2) is iccording to eqn. 28

where (X3 - d) denotes Itc instantaneous The instantaneous wetted surface S
vertical distance blow the moan free sur- may be split up into a mean surface S
face and 0 and ito derivatives are taken extending up to the mean waterline of

0

at the instanitaneous position. the vessel and an oscillatory part a

i.a



whicn is continually submerging and order wave forces calculated at the
emerging. centre of gravity of the body. From the

The expression for the fluid force afore qoing it is clear that in order
then becomes: to be able to determine the second order

force, the complete solution to the
= -f! p N dS - if p N dS (44) first order excitation must be known.

S s The method used for this is discussed
0 in the paper.

Substitution of the pressure p a2 given
in eqn 36 and the normal vector N given Mean second order force in regular waves
in eqn. 41 gives:

-_f(p(0)+C (1)+ 2 (2))(- + C(1) Up to now, t.e approach has been asp p n general as possible in that no restric-
So  tions were placed on the nature of in-

r22p(o)+,:p(1)+,2p(2) coming waves. We will now place the re-+r'N(2))dS -'
)df-p +Fp p striction that the incoming waves are

s regulif. In that case the contribution
-(1)+2-() 1of 6- to the second order force given+tN(+tN()dS (45) in eqn. 49 diqappears (see ref. [51 ).

We will also disregard the second order
Integration of the various components in hydrostatic reaction term since this is
45 using eqn. 37, 38, 39 and 42 and in fact a reaction force due to second
taking into acount that the surface s is order displacements under the influence
an oscillating quantity gives the follow- of the mean second order wave exciting
ing result for the total fluid force up force which then follows from:
to the second order: lj

-() (1 2(2 (2). -.g~ dl -f- ndlF = F)+tF(1) F2 (46) WL

where. -tf-n((1) I'))dS+M.R(1).R
11)

- g(X -d)n SS (47) (53)
3O where the heavy bar indicates the time

0 average of )he quantity under the bar.
P)= -if -pgx~l ) -ds-!I o(- dS

so 3 S d (48) Mean second order moments in-reular
2 d 0- 2d waves

WL S The mean second order moments about
0 the axes of the fixed OX1X2X3 system of

_ifr~(().v6(i )ds_;_m6(2)cdS axes are found by the same developmentt~ 1 t
t t as was used for the forces. We give here

O the final results:

3 ndS (49) R(2) _ Spg ( - ( ) 1

in which: 0 WL 0
xx(2 x 21  xI II X5o (xx )ds-!..'-_p~ l: (R 1 1) ( ri)dS

g - 4 . t

and R M is according to eqn. 26Equation 47, 48 and 49 give the to-- .R(1) ()- X(1) (1) (54)
tal hydrostatic, first order and second . q
order fluid forces acting on the body where:
oscillating under the influence of Ieo. 4 1 46
The f t and second order foces F 4 46
and F contain not only the wave ex- 1 0 1 5 U
citing forces but also the hydrostatic -1 o 1 (55)
and hydrodynamic reaction ferces due to 64
body motions in first and second order n . " l
respectfvely. As such the term contain- athe tarmt invner ng Ilar ac, eerto
ing F in eqn. 49 may be simplified by (|tf
using the following relatinahp rectoYTnd R(1 is according to eqn. 26

and F according to eqn. 51.
S

() Nomenclature

where: frequency in rad/sec.

ook  first order linear motiono for0i0 0 ,, k- 1,2,3M. [ m (5)ols rdranua motions

x first order linear motion , c-and by nare the !irst order notions of tor in fixed system of axes
the bogy under the Influence of the first i(t) first order angular motion vec-

a
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I 1tor about GxXX 2 axes mean free surface in restposition.
2(<) first order liner motion vec-
g tor of centre of gravity in

fixed system of axes
x position vector of a point re-

lative to body axes
normal vector defined relative
to body axes

R normal vector defined relative

(1) to fixed system of axes

k, first ordey fngular motion
about Gx X X axes )?r k=4, 5,
6. Componet of R(, 5

R Transformation matrix contain-
ing ?ncular motions about
Gx X X axes

R po~iiAn vector in fixed system
of axes

R(o) constant part of position vec-
tor in fixed system of axes
second order linear motion
vector ir fixed system of axes

X(k) second order linear displace-
ments in fixed system of axes
fl)k= 1,2,3. Components of

( 2 X -
(2k second ordTrlangular motion

about Gx XX 1 axes for k=4,5,6
due to sc6nd order wave forces

m mass of body
14'15,16 mass moments of inertia

146'164 products of inertia

(1) first order relative wave
height in a point along the
mean waterline

S instantaneous wetted surface
so  mean wetted surface
s periodically emerging and sub-

merging part of wetted surface
S

W, waterline
ds element of surface S, S or s
dl length element of waterline
0 specific mass of fluid
g acceleration of gravity
X2I X1223 first order wave exciting mo-

ments about OX , OX, OX axes
respectively of the2fixeA
system of axes

S total potential describing
(1), (2) fluid motion

0 first and second order approx-
imations for the total potenm-
tial S

- - a small parameter r < I
FIF 2 ,F3  mean second order wave exci-

ting forces along the OX ,OX2
and OX axes respectivel Ot

the fied system of axes
M3 mean second order wave exci-

ting yaw moment about a ver-
tical axis through the centre
of gravity G of the body

to wave amplitude

k wave nmiber
V displaced volume of the barge
L length of the barge
B breadth of f"'! barge
d Vertical distance of G below
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x3  x3

GI Xl"X

5 METRES 5 METRES-'

LENGTH 150 METRES
BREADTH 50 METRES

DRAFT 10 METRES

x2

. .. . . . . . . ..

FIG, 1! BODY PLAN OF LAY BARGE INCLUDING

FACET AND CONTROL POINT DISTRIBUTION

X2, 12 x 3

180*

BALL-JOINT- G

-FORCE TRANSDUCER

-SPRING 135

1go.

FIG. 2: SET-UP FOR TESTS TO DETERMINE MOTION$ AND MEAN DRIFT FORCES
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I \BARGE

\ RIGID 6-COMPONENT

FORCE TRANSDUCER

UNIT ATTACHED TO CARRIAGE

. |'FORCE TRANSDUCER

~+X2 ~BARGE

FIG, 3: SET-UP FOR WAVE FORCE TESTS
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DISCUSSIONS
of three paper'

NUMERICAL SOLUTION OF THE NEUMANN KELVIN PROBLEM
BY THE METHOD OF SIIIGULARITIES
P. Gubvel, G. Delhommeau ant J.P. Cordonnier

COMPUTATIONS OF THREE-DIMENSIONAL SHIP-MOTIONS WITH FORWARD SPEED
Ming-Shun Chang

COMPUTATION OF THE FIRST AND SECOND ORDER WAVE FORCES ON
OSCILLATING BODIES IN REGULAR WAVES

J.A. Pinkater and G. van Oortmerssen

Invited Discussion potential which is singular at an interior point.
Since interior potentials have no actual physical

F. Ursell meaning they need not be bounded or even defined
University of Manchester everywhere inside the body.) These equations

may have very different numerical properties.
(iii) The solution procedure breaks down at the

I shall discuss mainly the paper by Miss irregular frequencie- at which the Fredholm de-
Chang but my comments are in fact applicable to terminant is zero, but different integral equa-
several other papers concerned with linear equa- tions in general have different Fredholm
tions, and perhaps also to non-linear equations. determinant; and different irregular frequencies.
To fix ideas I shall confine myself to zero With some care the equation can be arranged so
speed, that the Fredholm determinant is not zero in the

frequency range of interest. (I suspect that
To derive her integral equations, Miss Chang at zero speed Miss Chang's equation does lead

uses interior potentials. In particular, let us to irregular frequencies.) Much less is known
consider ths integral rep-esentation quoted in aboit forward speed.
her abstract, which can be derived in the follow- (iv) At the present time many workers, includ-
ing way. Let o, be the potential function de- ing Miss Chang. have gained much valuable ex-
fined out;ide the body; we want the values of 0o perience with various forrnulationn of wave
on the boty. Two integral relations are obtained problems, all mathematically valid. What is
by aoplying Green's theorem twice, first to the desirable now is a comparative study of the
wave source G and a simple potential function oi relative merits of these methods, and I believe
defined everywhere inside the body, secondly to that a knowledge of mathematical theory will be
G and the potential function *, defined outside very helpful here. In our paper at this confer-
the body. (On the body we have so /in 

= 
Ri/an. ence, Philip Sayer and I have made a first at-

By combinirg the two integral relations the'di- tempt at such a comparison; see our Table I. We
pole representation givun in the abstract is ob- realize that this is only a modest beginning.
tamned: The interior potential 0.(P) can be If more studies of this kind could be undertaken,
reprer-tcd by a distribution oflwave dipoles by Miss Chang and other experienced workers
over ' body closed by a lid, and the dipole present here, and if we could receive reports
stre, on the body is seen t Involve the at later conferences, I believe that these would
value,, of € on the body. 'A similar expression prove to be of great value.
can be gives for the exterior potential.)

Now let the point P approach re boundary Discussion
of the body from the inside. Then the represen- E'y Rnan
tatiun becomes an integral equation which is of paper by M.S. Chang
actually a Fredholm equation of the second kind
although this is vot immediately evident. If lne results shown in this paper are very
P were not made to approach te boundary, then impressive, but not too surprising. It is well
the integral equation would be an equation of known that the strip theory gives good predic-
the first kind. tions of ship motion characteristics only for

high frequencies, and for zero speed the compari-
I wish to make the follrwing points. sons shown here with exact three-dimensional

(I) There is a complete mathematical theory for calculations are qualitatively similar to various
the solution of equations of the second kind previous studies. The use of the strip-theory
whereas for equations of the first kind little forward-speed corrections in conjunction with
is known about existence and uniqueness of solu- the three-dimensional zero-speed damping and
tions. added-ma s coefficients is inconsistent, and the
(iI) When p, is required on the body there are resulting poor comparison with experiments is
infinitely many ways of formulating equations of to be xnected. But, Dr. Chang is to be con-
the second kind for this unknown function. (Miss gratulated for going on to solve the forward-
Chang, for instance, uses a simple interior po- speed problem with the correct free-surface
tential defined throughout the interior of the condition and source potential. The resulting
body, whil,? Sayer and myself use a wave source agreement with exper~ments is generally satis-
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factory, although some discrepancies remain to curried out by Kobayashi of Mitsui Shipbuilding
be explained. On the whole, this is a milestone Co. However, his results suffer from strong
in the study of ship motions, and the author criticism: first, that the formulation is not
deserves credit for this accomplishment. consistent, and second, that it neglects the

line integral that must appear at the intersec-
tion of the hull surface and the undisturbed

Discussion free surface.
by H. Maruo
of paper by M.S. Chang

Discussion
The author has carried out an elaborate by V.Kayo

computation using the method of singularity dis- of paper by P. Guevel, G. Delhomeau ano
tributions over the hull surface of an oscillat- J.P. Cordonnier
ing ship. I know of a similar calculation that
was made by Takagi of Hitachi Shipbuilding Co. In a previous paper (Int. Shipb. Progress,
He told me that it was not easy to attain a vol. 21, 1974, pp. 311-324), one of the authors
satisfactory accuracy by a numerical method of proposed a wave-making resistance formula when
this kind in spite of the tedious and time- the double-body potential is used as the zero-
conslsing calculation. On the other hand, it order approximation:
is known that the strip method shows deviations
from the measured result at lower wave numbers Rw - 8nWpcj'iH(6,,% sec

2 
0)1

2 
sec" ado

due to the three-dimensional effect. Therefore
some improvement of the calculation method is 2
needed, and the present work may suffice for this where a20f32

purpose. However, from the practical point of H(c 0 sec
2 
H) = X2

view, the computer time should be as short as
possible. The three-dimens'onal effect in the exp [-iKo sec

2 
o(x cos S + y sin e)] dxdy.(1)

hydrodynamic forces on an oscillating ship can
be taken into account quite easily by applica- The modified Kochin function H, defined above,
tion of the slender-ship theory. I believe this is determined by the source distribution
allows much simpler compulation than the purely
numerical method of the present work. The basic 21,
formula for the slender shi, oscillating with 5 x2
zero for-ward speed is the following expression
for the velocity potential: which is spread over the entire free surface

(20) 1 " z 0 3. Since the double-body potential *1 is
*= +i4'+Kz)Ja,(x')N(Klx-x'l)sgn(x arbitrary inside the body, we heve various

J values of
-x ')d x , 2 1

where 0 X2
N(U) =-y - ',n2u + 1 H,(u')du'

2u + on z = 0 inside the body. Therefore the wave-

u making resistance deriv-d fro (1) is indeter-+jJo(u')d vi J(u')du'. minate.

fo Since the fluid domain inside the body is
,(2D) is the two-dimensional solution for an independent of the exterior one, the indeter-
oscillating cylinder and ao(x) is the source term minacy of the wave-making resistance can be
in the expansion of the two-dimensional poten- eliminated by the proper use of Green's formula
tial. The boundary-value problem on the hull for the double-body potential field inside the
surface is formulated in the form body.
i(2D) "U() - W(.)jn, The result, in the form of the correspond-

'n Ing Kochin function, is
where U(x) is the relative vertical velocity of
a section anJ n. the z-component of the direc- H(o,K sec

2 
a) 1

tion cosines of the normal. It can be easily f a F
t
izso

understood that the three-dimensional effect
appears in the function W(x) which is similar to
the induced velocity of wing theory. I calcu- exp (-iK, sec

2 
e(x cos A + y sin o) ] dxdy (2)

lated a numerical example for a Seriss 60, C where SL is the free surface outside the body.0.7 model. The result for the added mss e weeS stefe ufc usd h oy
This Kochin function is independent of the kindand damping in heave is shown in the figure and f singularities used to represent the double-

denoted as the "improved slender-ship theory." body. It may be seen that the wave-akingThe "original slender-ship theory" means the 'esistance from (2) is determined uniquely. A
result obtained by the formula Introduced in eitn fo(2isdernduiqly Arewma'su obtaied. b the onica ntrodc d idetailed discussion of tnis method can be found
oean's eview.r hus t he ruaanlytic me to nin my paper entitled "A note on the uniqueness
of the sle.der-ship formula can serve as ani of wave-making resistance when the double-body
accurate prediction method for practical pur- ote-a I s sa the dobaprbimy
poses. So far we have considered the case of potential is us bed as the zero-order approxmee-zeroforardspee. Fr te cae o fiitetin"' which is to be read at the joint eeting
zero forward seed. For the case of finite of the three Japanese Societies of Naval Archi-
forward speed, similar calculati,,ns have been tects in November 1977.
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Discussion specified on the closed boundary SB + SF1.
by- YKusaka
of paper by P. Guevel, G. Delhommeau and It is nice to see that the heave-damping
J.P. Cordonnier and added-mass coefficients obtained by Dr. Maruo

are also in very good agreement with the experi-
The discusser wishes to express his respects mental data. However, one has to bear in mind

to the authors for their efforts to obtain a that slender-ship theory is not as general as
numerical solution of the Neumann-Kelvin problem. three-dimensional theory. Mostly it will not
It took more than 10 hours of computer time for work well for coefficients for horizontal modes
the discusser to obtain only one solution of of the motion, even at zero-forward speed. More-
this problem using the very large and high-speed over, in my opinion, the method of slender-ship
computer HITAC 8800/8700. As the authors also theory is not as analytical as Dr. Maruo states
point out in their paper, it's necessary to find it to be; numerical computations using slender-
out the new formulation of the influence coef- ship theory require the evaluation of the func-
ficients. However, from the discusser's experi- tions J , Yo, and H^, which is similar to
ence, the interpolation method seems very evaluatYons require

2 
in the three-dimensional

dangerous because of the oscillatory character- method.
istic of that coefficient.

The discusser has been very interested in
the uniqueness of the solution of Neumann-Kelvin
problem. It seems very difficult to prove
uniqueness by mathematical methods. Consequently
the discusser believes it's necessary to create
numerical techniques that can convince one of the
uniqueness of this problem.

Author's Repy
by .S.ChRng
to discussions by F. Ursell and H. Maruo

I would like to thank both discussers of my
paper for their interesting comments. It is
interesting that Professor Ursell, as a formal
discusser, chooses the particular subject of
"irregular frequency" for discussion. I believe
that Professor Ursell must have some interest-
ing thoughts on the subject and I look forward
to reading his paper.

The problem of "irregular frequency" as-
sociated with the two-dimensional source method
has been known for many years. Not only has
the cause of this problem been known, but also
simple remedies have been established. I will
not discuss this in detail at this time. How-
ever, it is worthwhile to note that Professor
Ursell's choice of using the inner-potential
method to demonstrate his point appears to be
misleading; the inner-potential method that
Dr. Pien and I applied has a unique inner poten-
tial and is not subject to the problem of
"irregular frequency." Our inner-potential
method determines the doublet distribution D(Q)
from an inner potential * (P) that is specified
on the closed contour SB + S F by the equation

i(P) fS D(Q)K(P.Q)dS(Q);P ,csB+S Fi,+ SF

From potential theory, D has to be unique,
unless the outside potential is non-unique. One
should not confuse thls inner-potential method
with the mathematical model

#l(P) -f D(Q)K(PQ)dS(Q); PQcS8
(2)

for in the latter model, #1(P) is specified only
on S It is wellknown thAt the "irregular
freqjency" does exist In this model--because in
this mathematical model the inner potential is

Is..



HYBRID INTEGRAL-EQUATION METHOD
FORTHE

STEADY SHIP-WAVE PROBLEM

Ronald W. Young and Yann C. Bouger
Massachusetts Institute of Technology

Cambridge, Massachusetts

ABSTRACT cylinder remained unsolved until much later when
the modern digital computer became avallable.

This p3per presents a novel integral- Glesing and Smith (1967) tackled this by

equation technique for solving the steady- distributing on the body contour the traditional

state wava-resistance problem. The free- wave sources, which satisfies the free-sLrface

surface condition in linearized, but the body condition. By applying the body boundary
condition, an Integral equation for the sourcecondition is satisfied exactly. An integral density was obtained. This was solved

relation describing the flow inside an
arbitrarily truncated internal region is first numerically and they presented some sample

obtained by applying Green's Theorem, using results for flow about hydrofoils, Including

only thz simple source function for an ones with slotted flaps. The relative impor-

infinite fluid. The internal flow is next tance of the exact body boundary condition
matched with eigen expansions in the npstream versus the exact free-surface concition was
and do wtream outer regions. The radiation examined by Tuck (1965) and Salvesen (1969).

and owntrea ouer egios. he rdiaion Both noted the importance of nonlinearities

condition can be satisfied exactly simply by Bointed the fra-curf onition hen
aassociated with the free-surface condition vhenouter regions. ohe method is applied to the conventional Froude number is large. But,
investigate flo s about both lifting and non- for Froude numbers asociated with the operation
lifting two dimensional bodies. Agreement speeds of most surface vessels, the exact satis-
with existing results is excellent. The faction of the body condition appears important

present formulation provides a simple yet (add, 1976).

rational basis for tackling the practical Recently, a number of numerical methods,
three-dimensional ahip--wave problem, successfully applied In other branches of

applied science, are being employed to solve
I. INTRODUCTION free-surface flow probleme,with the aim oi

tackling the fully nonlinear free-surface
The practical importance of the problem condition. The numerical anelysts were faced

of predicting the lift and drag of a body with two obstacles, one being that the fluid
moving in or near a free surface in well domain is infinite, the other being the
known. Much attention has been devoted difficulty of implementing the steady-state
to the subject matter in recent literature, radiation condition numerically. Most workers
This paper describes a novel integral-equnttion circumvent the necessity of applying a radia-
formulation for tackling the steady-atate tion condition by using an initiat-value
problem with a linearized free-serf ive but formulation; see, for example, Chan &
exact body boundary condition. Emphasis iS Stuhmiller (1976) and ilaussling and Van
placed on validating the numerical formulation Eeltine (1976). However, if only the steady-
by applying it to obtaltt flow solutions for state results are desired, such a formulation
various two-dimensional bodies. The formula- is computationally lengthy. In addition, the
tion permits the body to have cirt'nlatior, if final steady-state results may suffer from

present. The extension of the pre,-snt method the problem cf error accumulation and
to three-dimensional problems w!ill Alo be numerical instability. Moreover, unless a
discussed. proper flow-through condition is applied at

the truncation boundaries, the fluid region
A brief review of the literature used in the calculationi will have to be

pertinent to techniques used in solving such enlarged as time progresses. gt ad Young
steady-flow problems i% included here. By (1974), it dovcloping a finite-element varsa-
expanding the solution in an infinite series tional formulation as well as a new integral-
of wave singularities which satlify the tree- equation technique for the time-harmonic zero
surface and r4diatlov condittons, iavelock forward-speed problaem, introduced the concept
(1936) obtained the wave resistance and lift of solution matching at an arbitrary "radia-
force on a circular cylinder in a uniform tion" boundary (see also Chen and Mai, 1974).
streas. His formulation permits the body But the extension o such a technique using a
boundary condition to he atisttfed exactly. finite-olement formulation from time-harmonic
Tile problem of the fle. about an arbitrary type flows to the ccc.s of steady forward
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motion was found to be nontrivial. Mei and motion aO -in2 LU:1Z --t.,
Chen (1976) considered the forward-motion distvrbed sutzee. Lct (x,yt) be
problem as the sum of two ficLitious probiems tiLe uistu' .. P-- - , I t due
that were complex in time: a radiation and a the motlov t ry. -
scattering problem, each of which can be
solved by their earlier hybrid-element
variational method. The two solutions were t' - C .i)
then corbined In such a way that the upstream
waves cancelled. On the contrary, Bai (1975),
who also used finite-element techniquesfound for (x., it t, - Th, inematic
it necessary to use a Galerkin's type formu- boundary -di" o ,at ed on the body
latlon with a rather unusual choice of trial- surface , i,
function and test-function spaces before he
could obtain a unique solution satisfying the
radiation condition.

-. - (2.7)
In this work, the hybrid integral-

equation technique investigated previously by
the first author (Yeung, 1975) for time-hat- whe' U --ed the body and n a
monic problems is extended to tackle the unit -xterl a to e fluid. The bottom
steady-state forward-speed problem. Most oedition I a, nfic. is
interestingly, the extension turned out to be
rather straightforward: the radiation condi-
tion can be satisfied explicitly simply by f(0 (2.3)
omitting wave functions on the upstream outer 

h
region. Further, the problem can be solved
in the real domain without resorting to any
complex-time formulation. The method is kn this m coordinate system, the linear-
thoroughly tested in this paper. Its poten- iced ft- race condition tab's the following
tial is obvious. The remarkably simple form:
formulation can provide a rational mathemati- fOrm
cal basis for solving the more practical
three-dimensional Neumann-Kelvin ship-wave 4 U4.-

2
prbe.+ _ +X'(x'n~t) + gyff (2.4)

2. THE BiUNDARY-VALUE PROBLEM
where g is th, onstant of gravitational

Consider a two-dimensional body under- acceleration. Equation (2.4) is valid for the
going uniorm translation in a fluid of depth general case when the motion is unsteady. If
h . As shown in Figure 1, the body the body undergoes only steady translational
coordinate system Ony Is chosen with the motion parallel to the bottom, then (2.4)
x-axis pointing opposite to the direction ot seduces to

I Ir

YY--h

Figure 1. Coordioste System and tttatooe

SFi

Y--h



where a is an are-length parameter along the

body. This ensures the vanishing of loading
U2 In the neighborhood of the trailing edge (Hess,

Kcx (X,o) + * - 0, K . (2.5) 1975). If the body does not have a sharp
g trailing edge, the potential is continuous

everywhere in the fluid, in which case the cut

For such a caae of ateady flow, the S isoviously' unneceasary.

radiation condition may be stated marlin- The physical quantities that are of in-
maticslly an terest In the steady-state problem are the

ree-surfacc elevation n(x) . wave-resiotane

C- + 0 1) 1and lift force L . By the use of
[c ~ a + 0(1 5553ernoulli's equation, these can be written

1C+~y +. W Y asx-+ (.) In terms of the potential as

nx -U 0(X.o) (2.10)

where W(x,Vy corresponds to a standing wave

pattern. C~ are constants associated with C -P. 4~+-(.1
the UPbLr-.. au down Lream ends. It Is p(2U.11)EF
worthwhile to point out that either C- , 2

or C+ , or i$ at any one point in the fluid2

can be specified arbitrarily, for the g fF1dy
boundary value problem (2.1) to 12.3). (2.5),. ~ ~ ~i,!I~' d (2.12)
and (2.6) can only be determined uniquely to Lx2 d

an arbitrary constant. 0

The mathematical formulation is now
complete. Powevec, to facilitate the process where 5 is the dynamic pressure coefficient.
of seeking a numerical solution, It is con- Note tile L as defited Ine not incluo,~ tile
venient to introduce two artificial vertical hydrostatic force.
boundaries, E+ alid Z- . These will be
called the raiistion boundaries. They 3. THE HYBRID INTEGRAL-EQUATION TECHNIqUE,
separate the inner region enclosing the body
from two outer regions on the upstream and The term hybrid Integral-equation is used
downstream sides. Furthermore, keeping in to designate the numserical formutlation des-
mind that if there is a net circulation cribed below, applications of which wore
around the body, the potential will be dis- initially made to time-harmonic free-surface
continuous In the fluid, we Introdue a flow problema (Yeung, 1975, see also Young.
Riemann type cut Sc joining the trailing 1973). The present approach t,s.onts,
edge of the body to, say, the bottom. Across perhaps, a straightforward concrc"'usl extension
this cut we note that of the previous technique. To cumirarison glib

the traditional integrsl-equation ttrto, of

using the Green function of the problem

is (Ilhausen and Laitona. 196u. S 1) our hybrid
ts +.; -(2.7) mtho is unique In two seinses. first,!:

K Kt formulating the Integral eqotacton -1 tie
simple antics function for an infinite fluid.

lg l/r, is used; second, the originally

-1 + - I' (2.8) external boundary-value prohion is solved an
_'K K an interior problem, but with an appropristl,

matching of the solution between the. incei
cegion and tile -tt legions.

where r io the circulation of the body and
Sdenotes the. two boundary contours 3.1 RepIssvantations of the Solution

At Ico nding the tot. The introduction of
circulation into the problem requires an In the inner region where all g--'.,
additional condition to render the problem compliacrion e nr, the velocit~y pot~knt 1.

uniqoe. A Kutts condition to be applied at # will be der-lbed by (.toil's Thoorg..
the trailing edga to plausible. This may first, let us recall that the following

be stated as identity holds for anv two harmonic funrctfovr
e1 nd t which are cntinuous in a regiton

bounded by th contur P?

I (Ux+*),jppor, - ~(bs+#) (2.wer.

TE.C (29 #oei L - !)~'d--i (0.1'
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where do denotes an infinitesimal arc-length
element along the boundary. We now choose -d(P) + log(rr') + l

*1 to be the unknown potential 4 , and '2
to be log r , where r is the distance be- SF
tween a boundary point Q and a field point
P , vi.. r - l. If S denotes the con-
tour cnclosing the inner region, I.e., I- 1
SouS USBSK"E"UE , (3.1) becomes + log(rr') + nlog(rr') ds

2wo(P) - 0 nlog r d. n log r do (3.2)

4+ +(,.nlog(rr') d + r fnlog(rr')d

where so S+
K

n-) - -Uj nx log(rr')ds , P E S (3.4)

S0
with ((,n) being the variables of inte-
gration along S . Now, by substituting
the conditions (2.2), (2.3), (2.5), (2.7),
and (2.8) into (3.2), we obtain which can be regarded as an integro-differential

equation for 0 on S and S ' 0 and its
normal derivative on , hoever, should be

1n matched with the outer representations, to
2ro(P)-j o 8 r + Kioxlog "I which we now turn our attention.

In the outer regions, which consist of
only vertical and horizontal boundaries, the

solution f+ , on the downstream side, and
4 ~ ~ ~ ~ ~ ~ ~ 0 , ~.lgr- o id on the upstream aide, can be writtenL e On l o simpl) in terms of elgen expansions. By intro-

E+uE- ducing the act of elgen functions which satisfy
(2.1), (2.3), and (2.5), as well as (2.6)
asymptotically, we can write:

+ fo L log r di + j L- log r ds

SB J +a(x,y) - Co* + H (x+) H(I-Fh) x

a i logr+U nxlogrdo (3.3) (A comx+B sninmx)cSh 
(y+h )

0 on f0 cosh moh

S S

+ i Ck o'
*+ 

rcos mk(y+h)
With the exception of the radiation boundaries, k-i
we observe that # is the only unknown
juantity along each boundary. If we are not

studying a flow about an undulating bottom. t
La,. intetral along S can b eliminated by for x < x (3.5)

reflection about the fine y - -h . Other-
:se o 9, should be treated am unknown

like a,.y other boundaries. Proceeding along where H is the heavyside function and Ph is
with the aos.mption that the bottom i flat, the depth-Proude number UAS . The eigen-

' onstruct an Image system below the bottom values %o . tak . k-1, 2, ... are roots
by .,,fining of the trrnscendental equation:

.1 r -lo1, . -E) log
1  

-' +-4 T
r  

.7K - tanh oh (3.6)

--; is an image ,oint about the line where a represents either ma or imk with

y-h . reby, if P . p, t on S , f
-
1 . The values of the coeffilaents A,B,

(3.1 reduc.. to Ad C, , k-O,l,2. .'. . are unknown and have
to bt deterMined from the inner region via

le3



matching. The matching of 4 and 4n at E+ downstream region than the upstreami side .Is

and E- is now accomplished by substituting issaterial in our formulation. This Is

(3.5) into the second integral of (3.4). Thin because (3.7) is an Identity valid everywhere

ensures the continuity uf the normal and tan- on S . Wde note that if P is located on

gential velocities at the juncture boundaries. E±, the first term of (3.7) should be r.-

The final result is giver, by the following placed by the series defined by (3.5) with x

integral identity: evaluated at xt . it is of some interest

to note that the Integrals (3.8) and (3.9)

are completely identical to those studied in

1 the tine-hereonic problem (Yung, 1975) with
-m~P)+ I~-lo~rr) c lo~r') ds the 'rivial exception that the mnk's are

~' given by a different equation. To avoid per-
p forming numerical integration of an oscillatory

function, a closed form solution of (3.9) has
been derived. The details and results are

+ f-log(rr') da + r log(rr') do ie nApedxA

ftn 17n3.2 Dia c etization of Integral Equation
so qc

Discretigation techniques of various

" C a lg~rr)ds C- Rdegrees of sophistication may he used to

o Cjl- logc')d log(rr') da solve (M.). In the previous work associated
E_ with time-harnonic problens, a step discrctiza-

tion along the free surface and the body

boundaries (as well as the fluid bottom, If

-~ it wee not flat) was used. Since the free-
+ A [Io cos inn + Co sin xa surfa ce bo undary condition now contains

0 ~ J tangcntial derivatives of a second order, the

dis cretization function for t~ should he at
least a parabola. For the representation of

" B si1o ocsiiX on SF , we chose to use spline functions,
Lu in ~ 1

no which have the desirable property that the
approximating functions possess continuous
second derivatives everywhere along the entire
range of discretization. Let (Ej,

1
t, ':i

+ ~ (F+C k k(-k+ k be a set of grid points In [, + . The

kit kb kk) potential on the free surface tl(x~o) can
therefore be written as

-U n o( r)d.pvs (,I N F+F-
f~ j n oWc) d* i ))*xo- 5  q (X) (OF) +q9( (3.10)

So N N

where the Integrals Fu,, G0  Fk . are where
defined by

F.

-l( - p) d i .o 
.

i

+~af .Y) ao log, rr epc o s. eqacte
0.(

t  
n *V ae fcus nnsn

(3 .y) sk the,, roato oft the prm eotsdifretatoni

(3.r9)a procedure for thn fuolution of) thean

problem. That there are more unknowns on the
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QjXj 0 X6.Y) 00 _In.)p
0  

X

ror ~ "'1J-1
(3.15)

q,(x 1 )'0 here

fo' IM

( J1 i .n+i

(1.YE0,0c "" r)Llogfrr' de

- dx+ + a

where 6i . he Ki' ecker ... t.'e~- ( O1 Aj)
two consecutiv" 'rid jnts, lhe

and qjo are moyv ru, .. - .f . (3.16)
integriils of 7) on- 'Juct., Ic

1 N .rc. .~ no ) j-1, 2, N denotes

di F ! sy et of, poInt! defir.inj S . With the

I - h" ,f (3.13) and (3.15), ( 3. 7) can nov be
S Fe'.-r- ;ed in terms of a finite number of un-

ko, as follows:

FF

F F, ,v'+ F F F

tqio)~~~~~~ oa +3s~~ r-h + CQ~xyc~yx

Q)~ AIFoco, a x + G sin a ,x)

+ T Inlg rr d + B(F sin mox - Ccos mox)

:11 r] (3.14) + , Gik + +Gk

The integrals iof (3.14) are elemetitary. The -' (n ) F for any P C So
resulting expressions cab be evaluated I0
numerically very expediently. I-i

On the btxindary S , which will he (0.17)
rapr seated b'. stralght-llne segments a, in
Y eang (1975). a scheme Involving aid-point
derotisation of t imued. 'This enable. )(ore, the iiumlirr 0l terms tted in the etj %l
as to write tit third integral of (3. 7) and expansions aire derosted by N- and #1+ , for

the right-hand side (3.7) respectively as the upstream and doowostream outv-r regions
respect ively. The, integral 0) Q.bkye La that
defined by 0.16).
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At this point, we inspect how the un-
knowns are distributed along the boundary.
They are listed as follows:

on Number of Unknowns I
S F: N+2

S: No
0

N++3

* grid point
S ; w-field point

each segment provides ont equation.

Ioterior grid points, i.e., N-2 of them. This
is because tangential derivatives of 0
which occur on S , are not defined in equations. The resulting system then has a
Green's Theorem aV the intersection of unique solution.
SFnE

+  
and Sp.n- . Hence, (3.17) is not

a valid relation at these corner points. In Two relations useful for checking the con-
view of the fact that we are treating the sistency of the numerical results are given
potential on the free surface and that on below. The first is well known and can be
the radiation boundarieu at the' corners derived from energy conservation
as separate unknowns, the proper conditions
should instead be:

n -R7- 1- ;Tnh 61oh (3.19)

dox- ° xn (-(0 '°) , for n-
0
,1,

2

(3.18) where no is the wave amplitude. The second

relates the jump ir the potential at both
infinities, C+o -C- I to the body potential.

Where on t4e left-hand s~de is Riven by This relation was previously conkidered by
(3.10) and 0 are the outer representations Newman (1976). A new derivation, which makes
(3.5). These equalities ensure the continuity uje of the asymptotic behavior of the outer
of the solution up to the second derivatives solutions onlyis given in Appendix B. The
on the free surface. The unknowns on E and identity given below also accounts for the

F- can be determined by applying (3.17) at presee of circulation In the problem:
(N++I) and (N-+l) points on T+ and p-
respectively. The exact locations of theme
points are insignificant since Equation (3.7)
Is en identity. Finally, the Kurt& condition Ct C I~ r(Y + 1h 1- 0 (,x+)nxdo + r~ I EhJh(I-F')
(2.9) provides the additional equation foron L "( h
determining r . Thus, all in all, the SoUS
number of unknowns and conditions are equal.
The applications of the conditions (3.17), (1.20)
(3.18) and (3.19) are illustrated symbolically
in figure 2.

In (3.20), the first integral on the right
We note in pasing that one of the aqua- represents merely the sum of are& enclosed in

tions obtained by applying (3.17) in the the body and that protruded on the bottom.
manner described above will be redundant. This
does not seem so surprising if we recall that 4. RESULTS AND DISCUSSION
the boundary-value problem stated in 5 2 can
only be determined up to an arbitrary constant. A number of rests have been conducted to
Interestingly enough, the redundancy is of an verify the results of our numerical method.
implicit type for no one parti.:ular field We will first show that the real formlation
point is more preferable then the others, described in this papai yields the sain results
However, this redundancy can he easily removed as those obtained by sjperposing two fictitious
by assigning an arbitrary non-sero value to time-hermonic problems, a pro.,edure used
Co- (or C0+) during the reduction stage of the previously by Nei and r'hen (1976).
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In the coplex(-tiae) formulation, one Moreover, they are required to behave
Introduces two fictitious problems Or) and asymptotically like
0(s) as follows:

(r).. (r)±, AYen mX --.-vh o as N + wo
(
r),

s 
(x,y,t).,r

)
.

( s ) 
x.y)eit 0. . C or)..A r h

c(8)+., -ei xh Is x cosb a,(+h)

e time and the spatial functions ( os)m 0 haXar) nd *(s) now correspond to fictitiousI x csh may8 a4,)
rsdiation and scattering potentials respective-C(s) + Te 0oeh
ly. Each of them satisfies (2.1). (2.3) and o cosh m h asx-
(2.5), but

Here, A* can be thought of as the compex
( -un, whereas ( amplitudes of the radiated waves due to a

Fh-0.8 d/a-2 h/a-5

(dimensionat solution for a-l.0 m)
real formulation T -

0 8 981 808v840nW CM *0.!&flop

08 FREE Sw290ct
I - 5.80000 0.5 -~.2..69 0.08803 -5.0088 0.08113" -. om 5.0 -S.30 ' 0.0852 -S.2410 6.01852

S -0. 200 0.5 -5. IsOo 0.0soon -0.ins 0.0089

s 0.10000 0.0 -1.441 -0.041175 -S.35281 -4,0. 80

SLO ~ ~ ~ Ot? -OS OIr .or cu

X' -: .i*i -0.140 05
X .1 0.08089 0.24059

0'T 0.00778 -.8.*1 -0.48500 -. 1106
$$ 0..002 -,. 1 +SO -1.smsn6 -1,8 184
01 0.31290 -1.45080 -. 5081 -2.50 A458 0.40805 -h.55908 -3.35885 -3.30831
58 0+.51181 -. 3,120 -0.2700 -0.2173
0 l -0.20020 -1.55881 -0.0041 -0.O009os -a. 30820 -I.0180 -8.70808 -8.7285)
00 -0,1m1OS) -I. ?1750 -1. 28053 -1. 8801004 -0, 88118 -8.02018 -0.508819 -7, 25078

95 -0.0118 -2.07101 -1.30118 -.. 233

00 -. 101" -. 0020 -0.92110 -0.80082
88 -0.00800 -0. 80000 -5.,200]- -1.0803300 0.0212 -0.107)1 -8.54.02 -0.0914710 0.072S .074 -. 099 2 o
1 0.0 12 -0. 00080 -1. IF018 -3.7039910 0.28520 -0.38920 -0.91802 -.. 81858
73 0.4002 -2.00000 -.1.02O -8.88808
1. 0.08110 -0772 -..2.... .8.2,75

ILOC8I01 C0078T . - CO#

V . 1. .. ... ..o. T.i .. ....... 0.. ......, .0 ..... ......... ... o .... ..............+ .o°
-.l| 0 0.3050 .0.+0°l,1

a0.0010 -08 $ 0,Is0" q8 -0,01928 o. s,. 0.3009 .8024 0.0328 0 -. 0)825 0.0) * -0.05209

0.00117
0 -°,0I92?8° i -O0l|20,1m~ 4 0.98881 0 -0.93859

8•.802 8 -osaoo8 .50 8 -0.O01s10 -o.ssOl° 8o s°,0$01 * - °l 5 0.°023I8 4.88)88 50 -°.0°58a *°I11 -7.088150 0.984

Table I

Coparison cf Solutions Based on seal Formuleti-n
and Complex (-ctms) Pormulacion
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surging motion of the body, R as the
reflection coefficient and T the transmission
coefficient due to an incident wave from 'he
downstream side. Thus, in contrast to the V

1
'°'.

asymptotic behavior described by (2.6) for *2..l.0

the real formulation, these time-harmonic 5/4.3.

problems possess a certain amount of mathe- 2d- .d -d4

matical symmetry on the upstream and downstream

ends. They are ammenable to the solution ios-svro. ,"'t' 520)04

technique described by Yeung (1975) which was ./ ,u- -1.4 .0133 .0112 ."33
well validated. The solution for the original -1,0 .. 1., .90 .1343
steady-state problem can next be obtained by -O.S .37ms .1218 .1244

the relation 5. .33 o7 .3511 .3912
0.5 .2416 .711. .241l

1.0 -. is -.- W13 .. s07

(r) A (s) .o -. -. 6419

which satisfies the radiation condition (2.6) ..V3.9. -6.207 -. 002-.

by construction. The calculations involved
in this approach are considerably lengthier Y . .00.7 -0.)437 7.4603 -0.41 5

than the real formulation described earlier

in § 3, but the procedure was nevertheless
programmed to provide a consistency cbeck of -.0 0.3100 .3134 4.311

our results. Table I compiles the solutions
of a uniform subcritical flow about a cir-
cular cylinder with its center submerged at - .7773 .W071 .7100
two times its radius. Results for both the c-.- ' -.0.5
real and complex formulations are shown side 4 .06 .0316 .3246
by side for the purpose of comparison. Within a-3.d -. M011 -. 5 -..40
the accuracy of a 6 significant-figure machine (,4 -.00 -,0005 .,0010
(IBM-360), it is clear that the two sets of
numbers are practically identical. This t.,.,a -.n -. 0,6t0

provides the evidence that the Integral- .075 0

equation technique discussed in this paper can
be used to solve the steady-state problem in 3,-11,2 -.043 .326 -.0750

the real domain without resorting to the note c' , 0077 ,,00,4 2

complicated and expensive complex-time forrmo- '.-'
4  

. .oon .oo'
lation.

Table 2.
Next, a uniqueness check on the co- Solution of Flow shout Circular Cylinder

efficients of the eigen expansion was conducted for Different Values of y
4 " 

and F-
in the following fashion. The problem of the
flow about a circular cylinder is solved thrice
with three different locations of the radiation
boundaries, E + and E - . A correct formula-
tion should yield the same solution regardless
of the location of these boundaries. Table 2 resistance and lift coefficients are in very

Is a collection of the numerical cesults good agreement with the results of Mel and
obtained by using the firmulation in § 3 for Chen (1976). Comparing with Havelock's (1916)

xf /a =. .2, - 4, t8, where a l the radius lvflntte-depth results, one may notice that the
of the cylinder. Note the excellent agreement fluid bottom has a stronger Influence on the
of the predicted free-surface elevation wave resistance than the lift for this par-
n(x)/d among all 3 cases. The coefficients of titcular configuration. The wave pattern for
the eigen expansion are also quite consistent, i oupercritical case or the smiqo conflgureti'n
although the s'curacy of the higher-order co- is shown in Figure lb In which one notices
efficlents in the expansion tend to detertoiati, that only r local disturbance exists. Once
as x+ or x- becomes large. In view of again, the lift force is in good agreement
the fact that the solution in the outer region with Mel and Chin (1476). In checking our
is always dominated by the first few terms, computed results. it was noticed that Bat's
clue to the exponential decaying factor In (1975) published results for the vertical
front of CU In (3,5), such inaccuracies force coefficient was In error while lis
hsve little overall etrect .2 the nouIutil'. resistance coefficient was In apparent agree-

ment with the present authors and Met and Chen.

In Figure In, the velocity potential
and the free-surface elevation correspood to In Figure 4A itod 4., we displav the
a nubcritical flow about a circle submerged results of CR  and CL verso" Vh  for
at two times its radius are plotted. At this ellipoes of various length ratios of minor
particular speed, even though the depth/wave- to major axes. Tht, center of the ellipee is
length ratio Is 0.995, the effect o,' the bottom located at 'me body length beloh the free
is tnut entirely ou-tliibIe. The computpted

le
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Figure 3. Potential and Wave Elevation for Flow About a Circular Cylinder
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surface with the major axis tilted 100 upwards number. When nondimensionalized in the con-
from the horizontal. These results assume the ventional manner, both lift and drag co-
absence of circulatiun in the flow. From the efficients are observed to have turning
figures one notes the rapid decrease in wave points in the subcritical range. For most of
resistance as the body thickness is reduced, the range of the Froude number, the lift
Another interesting feature is that while the coefficient Is considerably lover than the
horizontal force increases monotonically as inflnite-fluid value of 1.08
the speed Increases, the vertical force
reverses its sign at Fh approximately 0.6. S. CONCLUSION
The discontinuity of the linearlzed solution
at the critical Froude number is well known. In this paper, a novel Integral-equation
This can be remedied only by considering a method of solving the steady-state shim-wave

non-linear solution of the problem, problem with the linearized free-surface and
exact-body condition is presented. The method

For a body with circulation, our forzu- is tested for lifting- and non-lifting flows
lation was tested by calculating the flow about a number of two dimensional bodies.
about a NACA 4412 hydrofoil submerged at one Numerical results obtained using our method
chord length from the undisturbed free agree very well with existing calculations.
surface. Figure 5 shows the pressure co- The formulation incorporates a rational, yet
efficient on both surfaces of the airfoil, remarkably simple, treatment of the radiation
Only 34 segments were used to represent the condition. The current investigation shall
foil geometry. The gutta condition (2.9) provide a sound mathematical basis for
was handled by a three-poit finite-difference tackling the more practical three-dimensional
scheme and was evaluated at the field points problem. Such an extension is conceptually
adjacent to the Lcciling edge. The results straightforward. The source function will
are t., good agreement with those of Glesing be the simple three-dimensional Rankine source,
and Smith (1967), particularly in view of the 1/11. The contour integrals will now be
sensitivity of the solution to a precise treat- replaced by surface integrals. Extensions

ment cf the Kutta condition (see Hess, 1975). using similar techniques have already been
Figure 6 shown the wave profiles generated by carried otit suicessfully for the time-bar-
such a hydrofoil translating in water of depth monic problems (Yeung, 1973). The present
equal to four times the chord length. It is mathematical formulation should provide
interesting to note that the initial additional insight into the understanding of
depression of the free surface moves further the Neumann-Kelvin ship-wave problem. Since
upstream as the speed decreases in subcritical our approach does not utilize the traditional
flow. In the supercritical case, the dis- Havelock sourc, .unction, it will allow us
turhance generated by the bitdv is felt at a to bypass the controversial issue of what
much larger distance upstream. Figure 7 show; the rational treatment of the "line Integral"
the hydrodynamic lilt and drag coefficient of (see grard, 1972) around the ship hull is.
the same hydrofoil versus the depth Froade

- t.s

Cp 10ww suace
0.0

-0.2

Os

0.4 4 rWMt ~ ,- - F;41
0. . G- Ging 4 Smth (1967) d/1 - 10

0.9 CL.756

.-. 06 s

-1.0 -0.9 8 . -0.? -0.6 0.5 -0.4 -0n -0,1.0.1 0.0

Figure 5. Pressure Diatrilhsi on to a NACA-4412 Hydrofot, at 5' Anglo of Attack
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APPENDIX A which follows from the fact that the derivative
of any analytic function is independent el LoU

The Integrals Fk and i, direction ol approach. Now to evaluate W(z),
an integration by parts yields

Consider the integrals F and G definedby w(z) -- i {sinh(inh)iog + Jnsinh mr+ih---) dt.}

- d I L- log r (A)7

7(x-1,y) Jm log r sin(mh) log z + i do
-h m(z+ih)

We will show that they can be written in terms i -m(z+ih) e
- m z  

(A.4)
of exponential integrals. The derivation to - - e u-- n

follow is considerably simpler if we introduce -M(z+ih)

the following complex variables:

The paths of the integrals of (A.4) in the u-
z = + 

t
y. a - - plane are shown in Fig. A.-.

= p + i , J M( u ) - M Z

where for practical purposes one only has to (z+fh)

consider the case (-)<O since , rema:ns

the same while k differs only hy a sign for6
the opposite case. In the complex plane t;(z) -

is given by:

G( ly) =C Ct d , cosh m( +th) m log(&i} j
7H'. W(t) tA.) Fig. A.2

Both integrals can he replaced by a pair of

where the contour of integration ro is a integrals extending from the end points to

vertical line frm , -- lb to -0 as ;)mown -o
4  

. Exploiting the definition of the ex-

in Fti. A.]. 
ponential integral El(z)

FI,) - -- dt , jarg zt<v (A.5)

where the Rienann cut is along the negative real
0- 5) axis, we obtain for (A.4), after accounting 

t
or

the pole at u-0 for the first integral, the
n-a+lv following expression:

-lb 1(z) sin(Mh)log I

Fig. A.1 + ez I-E,(af) + E,(m(a+ih)) - 2r)

-I .-m(rtilh)

ii Ni() were known, the evaluatton of 2 I-r(-z) + Ej(-m(+ih))]•

P wold ie atraigihteorvard since

.d(AA)-I(.Y S, [d. Wit) I (A.1l)



Whence, imge terms corresponds to a choice of

G(o,y) -sin(mh) log [a2+y
l
V2 -T cos m(y+h) ea z - a - t(2h+y) (A.13)

1 Fe 
z t )

[ l (z
2 em tI(mz) -E,(m(z+ih))] in (A.2) and (A.3) . Thus, the poilt mz

f in Figure A.2 Is always above the real axis,

-which implies that the contrilution from the
-e m~z [)[E,(-mz) -E(-m(z+ih))]  pole at u-o (the term "2r" in A.6) should be

I discarded. Equation (A.7) without the second

(A.7) term and tEuation (A.9) without the first term
are now the results, with z defined by (A.13)
and y replaced by -(2h+y).

Next foi F(, y), we recall that by Leibnitz'
rule APPENDIX B

Relation Between Blockage Constant
z P F, (z) - ezE,(z) - 1/z . (A.8) and Body Potential

A simple relation exists between the
difference in upstream and downstream poten-

By (A.3) and (A.6). the normal-derivative tial, C+ -C5 , and the potential on the
integral is given as follows: body. This can be obtained rather expediently

by applying Green's second identity. The

derivation below does not appear to be avail-
.(csy) - - msign(o) e-'cos s(y+h) able in the literatur.

+ e( h)(z+ih) Let us consider applying (3.1) to the+ E(m(+ih)) -E (mz) ] harmonic functions *,- U%+ . and
where * is the disturbance pitential. This

+-m (-m(h)[ i) 1 rime, we take x- to be sufficiently large so
[ 1(-m(z+Ih)) -E (-mx)] that

(A. 9)

¢(x 4,y)-C o + ON(xl)sin (mx + 6) m(yh)
cosh Moh

Note that as G-0 the exponential-integral 0

terms vanish In pairs because 0.1)

where a is a constant and A is s phase
angle. By the free-surface condition, the

El(z*) - [EI(z)]* (A.1O) integral along S can be written as

and (A.9) reduces to merely f(tlt - *An)d - x[4x(x 
x+  

(B.2)

F(O,y) - -m sign() cos m(y+h) , (A.11) Now, by making use of (B.1), the integrals over

r+ and E- can be carried out in a straight-
forward manner, and when combined with (1.2),which follows naturally from the physical the result is

interpretation of the integral as the normal
velocity of a aource-distribution. In this
same limit, G(O,y) ran be written as ther i 2.*±Id-UhC-)(7-) (.3
sine- and cosine-integrals:

s F U r ul"

G(O,y)- sin Qh1oglyl
Next. we note that because of the body can-

+ sin s(rh) (Ci(m(y+h)) - C1(-,y)] ditlon (2.2).

-coo 0(y+h) [si(a(y+h)) - SiC-say)j If ' -#,;')da U'(V,,+V.) -t4 #a~ds

(A.12) SOUSI (3.0

where Ci ad Si are those defined in where (V.+Ve) is the 8a8 of the aubrgmd
Ahramowits sad Stegun (1964). area of the Ldy and the net protruded area

For the integrala defined by (3.9),which of the bottom. F:ally. by the conditions
1%0olve4 log rr', one simply observes that the (2.7) and (2.8) across the gimas, cut
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d -urJnda ur(h+YT.)

j d (B. 5)

where YT E denotes the vertical coordinate

of the trailing edge.

If we now equate the au of (B.3), (B.4)

and (B.5) to zero, the following simple

formula results

SoRS

(i.6)

which is actually valid even for supercritical

(F >1) flow. Recalling that the first two

terms represent the dipole strength associated

with the hndv and the otton, one notes that

Newan's(19
76
) result is recovered when rO.



INTEGRAL-EQUATION METHODS FOR
CALCULATING THE VIRTUAL MASS IN WATER

OF FINITE DEPTH

P. Sayer and F. Ursell
Department of Mathematics,

Universty of Manchester
Manchester MI39PL, England

Abstract be applied to the numerical solution of problems
involving the half-immersed circle and the

In the present work Green's theorem is half-immersed ellipse. We hope to publish some
applied to the potential and to a fundamental of the theoretical considerations in greater

solution (wave source) satisfying the detail elsewhere.
conditions at the free surface, at the bottom
and at infinity, but not nectusarily on the
body. An integral equation for the potential 2. Formulation of the problem

on the body is thus obtained. For the simplest
choice of fundamental solution the method A smooth cylinder is partially immersed in

breaks down at a discrete infinite set of a fluid with its axis in the free surface (see

frequencies, as is well known. When the Figure 1 below), acd undergoes a periodic

fundamental solution is modified, however, a heaving motion with prescribed velocity

different integral equation is obtained which U 0 
exp(-iat), where a is the radian frequency of

is found not to break down at any frequency. the oscillation. Viscosity and surface tension

A theoretical discussion is given, and are neglected; thus a velocity potential exists.

numerical results ere presented for the half- The origin of rectangular Cartesian coordinates,
immersed circle and the half-immersed ellipse, in the mean free surfaceis taken at the mean

If only the virtual mass is required (rather position of the axis of the cylinder. The x-

than the distribution of psessure) much time axis is horizontal and perpendicular to the

can be saved by using an integral equation with axis of the cylinder; the y-axis is vertical, y

the transposed kernel and a simplified right- increasing with depth. Also polar coordinates

hand side. The numerical results are in good (r,O) are defined by the equations x - r sini,

agreement with earlier results using the method y - r cons. Then the velocity potential

of multipoles which for the circle is better O(xy,t) - *(x,y)exp(-iet) satisfies Laplace's
than the method of integral equations but is equation

not readily applicable to other sections.

+ 2 .) *(x,y,tj (2.1)
1. IntroducLion IX

2  
jy

2

In earlier numerical work on the circle in the fluid. The linearized boundary
we expressed the potential as the sum of a conditions are
wave source and multiroles, which are simple
but specially appropriate only for the circle.
For more general shapes the method of integral (K u-..)(x,y,t) - 0 on the free surface
equations may be use-. In our work, Creen's Py-
theorem is applied to the potential and to a y-0, x I x1, x a x2 ) (2.2)
fundamental solution (wave source). If the
fundamental solution satisfies the boundary
conditions at the free surface, at the bottom where K . o21g;
and at infinity, but not necessarily on the
body, then the resulting integral equation has
a complicated kernel but involves only the y(X~y't) - 0 on thA bottom y-h; (2.3)
values of the potontial on the body. This

formulation has the advantage that the
mathtmtical theory is well understood but that t(xy,t) - U 

2
-xp(-iot on the (2.4)

the solution is usually associated with In

resonance difficulties. There is however much
theoretical work (beginning with i'rsell 1953) submerged part 211 of the cylinder.

thich shows that resonance difficulties can
Often be avoided by modifying the fundamental
solution. In this way a different integral Alv, woves aa ds: ance from the cylinder

aquation can be obtained for the sam unknown travel outwards: thus there is a radiation

function 
T
n the present work thij idea will condition

46e



Uocexp (iut)
KO = .X D2 X' X2 K(P+ = y0

sD

isa 24, )24,
4 x r y = 0

=0~

Fiqure 1. 
y=h

+ i(xThe Green's function G(x,y;C,n) is a
- .0)i(x,y.) 0 as x - ", (2.5) potential which is haronic ezerywhere in the

fluid except at the point ix,y) (i.n) where
it has a source singularity. It also satisfies

where k0 is the unique real positive root of (2.2), (2.3) and (2.5). Such a pott;otia!

the equation given by Thorne (1952)

K - I tanh kh. (2.6) G(x,y;,n) j log 
-  

y-,)2

If the cross-sectional profile lies entirely 
2 + lyvr)2

between the two vertical planes x-x and xx 2
then it is known (cf. John 1950) that the + coshk(h-y)cosh k-
above boundory-value problem has a unique + K kb-k sib kh
solution. For simplicity we shall consider
only the heaving motion of a smoth cylinder -kh
which is sysmetric about xO and which e sioh ky sinh nsk- --)
intersects the free surface y-0 at x-±a, but k J rush k

the method is applicable to unsyw'etrical
sections and to other notions.

1,ri coal. k0 (h-y) cosh k0 (h-n) cos k0(x-)
The problem is solved when the value of the ----

potential *(x,y) is known on the submerged 2k0h - stub 2k~h
portion Dl of the cylinder, for then *(x,y) can

be found everywhere in the fluid by Green's
theorem (cf. Ursell 1953). In an earlier paper log + iY" (s!y;v), say.
(Sayer and Ursell 1976) numerical results for a x-0), + (Y+v)

2

circular cylinder were found by using a wave
source and siltipoles, which are simple but (2.8)
specially appropriat, only for the circle. For
this reason, an integral equation fir the
boundary values of * on 3D1 is used in the fhe bar through the integral indicates that the
present work. This equation can be obtained by Cauchy principal value is to he taken.
applying Green's theorem to the two haronic
functions O(x,y) and (;(xy;t,v), (defined in M Cirr ,.E der r - a, 1i
(2.8) below), whre ((,n) is on )DI. Thus - SL I

This was the problem studied by Sayer and

Jf (my) O xy; Irsell (1976) using the method of sultipoles.
Here D, consists of the semi-circle r - a,

101 ir. We write (0) a (a sinx,, a cosa) and
G(O,a) a G(a sinO. a eosO; a sina, a rosn).

- G(X.y;,n)-3-$(x,y) ds(x,y) - 0. f2'
7
) Then O(a) satisfies the following Fredholm

integral equation of the second kind (Ursell
1953)

Here 3/In denotes diffeventiation normal to the
line element ds(xy) into the fluid. The line j
integral (2.7) is taken along DD1 , indented by a eda) + dO
small semi-circular arc round (E,n) where

G(x.y;E,n) has a source singularity. The -(0
contributions to Green's theorem from the free
surface, the bottom and infinity all vanish by -al co on 0

virtu* of lhe conditions satisfied by * and G.
It will be assumeU that 6D, meets the free -"
surface noratly; then an integral equation with (7.0)
a square- integrable kernel is obtained.
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The first term on the left-hand side of (2.9)
is the contribution from the small semi-circle
round (A sina, a coso). Observe also that

%#(a () 2 Co~0  da

+~ log) > -0 (.0 (2.14)

where, here and elsewhere, angular brackets -Ut ilsh 0 'o, ~~, o
deno te that r Isa to be put equal to a. jc B-00 d

The expansion if G.(x,y;&.n) near the
origin is (cf. Yu and Ursell 1961) given by where an obviot'a abbreviated notation hos been

used. The tcm U, B inh So cost is rh2! normal

1G*(~y;Cn) logKr* -K) avelocity ou the e lipse, were

( ts) ~an 26f
- * ~ sin .0*

3Unqeesof sol':cion of intrl eu~ion
-(-Kr*)

5 
4 1 )Cs o The soluticit of the physical problem is

9 cettainly unique (cf. John 1950), but our

G (Kh) 2sal mavheaa.'itni formulation may not ptssess a
4Khi 

2
s~l 4i*) - co(

2
s.l)1 uni.jue soution for every It. In thitsecinw

(2sn)! Ah Iare concerned o.Ath properties or tju! integral

(Kh) equa.ions (2.9) and (2.14). These equations anze

28+ (Kh) non-singular (i.e. mh, Frcdbolm icverninant O)
e..*~ if ai only if the trarnaposed e~uatio,o are non-

.9 sngui'ar. I L can h -Sown ti,.t the lat ter

-c (Kb) 2s equation occurs i 11 e6 00 s ,t ion cf time , teri.,
- ~2-1 7r~con2s9* Neumann problem byorce it in. well known

)~! I(cf. John) thn' this n o sogular nl)y wben K is

an eigenvele om t he arsnciated interinti

WY, I Dirichlet problem. iese eigenvalurs o ccr at

h . aneinfiniterdiscreeo snet ol values ,t '; the
t heory is tcea t e

5 
Oy John. The difficulty at

these fcequenc1.s, due to the use of frequency-
2sf cosh k 0 (h-y) _____h- ___ k k dependent GrCeo' functions, also arises in mny

-------- cuter wav'. problems, e.g. the problems of

2k~h + siW, AkP acounc
t
..s (cf. Jones 1974). (Wie may not'i that

K - ', is obviously not an eigenvalue of thu
(21) irerjor Dirichlet problem.) ?Tyr wavenumbers

dla -n I it is known that this difficulty can be
overcomew by putting a wave source of a certain

where definite strength at the origin (cf. lirsell
1953, 1961; Rhodes-Robinson 1970), and we shall
do this in the present work. Much of the

C2~ (Kb) - L o e~remainder of the present work has been

2@ T -WV.,; e influenced by the observation of Ogilvie (1976)
that iti the modified integral equation the

(L.12) choice of so~urce strength at the origin was not
At all critical in his computations. We shall

(K) (ho,2 "d now explain Ogilvie's observation by showing
(-1.13) that thsiIntegral equation formed with a

TkF ~mm n i mdified source function

- Kh)
2
G o. (fh)-C; (Kh), ~ (,)-G(P,Q) - A f;(P,0)G(Q,t0) (3.1)

And (!*5.0*) and (r.d 5) are poles coordinates
with origins ac li,-n) and (E,1)) 1respectively is in general non-singular, where P,Q denote

'S ~. points of the fluid. (Wie shall use p,q to
denote points of aD,), and where A, : AMkh) is

(ii) 11liptizal cylinder A - c sinh OL sina, a frequasmcy-depooient stvength Parameter. The
ii:-.~uslti licative factor C(Q,O) is included so

that CA,) is symmetrit (and heoct the kernel

Magin &I application of Groe's theorem to of (3.3) below is the trAniio of the kernel of

*(z,y) a,,d GCa,y;Eq) y!.elds a Fredholm (2.9), with G replaced b,-')
integral of :he second kind:

'IM



Consider the potential elgenvalues of tie interior Dirinhlet problem,
as is predicted by the theory.

4(P) - f(q)G(P,q)ds (3.2) The numerical study of (2.9) indicated
q instability at certain values of the wavenumber

DDI Ka; in particular, when Ka was increased from

zero it was found that instability firsc
where G(P,Q) is defined in (3.1) above. Then occurred in the range 1.80 < Ka 1.85
the homogeneous exterior Neumann problem yields approximately. It was therefore suspected that
the integral equation the first eigenvalue of the associated interior

birichlet problem occurred within these Uimits,

TP(p) + P 5 (q)-L a(pq)ds- 0 . 3.3) and the following observatiors confirm this.

f an q It is possible to obtain an estimate of the
fundamental eigenmalue KI by using a form of
Rayleigh's Principle (cf. Lamb 1932, 72, for

If we write his treatment of the analogous Neumann problem).
Let V(x) ie a prescribed normal velocity on D2,
vanishing at the ends, (DD2 is that part of

B (q)G(q,O)ds (3.4) y-O lying between x-x and x-x2), and letB ((x,y) be the corresponding harmonic potential

51) satisfying 4-0 on ID 1 . We then define a
Rayleigh quotient Q[VI by the ratio

it c.n he shown that (3.3) has a non-trivial
soluin only if

-- ( n,O)V(x)dx

I A - 2 i A 2 C ( k 0 h ) 0 , ( 3 .5 ) = 
( 4 . 1

1-11Q[v1 dD (4.1)

0--, by definition, I (Vx) }
2
dx

3D 2

4. cosh
2 
k h (3 .6) where the numerator and denominator are related

2kTh + sinh 2kh to the kinetic and potential energies
respectively. Then it can be shown that

Put A niA where A and A2 are real. )
Then if and i2 do not fie on the circle QV) - (4.2)

A , 1 2 - 6I 
2  

and a method analogous to that adopted by Lamb
S 
A2  ~C C3.7) gives the estimate K a 1.822 for the

fundamental eigenvalue of the circle. This is
close to the value at which the solution was

the s,, Lion of (3.3) (and hence (2.9) and fout.d to break down. Higher eigenvalues can be
(2.14),is unique except at those Dirichlet obtained in a similir manner, but the process
eigerst equencies for which the corresponding is more complicated since the mth eigenfunction
eigenfunctiun also vanishes at the origin, it most be orthogonal to the previous (m-I) eigen-
is believed that there are no such eigen- functions. Estimates of 5.289 and 4.891 foc
frequencies. We have carried out calculations the second (anti-sysetrical) and thicd
for A -. 1, i and we find they agree to three (symmetrical) eiginvalues of the circle have
significant figures. The calculations at the been obtained. We note that the elgenvalues
end of th, paper are those for which A - I. are independent of depth.

In his analysis, Ogilvie considers the
simpler cane of the oscillations between to 5. Additional modifications

vertical plates in infinite depth. He shows (j) Foforcom.ntof cmery
that the intarior Dirichlet eigenvalues are
removed if the central source strength A is *(a) is an even function of and thus
chosen suitably but within wide limits; his ( ) a e ritte n o theo

criterion is a limiting case of ours. (2.9) my be written in the form

4. Sinjplar behaviour of the solution of v€(o) v J .d
. ra- equt ion 0 aqt(on (-

This section deals with tht singular -- atl coso (5.1)
behaviour of the solution of the unmodified Cl

integral quatIns (2,9) and (2.14). We shall 1

show that the singular values of the numerical * U rooh (tO.a)vG,(-.i) a dO.
schemes (see 17 below) do in fact occur at the 4
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Although the kernel and the integrand on the and
right-hand side of (5.1) are more complicated
than the corresponding terms in (2.9), the I
range of integration is halved. Numerical PM + 6K(,0)(0)dB = cos 1 (5.6)
computations indicate that both (2.9) and (5.1) J
take comparable times to solve. (5.1), however, -IV

was found to have the advantage that only those
eigenvalues occur which correspond to symmetric The numerical solution of (5.6), together with
oscillations, and that the calculation did not the evaluation of (5.4). took approximately
break down at the anti-symmetric eigenvalues. one-third of the computational time required

for the solution of (5.5).
(ii) Use of the transposed interalnquation

The virtual mass is defined by the quotient 6. Long-wave behaviour of virtual mass

In an earlier paper (Sayer and Ursell
virtual mass - 1976), on a heaving circular cylinder, an

analytical and numerical study of the
upward hydrodynamic force per unit lngth behaviour of the virtual mass as a function of
, of cylinder ir. phase with acceleration /wavenuser showed that, for sufficiently deepwavenuraioniers showe that, lengt oufcnyde
.accelerationJmesa r un.. it length of waer a turning point (maximum) occurs at a
of cylinder /%cylinder immersed in fluid certain small wavenumber. The result

(5.2)
d 1

From Bernoulli's equation, the hydrodynamic d- (virtual mass L 6 ,

force is -qto-(x,y,t) - Re(ioo(x,y)exp(-iot). dKaro 
4 

a I n
3

Thus, for the circle, the upward hydrodynamic itency
force per unit length of the cylinder in phase
with the acceleration is

f as a O , (6.1)

2J].ioo{Re<>)exp(-ict)cos0 a dO, whence u

was derived from the ntltipole method (cf.
2J ipotRe<1)exp(-iot)cosO a dO Sayer and Ursell, eqLation (3.3)). The virtual

virtual mas - - mass vas found to be greater than unity as
{-ioU0exp(-iot).(,a

2
v) a/h - 0 in the limit .f zero frequency. but

equal to 1 + 3(alh)" for K o- 1; (6.1) then
(5.3) shows that a turning point (maximum) exists for

Ka and a/h sufficiently small. This was found
R e  

to occur in the neighl.'rhood of Kh - 1, where
Hence only the quantity dO, the wavelength is of the same order as the

depth. The same result has recently been
derived by vs in a different way by atehing

rather than the potential explicitly, is the velocity potentisls in both the inner and
required for the virtual mass of the circle, outer regions, and in this form the argument is

Since the major part of the computational time applicable to other aectiona.
is consumed in evaluating certain matrix
elements (see (7,14) below) it is worth con- Thus, y coo l-tering the hetaviour of 4 at
sidering the integral equation which has the zero frequency on ihe ellip:;e, i- can be
transposed kernel of (2.9) but a much simpler deduced that
right-hand aide, vie. cos 0, where 0 is the
angle between the downward vertical and the
normal to the circle. In this case it can d (rl 4 lh h b 1
readily be shown that "" vr l a, 4..

S- JeF(6hyO)ds, (5.4) r,,uetl

in sufficiently deep st,. -here ab arc the
where draft, half-beam reap,'ti. v, and t is a

typical body dimension. Hence the virtual mss

has a iaxia . which it also found to occur near

KhI -h,
*(s) (O,o)$(0)d5 - F(u) (5.5)

Ca) J07. 
Numerical ne ode and results

Two ntwurrical aathods ware employed to
solve the tegral equation

10



Then A*O - n; A! . 6

0(0)0 K(O,a)*(e)de =F(ai (7.1) i,j-l,2 .... , n.

Also write BO . B . - -B.. (7.9)

i,j-l,2,.n.

Mi The clasuical Galeknpocdr 2
CO--C; C. *- .

Let us consider the functional

P L~l - () +is (O~a O~d-F() (.2) Hence (7.8) reduces to

and seek a solutionn

n~ ~ 5 () ~ap0. . + B..1 - -C., i*0,l,2,..,n(7.lO)

n(o) - F(s) + a (a(73

By choosing for K(00,a) the mdified kernel

such hat -I~ G I(0,a))we can immsediately conclude from
.rthe results of 0 that (7.10) is a non-

singular system of linear equations, subject to

LYj 0. (7.4) the restriction (3.7), except at those
0[n D ir ichiet eigenfrequcucies (if any) for which

the corresponding eigenfunction vanishes at the

M l..onare any linearly independent origin. No instabilities were recorded in the

functions of a.range 0 < Ks 10.

Substitution of (7.3) into (7.2) gives (ii) qua~dratr ehd to- du aloihm

n ,b This second method rred, .. the integral
LiY - 5f~.() . K(6a~.(4d9~equation (7.1) to a system of linear equ~ationso lyn' J by employing an elementary trapezium rule to

b evaluate the integral term:

I aKen40d (73O(aih) + h ~'(avih. a~jh)4(sih)

- hxo;a,,aP.a n), say

F (a-ib) if., i-0,1,2..,

Now, by virtue of (7.4~),

b [Y()] 0 iMd- - 0. -,, . (7.6) wherei

- j-O ternm + j'o term] (7.12)

whencej0

aand E is the it rotrection arising from the

(lA*.+B. -c., i-),1,2._n, (7.7) error in the trapezium rile. We then solve
3 i3 13 1j the systemn of linear equatLions

where A t E + t(J) (7.13)

* J . Ibwhere ~,Fand P. are column vectors whose it
- f:i65)~~dsrespectively. A is the msatrix

O~~j .lement are AKmob). M(ah) and .F. (4b

-JK().a)4 1(04 1 GOOd d., (7.8) lIK** h~~ 6

- jjb a.-IhK(auh,a) l-hk(a~h.ashl ) .- JhKt(a~n,h)

iaA

For the circle, a - -J, and 6 Js; ch,)ooe (.4

4 -igha WiChah -1 coos 2..

1ei



ox and Goodwin (1953) suggest solving 8. Conclusions
succebz..vely the equations

In the eresent work we have formulated the
boundary-value problem as an integral equation

A ( by means of Green's theorem applied to the
velocity potential, and to a fundamental

A h E( ) solution satisfying the free-surface condition
(7.15) and the conditions on the bottom and at infinity.

The unknown function is then the potential on
Sh E -the bcdy, and the kernel is complicated. There

A h E are many such integral equations, one for each
choice of fundamental solution. We began by

giving the solution choosing the simplest fundamental solution, a
wave source in a strip of constant depth. The

( ;) + ( Cm) (7.16) numerical solution was satisfactory for small Ka
0 + + but instabilities developed near ",a - 1.8. Such

th oinstabilities are familiar in these problems; we
The i element E.'

3
' of the colun vector showed theoretically that they would be expected

-(j) is given by Gregory's finite-difference at eigenvalues of the corresponding interior
formula (cf. Jeffreys and Jeffreys, §9.083) Dirichlet problem, for which the smallest such

eigenvalue was found to be indeed near Ka - 1.8.

It wa also known that the fundamental solution
Ei0) -- - V2

-
_...) K(a-ih,b)() (b) could be modified so that the corresponding

integral equation would have no resonances for

+ I 1 (a+ih,a)00C) Ca) large Ka; this equation was studied numerically+ -I_ + K..) (and was found to he free from resonances for all
(7.17) Ka. Following a suggestion by Ogilvie, we have

shown both theoretically and numerically that

the choice of useful fundamental solutions isThe solution of 17.13) used Grout factorisation wider than was expected. ide conclude that

and iteratively refined the solution vectors to
some specified tolerance (see(7.15)). Typical resonances are probably not a serious difficulty

numerical results for the cirile and ellipse in two-dimensional problems with constant finite

are given in Table 2 and Table 3 at the end of depth if the fundamentil solution is

the paper. appropriately chosen. Integral equations with
modified kernels were solved nuerically for

It is instructive to compare the times half-imsersed circles and ellipses, by the

required by the various numerical methods. Let Galerkin method .nd by a quadrature method due
T be a typical time required to compute the to Fox and Goodwin. These results agreed with

virtual mass of the circle at one particular rt other, and (for the crcle) with the

frequency by the multipole method. Then the r signfit figure t a rest

corresponding times needed by us for the three significant figures. Typical results are

integral-equation methods (to achieve the same given in Tables 2 and 3.

accuracy) were approximately as Riven in Table 'e found that the virtual mass for the
I below.Wefudtathvita wafote

circle could be obtained more efficiently by
solving an integral equation with the transposed
kernel and a siupler right-hand side; this
reduced the work by about 70 per cent.

Method Tim,
We should point out that our values of the

__- virtual mss of the circle fox low wavenumbers
and shallow water (a/h , 0.4) exceed the upper
bound given by gal (1977) for sero frequency.

Unmodified integral equation bcr Our results appear to be in good agreement with
the results of gai and of Young (1975) except

Modified integral equation 2OT perhaps at small wavenuabers. Neither gal not
Young report any difficulty with resonances, and
it my be ,hat in their mthods they do notlnmodlfled transposed integral )Toccur.

equation

Modified transposed integral 6T
equation

Table 1.

both the Galerkin method and the quadrature
method due to Yox and Goodwin required com-
parable computer time. For Ka * 1.0 a typical
velu& of T was four seconds on the CDC7600
computer, to achieve an accuracy of four
significant figures.



Circle, a/h - 0.5

VIRTUAL MASS

Multipole Modified Modified
Ka Metho Integral Equation, A-I: Integral Equation, A-I:

Method W Galerkin Method (ii) Fox-Coodwin

0.00001 0.49843 0.49850 0.49850
0.00005 0.49845 0,49851 0.498f0
0.0001. 0.49848 0.49851 0.49850
0.0005 0.49851 0.49854 0.49853
0.001 0.49855 0.49858 0.49856
0.005 0.49880 0.49885 0.49882
0.01 0.49912 0.49917 0.49914
0.05 0.50180 0.50189 0.50184
0.1 0.5051 0.50549 0.50545
0.2 0.51344 0.51354 0.51349
0.3 0.52274 0.52283 0.52279
0.4 0.53342 0.53355 0.5335C
0.5 0.54567 0.54583 0.54576
0.6 0.55957 0.55972 0.55966
0.7 0.57514 0.57530 0.57523
0.8 0.59233 0.59251 0.59243
0.9 0.61099 0.61119 0.61110
1.0 0,63090 0.63111 0.63101
1.822 0.80133 0.80156 0.80144
2.5 0.90606 0.90630 0.90618
3.289 0,98583 0.98611 0,98599
4.891 1.07320 1.07350 1,07336
5.0 1.07705 1.07736 1.07725

10.0 1.18048 1.18082 1.18070

Table 1.

1lipse, tanh 0 - 0.5, w-,dra t 0.5

VIRFUAL MASS

.... . .. eT . . ModiT f-l a - -

Kh Integral Equation, A-I: Integral Equation. A-I:
(i) Galerkin Method (ii) Fox-Goodwin

0.00001 0.22432 0.22431
0.00005 0.22432 0.2243o
0.0001 0.22431 0.22430
0.0005 0.224k) 0.22431)
0.001 O.22423 0.22421
0.005 0.22401 0.22396
0.01 0.22368 0.22)62
0.05 0.22237 0.222 v
o.l 0.22094 0.22786
0,2 0.21964 0.21953
0.3 0.21914 0.2191
0.4 0.21909 0.21900
0.5 0.21950 0.21939
r.6 o.22026 0.22014
o.7 0.12135 0.22123
0.8 0.22279 0,72268
0.9 0.22460 0.22449
1.0 0.22681 0.22671
2.5 0.32557 0.12548
5.0 0.45043 o.45084
10.0 0.56,60 0.56149

Table 2.
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THEORY OF COMPLIANT PLANING SURFACES

Lawrence J. Doctors'
Aviation and Surface Effects Department

David W. Taylor Ship Research and Development Center
Bethesda, Maryland 20084

Abstract Regarding the theory of planing, this problem has
always been attacked using the assumptions of inviscid

This report describes a theoretical model for the hydro- incompressible potential flow. The assumption has also
dynamics of flexible planing surfaces. Linearized potential- been made that the main effect of viscosity is to generate a
flow theory is used to obtain the hydrodynamic effects, and frictional drag which can be accounted for separately.
(he surface itself is replaced by a finite-element representation Sretenskii I I and 21 and Sedov [31 were two of the earliest
of the pressure distribution. The flexaral behavior of the workers in the field of two-dimensional planing. The use of
planing surface is computed with sinall-deilection beam potential-flow theory allows one to represent the action of
theory, and the plate is discretized into structural finite the planing surface by a pressure distribution, which they
elemcnts. A series of numericrl experiments shows that a expressed a. an infinite series. The first term of the series
sufficient degree of cmvergence is achieved with forty contains the square-root siugul rity at the leading edge - a
elements, lhe resullant pressure distributions reproduce the phenomenon which also occurs ix airtoil theory. In linear-
le:rding-edge square-root singularity - which is well known ized planing theory this singularity models the splash jet
in airfoil thery. The rigidity of the plat is found to have that is thrown forward of the boat.
a major effect on all the reilts: the lilt and drag are
reduced, with this influence being stronger at higher speeds, Maruo 14. 5. 6 and 71 also developed the linearized
Tapering towards the trailing edge has a similar effect. The theory, and in the last paper, obtained experimental pressure
pressure disi, butions show thit there is a possibility of distributions, which tended to verify the theory. The agree-
negative pr, _iure regions under the deflected hlape of the ment, not unexpectedly, was better at small trim angles, and
surface - indicating that cavitation might occur in some in regons away from the singularity at the leading edge.
conditions. Curves of the free-surface elevation are presened,
anti in addition, the results of applying a pressure tn the The work of Stuire (vi will be reneinered, particularly,
plate are described, because he carefully explained the importance of satisfying

1. Introduction the Kutta condition it the trailing edge. A consequence of
this is that if one decides on the wetted length, then the

Background height of the craft relative to the undisturbed free surface
has to be treated as unknown. 0 his means that die load,

the work descrihed in this paper was prrmpted ty air and the center of lilt, are parts of the silutirn.A Another
intetet in the applicion of flexible planing surfaces to approacht is tire high-t:roude-number approximation of
Advaned arne craft. iOne such po igle us. is to support (ulerbatch (tj. lie also developed a parabolic-shaprert
the weight of it vehc e o thiree or more s itably splia ed plate which was monre efficient than a flat plate since it
the .weight ifatre etice in theree ir nreuibly stracit eliminated the splash jet. A review of the above work was
surfaces. A careful choice oif the degree oif tlexibility gie-yWlael n atn 11
arid appropriate damping - would produce a much smoother green ty Werauselr and Iairne Il.
title in tough water than is given try a rigid shape. Nonlinear aspects of pLnihg in two dimensions trave

Another appolication of file con-ept is it, the seals o1f i also be.r examined, thus Green 1it, 12 and 1i.1 stlved the

stal-eclFet ship hSfl A typic:d laytrut it an SlS fifted problem iof a flat plate gliding at infinite 1-roude number in

with sitlcwalls and txuw anI sterfn seals is sfown ill Figure I bull, finite and irfinite depth water. Other gravity-free
tire train desigin feature of tie seals is that they call deflect trantrit reearch was pertorist by Wit atnt Whitney 1141

in order to firvit ni.ivel it% a sea state without excessive hs and ling and Keller 1151, 1 derived shaps that resulted

if pressure from tire air cuhion which supports tire craft iii a stlrash-Iree Lrondition. the situatior (it hirh (hut not

ilre details of the seatl design will uiot he given here, but tie ininite)I Iroude number was examined by Wt 1161i anti

trailer is referred in teart to other works tit ihii hinbred. ig anti Kelle I 171, who used a singuha perturbation
scieie lire latter pater took into account the impingement

Ore i the phenomena of great interest - As well as tire of the prriy let on the water ahead of tire plate

trenerated force, - is tire wave syster dexehrrd uniter tire
vehicle If tile sidewalln are not (fllireritp Doe then 18 1 developed a finite-elemnt approach for

venting if trrhir.) air call ruccue in thrise u i rions where a handlinig plates of artitrary siape, including tire effects of
wave trough exitst. [hi results in a Iower attitude of the graviy waves, The methtod Alsot allowed the predtiion of
ShES with ant attendianit rie ill hydrtrdyrnAi drag title to the optinn Irfrris which trircided with those of C'umetbatch.
buddur i water Against ti' seals With regard ti thre-dinwnisitmal plning. the mait

'Permanent address problem here is that the wetted area rif the surtac is
Skchil ot Mechanical anti Industrtal Irgineerig unknwn anti mus 1e fround As part )I tile vilution. (Al
Univerlty of Ne w South Wales, Sydney, Australia mentioned ptrevitusy, this difficully is si tied iv two dimet
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STERNd SEAL CUSHION BOW SEAL P OWR EIIFNT
SUPPLY SUPPLY SUPPLY 1 FRWASRE SEINFIIT

PRESSURE RAND

3. FORWARD HALF-TRIANGULARP P. PRE SSURE ELECMENT

j f O 4. AFT HAL F-TRIANGULAR
PRESSURE ELEMENT

UNOEFI ECTED POSSIBLE UNDEFLECTED FREE 5
4 ~ . COMPLETE TRIANGULAR

STERN EEAL CUSHION BOW SEAL SURFACE PRESSURE ELEMENT
SHAPE VENTING SHAPE PROFILE

Figure I - T'ypical Layout of Sidewall Craft Figure 3 - The Different Presaure Elleirents

TYPICAL M- P / y \ FREE SURFACE

PRESSURE

TRAILING
EDGE .0

xi 2 - 1).l~ NOTES: 1. PRESSURE 91H4A41N ACTS DOWN ON WATER, AND
UPWARDS ON SEAL. SEAL PRESSURE. p., NOT SHOWN.

Q n- 2. CUSHION AND BOENO PRESSURES UStUALLY EQUAL:
P. I Pb

Figure 2 - Finite-Element Breakdown of a Seal Figure 4 - Theoretical Model of Seal and Cushion

sIons - in an inverse manner - by lixing thre welted length, Although ltre rise-height anti weiled-artu predtctions of
and considering the weighlt supported by it to be unknown.) Doctors 1371 were within a few percent of cnpCriniictal

results for arbttrary Froide number. aspect ratio and dead-
The three-dimensional problem can bet simplified iii rise, thle piressre distributions were nilt well behaved. ibis

variorus ways. For example, Wagner 111 1. tifin 1201, problem has been tracedt to the crvedt singularity line at
Shuford 1211 andi ('asling 1221 usedia low-aspect-ratio th leadting edgie.
assumption, while Shren (231 and Shren and OIgilvie 1241
assuimed that the srect ratio was high. Wagner (2-51 and kI was therefore decided to i-nploiy a t wo-imensional
Wa(ilin and Christopher 1261 ass\uted that the spieed was apiproachr since the beam-to-wet ted-Icith rati ii f thre seals
infinite. Marnio (271 exanmined the linits of high and low is quite large. Also, the effect tit thIe sidewalls is loi Confine
a4pect ratlirs separately, the generated wave pattern and Iii encourage its Iwni-dirnen-

Weinstein anti Kapryan 1 281 Carried iiut hirdh~ipeerl sioval charadt.
experiments and their results comipared well with data fromi iue2ilsrtsteftireern eieeiaii i

tithertests.the seal itself. while Figure .1 sholite different pressure
Win ani KiiiiiI I) Iippieda ighFrO~denumer elenments (oi be used in the hydrordynatnic mod~el. which is

ihearry bilt simply assumedi a rectangtilar wetted area, while illuistrated in igture 4.
luck 13011 and Oettet 1311 discussed ltre piroblemniito .Peua oa of Seal[
kunonig the coirrect wetted area.1.lsiuaMO of"

Further piapers have preseitted experimntal results. Theorv
t hewe include woirk by Clement aird Motrunt 13121, Ilauller aeoml rmssctnu eli h elce

1111ari Santsk 11, .1 ard .11 -paitturn is siiwn in Figure 1. "Tis diagramt Also defines tire
Irmast ~sign convention for the nmoment M, the shear foirce V. and
Ffesnt orkthe loading p. The relationts between these quantities uni

Thetomof hiituy I todevlopin nalticther the deflectioni w are givert by stan-lard beant theory (we

fir the hynirdynarmcnu tifexible pilanring surfan-es. whtich msek n ong1i,1 91W
couald then be atipliest to an SES. One 4imphifyting assump- d
liron ti lhe utiized is t1%4t of' two-stimensi~iurtly. p (II

'Is
It is, of course, well knowrt tliat the flow under the

craft u% aiually thrte-dimnsional, and it would therefore V 1M
went approriate to use the three-ditnensionat tinite-elentent V x0
planing technique oif Doctors 137). Thin could be continedh
with the theory for the wanes grenerated by a preaure patch 2
(itn oeuter tur inodel tte cushion) reported by filuing and aid M. - T) - (3)
Worq 1381, Ilausullagi and Vin isettirre 1391 and Dcis140)1 dn

t
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where D = El is the local flexural rigidity, in which E is the Forwaed Half-Triangulm Element. For this element it
Young's modulus of the material, and I is the local second is necessary to consider three cases separately: the field
moment of area. The distance x is measured forward from point ahead of the source element (i > j), the field point
the trailing edge. located at the source element (i = j), and that of the field

point behind the element i < j). (The last case is not
We now consider loading of the beam by four types of actually needed for the calculations here, but is trivial to

elements illustrated in Figure 3: a uniform i,,ading ove; the obtain.)
entire seal (Type I ), a forward /alf-iriangular elemeit (Type
31, an aft half-triangular (Type 4). and a complete triangular If the field point is ahead of the source element, then
element (0 vpe 5). the moment acting on the beam between stations i and

i+ lis
The uniform loading can be used to represent the

cushion pressure acting down on the seal, while a series of M = 4p a
2 

(r + t)/y, (9)
overlapping complete triangular elements (whose strengths
have to be found) will be used to represent the l'ydrodyna-
mic pressure distribution resulting from the water. The where r = i- . (10)
half-triangular elements are used for blending purposes at the
seat ends, as seen in Figure 4. Eq. (10) gives the dimensionless Iever arm between the

Uniform Loading. Using Eqs. (I) and (2), the shear centroid of the source element and the field point. The
force and moment acting on the beam due to a loading p, purpose of the y factor is to be able to handle the complete

are element when its value would be I. Here, ' 
= 

2.

V = p, (4) We use these expressions in order to integrate Fq. (3)
once for the deflection slope, and a second time for the
deflection itself, in a manner similar to that explained in the

3-4 M = I previous section:,,, M , =;pX2. (5)

We consider the deflection of the beam between stations i w, = w P + -
2

j a - (I or) In I + a I I
and i + I. The rigidity is assumed to vary linearly between i + iy ui ..

stations, so that

D = D,(11 + atl, (6) and wa w 55  2awi+L
+  

[n2

in w:iich of n Di + I/Di and (xi + I - xi)/2a and 2a is the

station spacing. For convenience, the i index on a will he + 21l - or) (m I + -a (12)
dropped.

As before, the limit of a (it uniform segment) may he
The slope of the deflection may be obtained by a easily obtained, bui the case of a = has no physical

single integration of E.l. (3). after substituting tiqs. (5) and application.
(6). After substitution or the limits = 0 and I, the result
i3 We now 'onsider the second situation, namely i = j.

The loading, shear force and moment belween stations i and

w=w 4p,a[" (24 I) i+ I are

+ (I -i~nl
t 

bill tail. (7) V pa(aI-
t
l (14)

in which i i - I, The defleclion is obtained by a second a p I5
integration of Eq. (3 ,l ut with a free Iiwer limit if and M 2pja2 .
rather than 0 uwd after the first integration. Alter some
algebra, one obtains I'me last equation may be used is Eq. 13) to yield the

gradient of te defnc.tion. and tile Ieflection itself, after
8 pa

4  i +I I20 oz appropriate integrationswi- wins law°,, ,i - L - 53sIa
W; 9 " + n)

+O t+ ij) 0-lal luill +a (8)3La1 1--

ll + 3a.)Inkl to ) 06)
The :XpFresions for the deflection, given by Lqs. (71 nt

and ,8) are ud repetitively. working backwards (rom the , 
4

leidise cdve Ihe case of local uniform rigidity, namely and w " w - 2a w'. L. a 5
a - 0, is easily obtained by taking the limit of theme two i )i + Ia L 2
esuations. The other limit, when a - -, is needed fsr
representig the first element of the beam i I I when the
thickness tapers down to rero there. For the sake of bwvty. - 0Zi l3a - (I + ,) bnll +( (l71
these two pairs of littits ate sot givemi here. 6 4

lIS?

(j
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The third case, nam.ely j the simplestilla all. t ie 4 p" , [F "!
two equiations are just W, w: --.-+-In . I I 24)

IM3 Du
4
L 2 1

I~ Ill 14*

' t Ca
AtHl-iaghEant.We cvrarider the three --- a- ri

riiltereiii aviations bretween thre source elenient id the Iteld +1]40
poinlat - as for the loaward halt-triaiular eenct I lie Itli third Case -id tha I [h tird Ioint living located
resuls or lite first case, namnelI I j, can he otainecd behind file source element I I j- I I Ila% already beein
tarevctiy fromn those of lite horward elemnent. fil onraly treated, by 1:11s (INt and lit))
iflernce o-:Luis Ili colllna fit 41w oarren arin in 1-,1 (10)
whiicha shoaaid raw riot Complete Triangular Elemnt Tis clement ia actually

the haac lite and ii used over thre entirv letngtth ofi te planing
Isurlaice, vstwreas the hiatt element% are only used at lite rds.

r ( 20)1 Wt have four dinact cases tii canita - i, tar a% thle relative

trosations of lite source elenieit and fheld pint are conicernaed
sthat Val,. It anid 112)i are stilt natid lor ltey lost case. thtat Ma the field poini alre.0 il aftire loru

eleriealti I > I I . we carl rise Eat. iltI and ( 12). but witl%

t ie case )I i I aIra t w iarhirled spralcly. ra.I arid the moirmenrt arrar alterert tar
ever. I lie equatirair var loaading. shear foca nd~ lii) rllera
are reIKectrvety -I-1.(t

p4 lite, test ic ii that iat lte field ptarlt coinctding with
the source elentent 6 *- i. We ecomabiane Ui, "IaI (with

1 2 atad r 1131t wili 1:4. lila toa aitian"

tule a0heltian illv. -od Jelb*a Ia' -ray 4war ire driveat I f 3a - 3n
2 

+ a') In .Ia ( 27),

lea



and similarly bution on the watur surface is well known, and will not be
repeated here. Instead, the reader is referred to Wehausen

8pa
4  

r 5  and Laitone [10, p. 601 ) and other standard textbooks on
wvi = w, * i -2--aw + , 

+  
2 . this subject.

Rather than solve the wave elevation generated by each
+34 -(1 + 3ao- 3c,2 + a3 Inl+ 1 (28) type of pressure element, we will construct the results by

the superposition method. This technique is valid since tire

equations of motion for the fluid have been linearized. The
The third case, that of the field point coinciding with building blocks for our pressure distribution will be the

the alt end of the triangle (i -j - I ), is equivalent to that rcsults for semi-infinite uniform pressare bands given by
for the aft half-triangular element, so that Eqs. t241 and Lamb (42, p. 4041.
125) apply. Forward Semi-Infinite Band. In the present notation,

The fourth case occurs when the field point is behind Lamb's result for a uniform pressure P0 extending betweer,

the source element (i < j - i ), and Eqs. (18) and (19) may 0 and - is
he used here.

Results Pg/Pj = - sgn (XO) fX) - 2H I- 0 ) cos(X o ) - H(Xo), (31)

Some sample beam deflections, due to the application where X, = xsk0  (32)
of these pressure elements, are now presented in Figure 5.

T he case of a uniform loading, in particular, is seen in and k0 = gIC, (33)
Figure 5(a). The deflection coefficient, in which p is the water density, g is the acceleration of

w (2 gravity, " is the wave elevation, c is the velocity of the

w -- (29) travelling pressure, and x is measured forwards from the
Pit 4 point of discontinuity in the pressure. Aio, HI is the

Heaviside step function and f is one of the two auxiliary
is plotted against position along the beam of length Q. Ilere functions for the sine- and cosine-integrals, which are
P0 is the loading and Di is the rigidity of !he cam at its defined by
midpoint. I'hree constant tapers, r, are considered. ihe resin t
taper is defined as the thickness at the anchored end .(X( ,f cos4
(xi = I) minus that at the free end (x/t = 0), divided by X dt (34)

tlihc the average thickness, This means that the rigidity
can he represented as a third-order polynomial: in Abramowitz and Stegun (43, p. 2321.

D [1) 1 -+2 (30) The asymptotic form of the downstream wave profile is

pgf/Po = -2 cos I asX, 0  -X. (35)
Figure 51a) shows that increasing the taper decreases the
overall deflection. This is due to the fact that keeping Dm
constant, but increasing r resalts in a genciral strengthening
of the beam because of the relation 1) 

- P. A taper of Aft Semi-infinite Band. The results from Lamb are
unity implies a tip thickness tif zerol, and consequently
greater curvature in the detlection near the tip occurs. pgi/p =Isn (X,,) IIX,) + IfI- X,) ( 2 cost(, f - 1 (3h)

the flexural response due to the three triangular
elements is shown in Figures 5(b), t), and (d), respectively. Cost(, f as X (37)
Due !o a need for brevity, an example of tero taper only is
presented. For these elements there are respectively t0, tO
and 9 curves - appropriate to the number of possible
locations of the source elecuent. The deflections frorm the
forwerd hali element (Figure 5()) are slightly lets than Forward Hatf-Tringular Eteent. We rnay construct
those due to the aft half element (Figure 1(c)) because of the required pressure distribution by integrating a large
the smaller bending moments, rhe psotiotn of the curve number of aft semi-infinite bands, each of magnitude
behind the source element is a straight line, as seen by Eits. dp' - (pvZat dx'. For each of these hands X = k (x - 0,
(I8) and (19f, where x' is the starting point o tht baind. Thus

rThe case of a complete triangular elentn, is plotted in I as +t'sI

Figure 5(d). As noted before, these results may he obtained pg/p - -a - sgnlht ),) + It- :mlx) - I dx,
by summing the detlections from the two half triangles
(using n commni index).

1lt. Hydodyn-sn-c Model of Seall I[/wnhnfo! ll-a2,:s(htI

Theory ('are has been taken here to subtract an aft step if magnitude
po - necessary to bring the prvsure of the element back to

ktound, We make tire asual assumptions of inviacid zero at x - -0
incompresible flow, A furtiher simpllfit.ation is lo linearise
the tree-surface tondilion. The theory for the wave din- For the purpose of the integration, one needs tie
turbnce resulling from the application of a pressure diutri- following relationship

j ao
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sg XIf( Id X hInt(X) [ 1 (XA) + t(I A, 4(.'%n( I, -A

The results for the wave eleVation, ii,. Its asylltotki form,+
are

4,1

IIIA 4+ it - A, I( 2 inB ( A ( where A (xl + 2 a) k0  441

Complerte Trianlaar Element. We could build this
%gnlh,, If AXo)4 Itt- An)(2 Clout) -IeeIe with a series of small-noagnitude firessun. bands

flowererC It is eassier to add Eq. 439) to Eq. (421, and

(09) q. (4104 to Li. (431:

ak- (sinh (A4I- sin 1 1) - 2 co, (Xo as X,, -. p~p 2hi, (A' if X, h
where 24  ( a) 2at, (41 t 2 1 I- 0 (srr1 0 -(

Aft Hit-Trimsptlar Ele wit . In a %inilar maniner to the t1(a l) 1 12u A)-h 45)
Previous Lase one can consatruct this rlment usins a (positive)
aft srm-lintlnile hand sltting At A 0, and then subtracting
an integrated series ol' bond, The final result is 4 lurtl tak,

I~/i I [11 (A.) I - .A.) (2 sin (hA.) Au skl aj4X
~ak, w' after som simplflcafion

Igo



Results the Seal Doflection

Figures 6a) through d) display waie profiles generated Geometry considerations are used to find the distortion
by the five different pressure forms. For example, the two in the sea]:
semi-infinite pressure bands are shown in Figure 6(a). It is
seen that the profiles very quickly develop their asymptotic wi = -; - h for I C i C n. (49)
forms downstream - perhaps within half a wavelength. Of
interest too, is that the slope of the free surface at x = 0,
as given by Eqs. (31) and (36) for these two cases is
theoretically infinite (according to linearized theory). How.
ever. this behavior is so localized that it is not really The Seal Forces
apparent on this plotting scale.

The three triangular elements are shown respectively in S.. Ac, summation may be used to compute the lift,
Figures 6(b), (0i and (d). Again the asymptotic downstream drag and moment about the sei.l trailing edge:
wave profiles are very quickly obtained. It is seen that the
amplitudes of the wave is, to the first order, 2ak0 for the n
half ?lements, and 4 ako for the complete element. L = a pb + 2a p , (50)

i=2
The kinks visible in the curves for ak0 = 0.2 are due

to the fact that points were computed only for vaues of x n
which were an integral multiple of the element length 2a. D = h
They could have been avoided by using a closer spac;ng of D Pb "2 

+ 
W2 - Z1 W 

+  
=2 P (i +

points.

IV. Combining h Elements + 
w i + 

I -I - I - wi -1l (51)

Kinematic Condition

We now apply the results of the previous two sections and M = ±- 2 xE P 52)
to that of a flexible planing seal travelling ahead of a cushion i - 2
pressure on the free surface. The configuration is shown in
Figure 4. 'the cushion nressure, p., and the seat pressure, while the center of lift developed by the seal is just
p, are normally identica;, but will be kept separate in the
problem foimulation. n = NIL. 1531

The solution to the problem is obtained by summing
the wave profiles iesulling from all the pressure elements,
and equating this to the profile of the deformed plate:

The Wave Resistance

o (rt )-;i i( = pgth +z(- z i i The lownstreat amplitude of the waves may bej iI If ~-expressed in terms of its two components:

-pb(j-' 
)  

fori= I to n. (47) f A, cos(xku) + Assin(xk,). (54)

Ilere the superscript 
^ 

means that the variable has been the wave resistance is then given by Lamb (p. 4151:
made dimensionless using p, g und the pressur2 for that
element, The double subscript ij refers to the influence at Dw  - '
the i'th field point due to a source element at station j. A t 4 C A55)
single subscript i implibs that j - i, that is, the source
element is located at the seal trailing edge. The supemcripts One therefore needs to find these two wave components.
(I) through () refer to the five pressure forms considered Eqs. (37), (40) and (40i are used, after taking into account
i the previous section, and in the section on beam deflection the longitudinal displacements of the sour.e paints of the

laltaough type 2 does not occur there). contrihitins to the downstream wave:

Eq. (47) contains, as input, the undeilected seal profile. itlak
zi . (Arbitrary seal shapes can be handled by the procedure - pgsA, r Pv

+ 
.... - 4

as well as the obvious fiat form,) the wetted length is fixed. Pb aku

and as a consequence, the equilibrium height, h, must be
considered to be unknown, The set of n equations in n 4 in' Itki , n
unknowns represented by Eq (47) may be solved by a -psinlx tk.) (5li
standard matrix Inversion technique. a Y-' p % x

Frw-u e Elevalion and
rin

/ 
saku )

This Calculation may be carned out once the pressure pg A, 2 P aku
distribution has beo determined.

" Pj 4'.2t" tg n
-ott Pil J + 448 P ii(" P $i 14asv~ 5 p, Cosi . (57t

Pt aka -
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th lie ewt work - lte seal %liffies%. 'his I, Illustralvd Ii
Migure 701,. (h) and (c) demonrstrate lie ciontergveice tgiurv Stall thrOiig fill, III thee CUtirpiCs. lte seil

ratk! (itt some oflte integrated qtuittities with respect to pomevi, ICiit littitickne-s Ih e tife ctish uil andt

Ithe noder iii elements towd. (C ates ot Ii -, 10. 20. 40. seal p;iie se will Ise Showin later.
00 and 16 art de shoiwn. Ithc defirittio' tif the imniottnless
paramters are Figuire 8 %flows tile uramatic effect nil stiffness. F;or

examttple, ii Fignire, NOla, lte center tit pressure moinves

Iroitde nintter. I. '/V ( S9t fiorwardt a% the rigidity is decreaseut. Ihis is resiil tif tite
seat bending. arid lte toad hetugt carried only near the

ilicitilonnies rlifidity* D* -[ )4nQ (59 ]c talinig cdge.

lilt "WIle'icient C' 1. p * it(tl1 One teswr, iir~ i lit Fiuc Ittd (c) Owl fite lilt aind drag
are also greatly redttced when the seali matrde -Altter. fltere

Dlii cereicteirt (it PC" q "2 It s at itngrltrl d.-ol Int those twto ifuaiittnet at ltne critical Speed
- nit tllte icaf. that is. nietr F- 0t.9. A crilec or Intterestinlg

chteck,% onay he used. At high Iroutte vutnoer (when gravity
I t,-l.'w n tidr Cornsideration i% flat Moe tre dllectuiti thtat i%. effect, approach tenii the lilt and dragt coclfinient for a

, uotif I is iver try t. - a , where I, ilt sl tite rri i alto %k rigtn solt t 1), -) both appuroachr x - a result well knoiwn
lit rirtnrr theorry. Furthermiore, lor this cowe. lite dirnerrsroa

I hec error Ii i-i nsts apptears tir fic Iniversely tirritir less center tii pressure approraches tir required value (ift .0J4.
Initial In tile nurtnirfe if elemvents used It is seen Fiat for
the twin Irtiude rniver' arid two 10rnvicsts ciirstiered tiat iIgure At d) show% filie tit, deflection (ftuvirsy,
there i- little diifference tuetweeitite cites "f fit ai~'d tf increasinig lt! ie dtly decreases the utettecturii, artd thero air
rirntients Foir ost fiurpovi. lir fact , 40 cunierts shlti hittererig dipu Ili tire curves at Irudcl irurither lc~u than
Yietld Sat'Cictenly ancurate results, perhapis evenr for thre nate I .0.
of tip uteilection, wn1 , tin iter 7(a I

flre irtiteince tiC a unfrmrrrr taller Ii the thickness of
Figure 7ld)i lluiratcs tie rate of cornergtence ofC the tit, plainig snrface is shriwn in Ftgure ') fFire stiffIness at

pressuire disttihution unrdier at r-latlvely sirt seat Not lte nrlndpoint has Frees kept cirtant hiere. at a value of(
tiurlrsgly. the rivte nrC convergence is fastest Away fromi0" - 0.0.15. lie contictiC fressure li I-ifirie q~f at iisoos to

the readling edge - where lte spray jet is irrtoned. nmrse aft with Increasing taper - althorugh the change is
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fairly smnall. I he lift and drugt in Figrr 9(h) and 10 are tIt Figure 1() , a rigid surface ha% been cornsidered.
greatly influenced by the taper. increaaring the taper rise% Ihe curven o~f prenniire are artewirt simopler in form thin
(he value%, of the lift and dragt coefficietsn - not that for the lenxihie cawe, iii F-igure I (Xa). thie lact that the
dissimiilar to the effect of iricreang thie rigidity it Figure H. teter of tire.nure moves forward with increasnirg Froude
Pronorunced dipv in the curve% are ntill evident number is ieitniiintrated

the tit) deflectio~n lFigure 9(d))ii als k i a tritig funtionr
iif the tape. Ithe deflectimn 3% aiway% reduceid Wrn thieb ae fuiy nIrnitdiiFgr
tapser in iricreawet thle effect if Irirrie nuimier is also very lb e -I A f hig aperd te uniit if preentd aried neaure
evident. 11 thg pes h muto odcridna h

stern is evn less than in previout cawe. CI'impanavrn with
Presuro istibutonsFigures I(ta) and ib) shiows that the taper but radically
Pragar. Dileibetlonaaltered the loiirr of 1the essure distr~itionn.

1,e nuiw turn Ii) F~igunre 1ll whnin four part, Ilistrate
the nivid effects of the varii piaratreters irrtronhmevl above. Finill/. in Figure I (ibdI. we coittider a nttualivi iii
For the prptne it ilust rationi, thle Irrsure ban cern irade nhich a ulitiennionles, cushiont preure and seal prennure tif
dirnimonlevn usng the lift vif* the seal. L.. and it, lenth, V 5 are .upjrlied. ihene are definied by the tvimutian

A reatively Ilenirle seal in considered tin I ifure I that. tr p'/pg On16
An a renult, negative tirenvures are evident ove r nirom regionis
of the aureface At low Frinide numbtters. tire wavelenglth itt ade P, p'r,/nga 0n 11i
the prrnuorr nncillationx in practically the natie as the %tatt-
dard result frot linear theory. tits the seal is emnrrualy
caintoratinglvio the natural water iwane geeratd by thec resliectively lire taper and rigidity are tire naloe as fin
forward tirrtiiin irf the seal. wiron deflection in obviusly Fifure IN0 c, nor a commpurison cati he inude there.
lens.

I'lie rrtures in oll care, approach the cushuion penuure
Al higher speed%, ncr) little lift is carried by the Af at the atcn (If - 0)lin a Armooth manner (tMe apparenily

pornnit of lire nurfoce. Altar. region of negative vir very different value, oif the presaure at the %tern is result ofth (e
low relative prsares %till occur. Of nole, is the fact that particular preaure parameter being plotted I At low alvegih
the wavelength iir the otacillatimia is inaci johtialer fiie the ap teo a Froade number itf 1.5. the presaure uirvez aill appear
higher speedy. ti's cotttradicts aimple uncirrntrained water lto pass thrnough the same pit x/f - 01.5, t1i~i. - 0.My1
%ave theoary and porint% up the influence of the %tiffts Hoewever. no particular anatleane~ rutr this has been
(theit '111411)iof the Wal. iscoivered
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WaE Profile and I Ifd). That is. ib = pe
= 

p. A'. expected, if a different

value of the blendig pressure were chosen, then a badly
The last set of results, ii; Figure t t, show the form of behaved pressure distribution resulted. Surprisingly, however,

the watei surface for the same four cases presented in the choice of blending pressure had little effec. in lift, drag,
Figure 10. center (it pressure, and tip deflection.

It the examples shown, the plate lies in the rvgion VI. Conclusicls
0 < s/Q < i. Thus, Figure I lai a;, illotrates how much
delormation the plate suflers at different speeds. At the Prosnt Work
lower Froude numbers, in fact, the plate sossesses a negative
slope over the stern region. The buildup of the wate ahead The principal object of the researh described in this
of tie plate is also seen. In addition, the downstream wive paper w, tii inireoluce the eftect ot cornplio-' e of the body
system becomes established in a short distance, into planing theory. Flexibitity is seirt l hj, a proftound

effect on all ttie quantities of interest. in brief, increasing
lhe plate remains flat in Figure 110 b , nice it is rigid the flexibility results in a toss of lift and a reituction iii

The water is seen to sparate smnoothly off the trailing edge Irag. Atso, the cenici tif presure moves lorward. Incvreasing

- as it also dre it: Figure II a), the Froude number makes the inorirtance if compliance

greater.
A taper of unity was us.d in the calciulatioi leading to

Figure I lc). Once again, the water buildup ahead if the The effect of taper is tond to inluence the lift, drag.
surface. and the wave train in the downsrreamn retiia are ceiiter of pressure and tip dellectin iii a iiianner similar to
prominent. So too, is the plate deflection. ihal uit inmreaaing tire rigidity,

I he last figure to be presented, Figure I Id). detnon- It was also found that appllication of a pressure on the
strates tile powerful effect of applying a pressure it the seal, and mi the water behind. has a miator effect on its

cushit ,1 the teal. In this case, sie seal dellect, Irfs.rnanc. lt lilt is increased, an.' at hlw speeds tire
dawnuws, . inal is, a ieialive deflection iscurs). Ihis4 efre.t drag ii iiucth large(.
is due to the pressure acting down on the seal. Very large

downstream waves are also generated. A cirrisr nin ofi ware Future Work
heights with the previous parts of Figure I I highlights this
feature. An obvious improvement in the rule ot convergence ot

the numercil stherue coiuld he achieved through use of a
Inctitentally, it thould be pinnted rut here that the st ctil pressure elensent at the leading edge ti the planing

value of the lending pressure element, pi. was cbson surface Ihis element would need ti pisa the situare--rt
p ovide a continuous presure distnhbuion in Figures Il(d) singularity referred to before. Fsaminati,i of sorne of the



pressure distributions presented in this paper would indicate 9. (umbeebatch, E., -7sst--dinesionavl Planing at
that sonsewh 'fewver than 80 elements should be needed to Ifigh Froutde Nu~mber,' "I. Fluid Mechanics. Vol. 4. Part 5,
faithfully represent htem, if the singularity at thit leading pp. 466 -478 ( 1958).
edge* were handled in this manner.

The work sh~uld definitely be extended in various 1.Wlisn .,adLioe .- "ufc ae,

directions. For example, a three-dimensional model of the Encyclopedia of Physics, ''o. 9. Fleid Dynamics 3. ed. by
surface would bie an improvemnent on the present two- S. Flitifc, Spcinger-Verlag, Berlin, pp. 446-.815 (1960).
dimensiovat one. However, the greater performance of the
theory wouldl he at the expense of somewhat more analytic 11. G;reen, A.E.. "The Gliding ssf a Plate sot a Streant
and computational cffort. 

0
inite Depth, Part 1. - Proc. Ck itheidge Phil. Soc., Vol. 3 1,
589-603 11935Y.

The final goat, naturally, is a complete model of an
SES. Such at theory would have ts include the influence tof 12. Green. AFE., Ibid. Part 2. Vol. 32. psp. 67-85 (193o1.
both the stern and the bow veal - as melt as thc eflects of
the twit isehull%. 1 3. Green, A, ., ''Nite otn rthe Glidintg otf a Plate otn

lt'e Suirface uof a Stream," Proc Cambridge Phil. Soc.. Vol.
Acknowledgemenits 32, pp. 248- 252 (1936).
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DISCUSSIONS
of three papers

HYBRID INTEGRAL-EQUATION METHOD FOR THE STEADY SHIP-WAVE PROBLEM
Ronald W. Yeung and Yann C. Bouger

INTEGRAL-EQUATION METHODS FOR CALCULATING THE VIRTUAL MASS
IN WATER OF FINITE DEPTH

P. Sayer and F. Ursll

THEORY OF COMPLIANT PLANING SURFACES
LJ. Doctors

Invited Discussion equation. Some singular behavior Is anticipated
at the intprsection between the body boundary

H. Maruo and the free surface, whirh annarently Is relat-
Yokohama National University ed to the line-integral three-dimensicnal

problem.

Dr. Yeung and Mr. Bouger have developed a The paper of Dr. Sayer and Professor Ursell
method that looks quite novel as a treatment of deals with several problems of practical as well
steady free-surface flow problems. The special as theoretical interest relating to the classical
feature of this method is first, the employ- problem of heaving two-dimensional cylinders in
ment of the ordinary source potential in place a fre surface. The authors employ the method
of the conventional Havelock source, and second, of integral equations in the computation for
the division of the fluid domain into an inn,!r arbitrary shape of cross section. The discusser
region and outer regions. The first point is wonders if conformal mapping, which is conve-
advantageous in making the computation of the niently used in the case of infinite depth, is
kernel much simpler but the evaluation of th" applicable to the case of finite depth too. When
second derivative of the velocity potential on the integral equation is employed to solve the
the undisturbed free surfac necessitates some boundary-value problem, there appear frequen-
special technique such as t:- employment of the cies at which the solution cannot be determined.
spline function. ",ne division of the fluid These so-called irregular frequencies corres-
domain in inner and outer regions at proper pond to a physical phenomenon of resonant
radiation boundary is convenient especially for oscillation of water inside the cylinder which
the case of an Irregular bottom. This Idea is assumed to exist when the boundary of the
reminds us of the method acopted by Yamamoto in cylinder is replaced by some singularity distri-
1975. In the outer regions the potential is bution. The existence of the irregular fre-
expressed by an asymptotic expansion. If the quencies does not present as serious a problemradiation bundaries are taken far enough from in the computation of hydrodynamic forces in
the body and from the irregularity of the steady oscillation of a cylinder, but makes a
bottom, only a few teres are necessary; other- trouble In the analysis of the transient oscil-
wise the local irregularity will cause some lations. This problem has been studied bycomplication. This situation is particularly Ohmatsu of the Ship Research Institute. He
important in the case that the bottom is not pointed out that the irregular frequency could
flat. Unfortunately, only the case of a flat be removed by suppressing the resonant oscilla-
bottom Is given as a numerical example. Further tion inside the cylinder by means of a source
calculation for irregular bottoms is expected. distribution over the interior free surface. If
The authors have also referred to the Neumann- the irregular frequency can be removed by a
Kelvin problem and have expressed optimism single wave source at the center, the computation
about the resolution of the line-integral con- N-omes much simpler than the application of the
troversy. However, the discusser is rather source distribution. The discusser wonders if
skeptical about this. A numerical method of the 014mination of the irregular frequency by
this kind can be safely applied to a problem for means of the modification of the kernel has a
which the existence of a unique solution has been connexion wit some kind of physical phenomenon
proved. In the case of fully submerged bodies, in the interior regio.i. In this work, the
this might be all right, but there is no evidence authors employ an expression derived by Green'sof existence of a stable unique solution In the theorem, but there is another formulation ex-
case of surface-piercing ites, because the pressed by the distribution of wave sources only.linearized free-surface condition is quite arti- The authors propose a transposed Integral equa-
ficial. An interesting result obtained by tion which Is simpler than the original equation.Bessho concerning a vertical plate Inserted In The discusser fels that the transposed equation
a uniform flow with free surface showed a non- looks, In appearance, like the Integral equationuniqueness of the solution of the boundary-value which appears in the source method, and the solu-problem with exact boundary condition on the tion determines the source density. There is a
pte and linearized free-surface condition. simple relation, first indicated by Bessho. that9esho has proved that the integral equation has detemines the Integrated pressure by a simple
aigensolutions that satisfy the homogeneous Integral of the sot -ca dansity. Therefore the

authors' conclusion sem to imply the superior-
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ity of the source method. The discusser wishes Discussion
to know whether the irregular frequencies are by-wa-ng-June Bai
the same in the source method and the present of paper by Ronald W. Yeung and Yann C. Bouger
method. Another question is the following. The
irregular frequencies result from the resonant The method presented here was applied pre-
oscillation in the inner Dirichlet problem, while vious by Yeung to two-dimensional time-harmonic
the resonant oscillation of the liquid in the free-surface flow problems and the results were
container is related to the Neumann problem. Are presented at the First International Conference
the eiaen frequencies in both cases the same or on Numerical Ship Hydrodynamics in 1975. The
not? same method was also applied to the same time-

harmonic problem by Kim (1976).
Dr. Doctors h,.s presented a method for

solving the flexible planing-surface problem. For solving the uniform steady-flow prob-
The detemination of the pressure distribu- lam considered here and the time-harmonic prob-
tion on two-dimensional planing surfaces is now lems considered in Yeung (1975) and Kim (1976),
a classical problem. Nevertheless there still I personally do not see any advantage In using
remains an unsolved difficulty, the indetermin- the present hybrid integral-equation technique
ateness of the wetted surface. The length of over the conventional Green-function method
the wetted surface depends on the elevation of (distributing singularities on ony the body
the free surface to a great extent. Although boundary). It sees to me that the computation
the elevation is a small quantity of 0(m), a of the coupling terms, which result from match-
being the angle of attack, the change of the ing the elgenfunction representations (i.e.,
wetted surface due to the surface elevation is cosh m (y+h), cos m (y+h) and the fundamental
0(1). Therefore the position of the leading singulgrity distribItions (i.e., log r) along
edge cannot be determined beforehand. This the artificial juncture boundaries, is as con-
fact may not matter mch in the case of steady plicated as the computations involved in the
planing of a plane surface, but it seems to conventional Green-function method for the
yield a considerable difficulty in the deter- finite constant depth case. This fact is ob-
mination for a flexible planing surface. The vious when the Green function (in the conven-
boundary-value problem of the two-dimensional tional Green-function rxethod is expressed in
pluning surface is formulated as a Fredholm equa- series form.
tion of the first kind. The author's calculation
is, in effect, the solution of this integral In the earlier work of Yeung (1973) and
equation by means of the discretization of the Bai & Yeung (1974) the fundamental singularity
integral equation. According to my experience, method is used without matching of the eigen-
the method of discretization of an integral functions. In this case there is a computational
equation of the first kind with logarithmic advantage over the conventional Green-function
kernel is likely to show an unsatisfactnry accur- method since the kernel is much simpler. However,
acy sometimes, especially at low Froude numbers. in this approach, the computational boundary
In this case, the expansion by mode functions may domain is increased as a trade-off since the
give a more stable result. fundamental singularities (log r) are distributed

along the entire (closed) boundary.

Discussion I would appreciate it if the authors could
by-- T rancis Ogilvie express their view on the advantages (or dis-
of paper by P. Sayer and F. Urse11 advantages) of , , present method over the

conventional Green-function method for the case
It is worthwhile to say something about the of constant water depth. It would also be

practical utility of what authors have demon- useful for the authors to discuss the improve-
strated. Many ornpnizations have computer pro- ment of the Yeung (1975) and Kim (1976) methods
grams similar to Frank's for computing ship over the ear'ier work by Yeung (1973) and Bai
wotions and wave loads on ships. Of course, i Yeung (1974) for the general cases including
these all give difficulty at the irregular fre- the case of variable depth.
quencies discussed here. But these program can
all be modified by the insertion of a single Py second coment concerns the authors' use
step, equivalent to Equation (3.1) In the paper of spline-function approximations along the free
presented here (with any non-zero value assigned surface in the present work. It seems to be
to the constant A). Then, regardless of the necessary in the present formulation to use the
frequency under consideration, one can be certain spline functions due to the presence of the
that the elgun, frequencies of the internal second derivative *xx in the free surface Into-
Dirichlet problem wfil have been displaced to gral. However, the seco derivative in the
other frequencies. integra1 along the free surface In Equallon

T3. 3 can e eliminated by Integratn by parts,
This sowm to m to ba much happier solu- resulting in a slightly different fom which

tion of the practical difficulty then using such involves only the first derivative as the highest-
devices as putting a "lid" on the inner-flow order derivative. Then, in the new formulation,
region, It Is not necessary to use complicated (and more

sophisticated) splin functions. From W own
experience. it is mch easier to use simple
piecewlse polynomial functions which permit dis-
continuities in the first derivative, #x, at
intersecting points of two adjacent segments. I
would 1iLe to ask the authors if there Is anyother significance or advantage in using the

splice functions.

Finally I would like to point out that the



error in the vertical force in Figure 7 of Bai tions of the problem. We all hope to get to
(1975) which Yeung and Bou~er referred to in the the bottom of the matter soon.
present paper is not due to any error in my
numerical computations, but to an unfortunate In response to Dr. Bal's first query, re-
misprint. The vertical force scale should have lated to the computational difference between
been Y/(5egwa

2
) in Figure 7. Also I would like our hybrid method and a traditional Green-

to take this opportunity to point out one more function approach, I want to point out that the
typographical error in Bai (1975), namely, the coupling terms that Dr. Bai refers to, when
scale factors (102) and (10-1) in the abscissa computed from the expressions in closed form
of Figures 10 and 11 should have been inter- that we obtained, are about the 'aie order of
changed. I would also like to correct two complication as the Green funrtion itself. How-
misprints in Bal and Yeung (1974) which were ever, in applying the Greon-function technique,
also pointed out by Yeung (1975). In Figure 5.7 one is required not merely to be able to compute
of Bai & Yeung (1974), the abscissa scale should the Green function, but also 'o be able to inte-
have been divided by the factor of four and moh grate such a function over a segment of finite-
should have been m b. The correct scale was size. This requirement of the distribution of
given in my origingl paper (Bai, 1972) and the singularities is well known to Tho seappTying
results were confirmed by Kim (1976). the singularity methoo. Generally, integration

of a Green function over a segment cennot be
Eai, K.J., 1972, "A variational method in poten- carried out in closed form; thus it must be

tial flows with a free surface," Ph.D. irtegrated numerically. lherefore, our ability
Thesis, Dept. of Naval Arch., University of to obtain closed-form solutions of the integrals
Calif., Berkeley associated with the radiation boundaries means

that we are one step ahead of the Green-function
Kim, Y.H., 1976, "Hydrodynamics of cylinders in method. Such closed-form solutions are central

water of arbitrary varying depth," Mastci's to the success of uur 'cheme, a fact that was
Thesis, Dept. of Ocean Engineering, MIT, pointed out previously in Yeung (1975) and in
Cambridge Mass. 67 pages. my student Y. H. KIm's thesis (1976). As far as

computation time is concerned, the hybrid method
of Yeung (1975) was about two to three times

Author's 1R2  more efficient than the original formulation of
by R.W.Yeung Yeung (1973). A recent work due to Harten and
to discussions by H. Maruo and Kwang June Bal Efrony (1977, J of Comp. Physics) indicates

that by block structuring the matrix a further
First, concerning Professor Maruo's comment improvement by a factor of 10 is possible. Thu

on the possibility of complications in applying it appears that our hybrid formulation has a
the method to the case of non-flat bottom, I tremendous amount of potential in computation
would like to point out that similar techniques economy.
were used very successfully for such a case in
my previous work (Yeung, 1975) for the time- While computation costs may be important in
harmonic problems. Although we give no results the production stages of every method, it is not
in the present paper, we anticipate no diffi- of primary concern in this paper. This paper
culties in that direction. A distinct advantage serves to demonstrate that the hybrid-integral-
of our hybrid method is that the choice of the equation formulation is applicable to either
truncation boundary can be quite arbitrary and time-harmonic or steady-flow problems. This is
in fact can be as close to the body or the Irreg- in great contrast to the finite-element formula-
ularities of the bottom as one desires. Any tion of Bai and Yeung (1974), which had to
local disturbances can be absorbed automatically undergo fundamental modifications to tackle the
in the series expansion, steady-flow problem (Bal, 1975).

The idea of matching a solution expressed With respect to the point Loncerning com-
in analytical form with a local numerical solu- parison of computation time of the traditional
tion using an integral-equation formulation was Green-function method with our method, it appears
carried out to fruition In my initial work in that there exists no published computational
1973. At that time, only a single (wave) term data using the finite-depth Green funztion for
was taken. This was later generalized in Bal two-dimensional steady flow; hence such a com-
and Yeung (1974). I am glad to learn of parison is not possible. Perhaps this is an
Yamamoto s (1974) work, related to stress cal- indication of the fact that the Green-function
culation problems, which was also in that direc- approach has not been too attractive computa-
tion. His later work, related to free-surface tionally,
flows and presented at the First Conference.
indicates thit we have a cmmon philosophy of The second point concern% the treatment of
approach. the second derivative term of # on the free

surface. We want to emphssize that a spline
Professor taruo's point on the uniqueness approximation is not absuiutely necessary, al-

of solution of the Neumann-Kelvin problem is a though it was found to be most helpful. We
point of common concern in our field. Bessho's could have used piecewise polynomial approxi-
work on the two-dimensional semi-submerged mation between successive grid points on the
vertical-plate problem Is an Interesting contri- free surface and this will result in the sam
bution. It Is clear that he experienced diffi- type of Interals as in (3.14). Inasmuch as
culty in constructing a physically plausible the usage of the spline functions hardly cow-
solution. However, it is not entirely clear plicated the calculations, that one obtains
whether or not this difficulty was implicitly smooth first and second-derivatives at every
associated with the method of solution. His grid point, and that very fewpoints are neces-
solutiont always preJuce a continuous free- ary to rtpresent * in rC, a J. The high
surface elevation across the plate which seams quality of the differentiated curve as shown
to be against intuition. Also, I don't believe confirms the usefulness of the techniqie. The
he has proved that the integral equation hos application of spline functions to finite-
algen solutions satisfying homogeneous condi- elament methods such as Dr. al's, however,

0



would likely destroy the banded structure of is to specify the wetted length instead, and
the resulting matrix and is therefore, not consequently the planing height is found as part
very desirable In that respect, of the solution. Although not carried out here,

one could then iterate the wetted length until
Finally, concerning whether one should the desired planing height is achieved.

perform an integration by parts to reduce the
order of differentiation of the # x tern: we In the case of a flexible planing surface,
examined this during the course o1 the work and the identical stumbling block occurs, except,
found that no particular advantage resulted. In of course, the planing height is now reducEd
fact, this will bring about concentrated singu- by the influence of plate compliance. Once
larities at the end of the interval of Integra- again, an iteration procedure would be needed
tion, which is highly undesirable, to determine the actual wetted length in a

practical situation.
I am glad that Dr. Bal agrees upon the

errors we found In both our joint work as well With regard to the second comment, the
as his paper in the First conference. Both writer found no problems in accuracy for low
discusser's comments on this paper are appre- Froude numbers--suggested by Professor Maruo.
ciated by us. Typically, it was found that the number of

elements needed to achieve, say, one percent
accuracy in the lift force, was independent of

Author's Reply the speed. Perhaps the reason for this is that
by . ayer and F. Ursell the logarithmic kernel is smoothed out by the
to discussions by H. Maruo and use of triangular pressure elements. These
T. Francis Ogilvie yield a continuous pressure distribution, which

could not-be ob-taTned by cruder elements--such
We are grateful to Professor Marjo and to as rectangular ones.

Professor Ogilvie for their illuminating com-
ments. In addition, Professor Maruo ha.; put A second advantage of the use of triangular
some searching questions to which we offer the pressure elements--as opposed to mode functions--
following replies: is that one can more easily obtain the flexural
(1) We have riot succeeded in applying conformal influence coefficients for a plate of arbitrary
mapping to the finite-depth problem. stiffness distribution.
(ii) We should be glad to know more about
Ohmatsu's work on transient problems. The work
done on transient problems at Manchester has
proceeded along different lines and does not
involve the complete determination of the water
mot )n. (See S.J. Maskell and F. Ursell, J.
Fluid Mech. 44, 1970, 303-313).
(iII) We agree that our device of using the
transposed kernel must be equivalent to the
source method used earlier by Besshu, and that
the advantages of that method (provided that
only the total force is required) deserve further
study. The irregular frequencies remain the
same when the kernel of an integral equation is
replaced by the transposed kernel. Thus they
are the same for the Green-function method as for
the source method.
(iv) The eigenfrequencies of the interior
Dirichlet problem are in general distinct from
the eigenfrequencies of the interior Neumann
problem. We find it difficult to attribute a
physical meaning to the interior Dirichlet prob-
lem in the present calcuiations. Indeed, if
the source potential is modified, then the cor-
responding irregular frequencies are also modi-
fied and are no longer related to the interior
Dirichlet problem.

Author's Reply
by L.J.octors
to discussion by H. Mauro

The author would like to thank Professor

Maruo for his interesting comuents.

The first point concerns the unknown length
of the wetted surface. As pointed out, the
position of the leading edge cannot be deter-
mined beforehand--assuming, of course, that
the height of the leading edge Is specified. The
only practical method of skirting this difficulty
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NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS
FOR 2D HYDROFOILS IN OR BELOW A FREE SURFACE*

Samuel P. Shanks* * and Joe F. Thompsont
Mississippi State University

Depertment of Aerophysics and Aerospace Engineering
Mississippi State, MS 39762

Abstract The numerical solution of the Navier-Stokes
equations for flow with a free surface is com-

Th -Its of an investigationof the applica- plicated in particular by the fact that part of
tio. of ... -4cally-genetated boundary-fitted the boundary of the calculation region, i.e..
curviline- coordinate systems in the finite- the free surface, is deforming. This makes the
difference solution of the time-dependent, two- accurate representation ot boundary conditions
dimensional Navier-Stokes equations for the on the free surface difficult; yet this solu-
laminar viscous flow about hydrofoLls moving tion, as other partial differential equation
either in a free surface or subserged at a solutions, is most strongly influenced by the
finite depth in a fluid of infinite or fi-Lite boundary conditions. The most critical need
depth are presented. The hydrofoil may te of for accuracy thus lies in precisely the region
arbitrary shape, and its motion may include of the most utfficulty of attainment.
pitcbing oscillation or oscillation normal or
parallel to the plane of the undisturbed free The basis of the present numerical solution
surface as well as translation parallel to is the technique of numerically-generated
this plane. A computer code has been devel- boundary-fitted curvilinear coordinate systems
oped that is capable of predicting the flow reported earlier in Reference 1. This is a
field, pressure distrt -',ns, and force procedure for automatic numerical generation of
coefficients for this contiguration at low curvilinear coordinate systems with coordinate
Reynolds numbers. The finite-difference solu- lines coincident with all boundaries of a gen-
tion is implicit in time so that all the eral multi-connected, two-dimensional region
difference equations are solved simultaneously containing any number of arbitrarily shaped
by iteration at each time step. bodies. The curvilinear coordinates sre gener-

ated as the solution of an elliptic partial
I. Introduction differential system. No rastrictions are placed

on the shape of the boundaries, which may even
This report presents the results of an in- be time-dependent, and the approach is not

veatigation of the application of numerically- restricted in principle to two dimensiona. With
generated boundary-fitted curvilinear coordi- this procedure the numerical solution of a
nate system in the finite-difference solution partial differential system may be done on a
of the time-dependent, two-dimensional Navier- fixed rectangular field with a square mesh with
Stokes equations for the laminar viscous flow no interpolation required regardlees of the
about hydrofoils moving either in a free sur- shape of the physical boundaries, regardless of
face or in a fluid of finite or infinite depth. the spacing of the curvilinear coordinate lines
The hydrofoil may be of arbitrary shape, and in the physical field, and regArdless of the
its motion may include pitching oscillation or movement of the coordinate systro in the physi-
oscillation normal or parallel to the plane of cal plane. A number of examples of coordinate
the undisturbed free surface a well as trans- syatma and application thereof to the solution
lation parallel to this plane. A computer of partial differential equations are given in
code has been developed that is capable of [21 along with a discussion of the technique.
predicting the flow field, pressure distribu- This procedure essentially eliminates the
tions, and force coefficients at low Reynolds boundary geometry as a complicating factor in
numbers. The finite-difference solution is the numerical solution of partial differential
implicit In time, so that all the difference equations. The use of boundary-fitted coordi-
equations are solved simoltan- usly by itera- nate systeme for the solution of the Incom-
tion at each time step. pressible Naviar-Stukea equations for the flow

This reeearch was sponsored principally by 0g, Contract NOOO4-74-C-0373. The work reported in
Section V1 wae sponsored by NSRDC, Contract 100167-76N-8359.

e* Ph.D., Present affiliation General Dynamics, Ft. Worth, TX
t Professor, Ph.D.
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about two-dimensional airfoils has been re- In any case, the nterical generation of the
ported by Thames, et. al. 131 and by Hodge [4]. coordinal, system is done automatically for any
The latter reference uses the pressure- shape boundaries, requiring only the Input of
velocity formulation used in the present work, points on the boundary. The technique has been

described in detail in earlier reports 1-2],
The use of boundary-fitted coordinate systems and the com-puter code, together with instruc-

is particularly attractive for free surface tiona for and examples of its use in the numeri-
problems, since a coordinate line will remain cal solution of partial differential equations,
coincident with the free surface sa it deforms is given in Ref. [5].
under wave action. The physical flow field is
transformed to the curvilinear coordinate aye- The technique is described in general in
tem as discussed in more detail in Section II. this section. Each of the three parts of the
The field in the transformed plane is rec- present study used a different variation of the
tangular with a fixed square grid regardless basic procedure as is discussed for each con-
of the movement of the physical boundaries, figuration in Sections V-VII.
With the partial differential equations of
motion and their associated boundary conditions As mentioned previously, the curvilinear
transformed to the curvilinear system, all coordinates are generated by solving an elliptic
computation can be done on the fixed square system of suitable form. One such system is
grid in the transformed plane regardless of the + t s
motion of the free surface or the hydrofoil. +YY . (M.0 (Is)
It Is even possible to allow the hydrofoil to
oscillate without really complicating the pro- ",' iY - (C) (lb)

bIas, since a coordinate line can also remain
coincident with the hydrofoil surface as it with Dirichlet boundary conditions, one coor-
oscillates. dinate being specified to be equal to a constant

on the body and equal to another constant on the
The present solution is capable of treating outer boundary, with the other coordinate vary-

the low Reynolds number viscous flow about a Ing monotonically over the same range around
translating hydrofoi in or below the free both the body and the outer boundary.
surface of a fluid of any depth. The
hydrofoil may also be in pitching, plunging, Since it Is desired to perform all numerical
or longitudinal oscillation as well as trans- computations in the uniform rectangular trans-
lation. The hydrofoil starts from rest with a formcd plane, the dependent and independent
flat surface and accelerates to full speed at variables must be interchanged in Eq. (1).
any acceleration desired. The general solution This results in the coupled system
procedure is discussed iu Sections Il-IV, and .- n
facets peculiar to each of the parts of thie Cc (n + yx

study together with typical results are given 2
In Sections V-VII. -- J Ix11(tPti) + x Q(C,")] (2a0

1I. Boundary-Fitted Coordinate System ay - 20yen + yyn

The basic idea of the boundary-fitted coor- 2 - 2[y P(Cn) + yQ(Cr)] (2b)
dinate systems is to numerically generate a
curvilinear coordinate system having some
coordinate line coincident with each boundary
of the physical region of Interest, regardless where

of the shape of these boujdaries. This is done a - + 2

by taking the curvilinear coordinates to be 11 n C
solutions of an elliptic partial differential
syetem, with constant values of one of the x Z + y y - K - xny
curvilinear coordinates specified as Dirichlet C'n y x
boundary conditions on each boundary. Values
of the other coordinate are either specified in Th system described by Eq. (2c i a quan-
a monotonic variation over a boundary as linear elliptic system for the coordinate func-
Dirichlst boundary conditions, or are deter- tions x(CEn) and y(&,n) in the transformed
mined by Neumann boundary conditions thereon, plane. This set is considerably mora complcx
in the latter case, the curvilinear coordinate than the linear system specified by Eq. (1),
lines can be made to intersect the boundary but the boundary conditions are specified on

according to some specified condition, such as straight boundaries, and the coordinate spacing

normalcy or parallel to some given direction. in the transformed plane is uniform.
It is also possible to eercies control over
the spacing of the curvilinear coordinate lines The coordinate lines may be spaced no desired
in the field in order to concentrate lines in around the boundaries, since the assignment of
region@ of expected high gradients. the coordinate values to the [x,yl boundary

points is arbitrary. Control of too radial

203



spacing of the coordinate lines is accomplished The transformed time derivative is

by varying the functions P(ln) and Q(&,n) in

(2). af D(x.y.f) / 3..I . (= f•(jj) = a((.n.t) a(¢.,.t ,ii ) ¢.

The effect of changing the functions P(Cn) xy ,

and Q(&.n) on the coordinate system is dis-
cussed in Ref. 2. Cne particularly effective I .f !X _ a.
procedure, used here for the submerged hydro- - ( an an - . .n! )(

foil solutions, is to choose P and Q as expo-

nential terms, so that the coordinates are

generated as the solutions of + fx If x.. . (4)

- ~ at 0
tax +. E7y 1 W I ap(E - Ft)"

si -

All derivatives are expressed in the trans-

exp(-cik 7 I)- E = bj sgn(E - ). formed variables (C,n); thus eliminating the

J1 need for interpolation between points in the

physical plane. The movement of the physical

plane grid points is accounted for by the timeax (t

exp(-d .(C ) + (n - ?( ,r) (3a) rate of change of x and y, ( ) and a

in the above expression.

III. Equations of Motion

VI 
4. +yy A ani (n n )es(-cjln ni) The equations of motion are the complete

time-dependent Navie-Stokes equations with the

gravity term included. The no-slip boundary

condition is applied on the hydrofoil, and the

- I b sh.tn - nj) viscous stress conditions are applied on the

J-l free surface. The free surface deforms in time

as waves are formed thereon.

( (- ) + (n - n) Q( ,n) (3b) All quantities are non-dimensiomlized with

respect to the translation velocity of the

hydrofoil and the hydrofoil chord. The Reynolds

and Froude numbers are defined in terms of these

reference values. The physical coordinate eye-
shere the positive amplitudes and decay factors tem is taken to be fixed relative to the trens-

are not necessarily the same in the two equa- lational motion of the hydrofoil. In the

tions. Here the first term have the effect physical plans the equations of motion are

of attracting the C 
- constant lines to the

- ti lines in Equation (3a), and attractingut + (u2) + (uV)

n constaiL lines to the n - n1 lines in t

Equation (3b). The second terms cause - - p + (u + uyy)/R - (a)
constant lines to be attracted to the points

(J. i) in (3a), with similar effect on n -

constant lines in (3b). Several examples of
the use of coordinate system control are given vt + (uv)n + (Vn)y

in Ref. 2.

As discussed previously, the physical plane - py + (vX + v yy)/ 1/12 (Sb)

grid systsm is generated by solving the set of

elliptic partial differential equations. (2),

with one of the (E,n) coordinates specified to

he constant on the boundaries of the physical 3 2 .. 2 D (50
plane, and the other (4,) coordinate distri- P P - u- 2uv 1  V t

buted along the boundaries as desired. If the

boundary values of x and y are changed in the
physical plane by tia movegent of the free sur- Vet V

face contours a new solution of the elliptic where I - -- and 7 - - are the Reynolds and

eyatm with the changed boundary values is

obtained over the same range Of values Of 4 Frouds numbers, respectively, V being the meg-

and n in the field. Thus, the transformd nitude of a refereuce hydrofoil translational
plans rousina unchanged as the coordinate grid velocity. V the instantaneous velocity, c the

system moves in the physical plane. Only the chord, v the kinematic viscosity, and g the

values of the physical coordinates (xy) change acceleration of gravity. The third of these

with time at the fixed grid points in the equations is the Poitsaen equation for the

transformed plans.
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pressure, derived by taking the divergence of + [yn(uv) - yE (uv) n/J 4 (+C(v)E - xn(V2)C/J

the Navier-Stckes equations and requiring that
the contiuity equation (D 2 ux + vy - 0) be

y+ (X - N I Ac 2 + 'n
satisfied. The time derivative of D, ideally +(p n  p .(( V( YvM

zero, has been retained in this equation as a
corrective ters in the manner of Hirt and Har- + ov+ iv )/RJ2 - i/F

2  
(7b)

low 16]. n C

The boundary conditions are as follows:

(a) On the hydrcfoil (no-slip condition): upC -
2
Bptn + yr., + opN + TpE

u - u8 (x,y,t), v - v(x,y,t) where (uBV B) are a - (U - yU)2

the velocity components of the hydrofoil sur-
face at (x,y.t) relative to the coordinate - 2x u - xNut )(y v

n  
- y Cv

system translating with the hydrofoil. (These
values are zero if the hydrofoil is not
oscillating.) - (v n - x v )2 - j2Dt

(b) On the surface (viscous stress condition):
a n +! u v~n2- Xt D -D n yt)J - -tDtx D x,)J (70)

UxoI+i(uy+Vx)n2 (p -p Po)n, (6a) nx(D Yn Y(Dx -

where

2 + I + = - ) (6b D -(ynut - yun + -xvn - EnV)IJ (7d)
i vyu2 +i (uy +x )nl - (p p,)n (6b)

where p is the applied pressure from the and
atmosphere, and nI and n2 are the components j

2
o(nI, 3 t

of the unit normal to the surface in the x and
y directions, respectively. These relations The coefficients a, (, y, and J have been de-
assume no wind stress on the surface, fined in the previous section.

(c) On tie remot 'oundary (undistyrbed flow): The time derivatives have also ben tians-
u - -VO, %- 0, p - po + (y. - y)/F . (These formed In these equortens. Thus, time deriva-

conditions apply on the remote boundary strict- tives in Eq. (/) are taken with C and n fixed,
while those in Eq. (5) were taken with x and y

ly only until surface diaves reach it. At 1oe fixed. This transformation of time derivatives
to damp the wmvis beore the remote boundary allows the computation to be done on a fined
10 chords distant is reached.) grid in the transformed plane even though the

physical grid is in motion due to the free sur-

face and hydrofoil moveme
Using the derivative transformation relations

given in the appendices of Ref. 5, these
equations may be transformed to the curvilinear The transformed boundary coi.2itions are

coordinate system, so that the equations of (a) On the hydrofoil (no-slip conditons):
motion in the transformed plane are

u - uB(C,t), v - vB (,t)

it - - yuQ/J - Yt(XU - x,1u/)/S (h) Os the free surface (viscous stiess condi-
tions):

u - ((nB - JXnyn)u + v

S ( 2) C (u2)JC/J 2

+ - yn(p - po)J (a)

+ [x(uv) - x NO) C/J

V y /J u_
2
C C (- Jy)u + (nO + Jxny )v0  (Ob)

+ (yip C - ytPnl/J =lNu,,- 2$u,, + YunnC 2 1nnqn

- t n(p - po
)

+ Ou + ru )/tJ
1 2

+ (7s)

(c) On the remote boundary (undisturbed flow):
- Vo, v - 0, p - po + (Y. - y)/ 

2
.

vt - Xt(oqV - y~v)/J - Yt(X Vn - sv )/j The two free surface boundary conditions given
C Cabove result from transforming the two viscous
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stress equations (6) to the curvilinear coot- after substitution in the transformed equa-
dinate system end solving these two simulta- tions.) Derivatives along coordinate lines
neous equations for u& and v& in terms f u, emanating from the hydrofoil surface or from

the free surface being a line of constant F in the free surface sre evalurted using second-

the configuration used. (See the appendix of order, one-sided difference expressions.

[7) for this development.) Finally all the time derivatives are approxi-

On the hydrofoil contour and the free surface mated by firat-order, backward difference cx-

the pressure is determined by iteratively ad- pressions, so that the solution is implicit in

justing the pressure at each point on the time. The set of five simultaneous difference

hydrofoil in proportion to the divergence of equations from (2) and (7), three equations of

the velocity at the same point, so that upon motion and two coordinate system equations,

convergence the continuity equation is satis- with the boundary conditions are solved at each

fied at the hydrofoil surface. Thus on the time step by SOR iteration. The resuic from

hydrofoil surface, since u v- 0 by the the previous time step secves as the initial
C guess for the iteration at the next. The so-

no-slip condition, we have, using (7d), lution starts from rest with a flat free sur-
face and proceeds with a specified acceleration

p(k+l) . p(k) - K (xCvn - yEu )IJ (93) to full speed.

The body force components are obtained from
while on the free surface, the integration of the pressure and shear

forces around the wetted portion of the hydro-
p(kl) (k) - KD (9b) foil surface:

px --pyd + wd Ia

with D given by (7d). Here (k) is the tera- F - - 2 R ydo + I wdt (lla)

tion counter, and K is a proportionality factor
gvnbK- C2.j2 - + ydC (1b)Iby K ( y)At on the hydrofoil and Fy + px E

by K - on the free surface, w being an ,ith vorticity, a, given by

acceleration parameter. The different form on
the free surface results from the need to pre- y C - ycv - x u an)/J (12)
vent positive feedback from the surface stress j C ( n c n n )
condition to the surface pressure iteration.
(See Appendix D of [8] for the development of Here the n-derivatives are evaluated by the
these relations.) second-order, one-sided difference expressions

The y coordinate on the free surface is given above, while the second-order central

determined at each time from the mvement of expressions are used for the &-derivatives.

the free surface. Since the free surface can Finally, the lift and drag coefficients are

be described by y - f(x,t) or f(x,t) - y - 0, given by

the convective derivative of the latter func- CL - F7 coee - Fxsine 0.3a)
tion must vanish:

L (.t, - ,) - + - ,m.n + bo)

)xtd (f y xz tt b

whtere 0 is the angle of attack.

Then since y - f. and the surface is a line of
constant C. V. Submersed Hydrofoil - Infinite Depth [71

(k) "(k) y Solution Configuration

lit S x C x Fiur
x Figure I shows the basic doubly-connected

transformation with a free surface. This type
and then of configuration has been used successfully for

airfoils in previous studies 131. For a free
y surface problem CI would be the arbitrary

X v u 1 hydrofoil, C2 would be the "infinity" boundary.

end C, would be the free surface. Since the

"infinity" boundary is chosen to be ten chords
IV. Numerical Solution from the hydrofoil in the present research, the

contour C5 would be approximately twenty chords

All space derivatives in the field are
approximated by second-order, central differ- long. Thus, fewer points would be on C5 to

sncs expressions. (At and An are both unity cover 20 chord le.,gths then would be on Cl t
by construction, the actual values of ( and n
being immaterial since cancellation occurs cover approximately 2 chord lengths. Unless

many C-points ware used the wide grid spacing
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on the free surface would cause large trunca- Using Fig. 2, JM- 6, 11 1 10 and I? = 45. Six
tion error. n-lines were attracted to the airfoil with an

amplitude of 1000 and a decay factor of 1.0.
Several modified coordinate systems were

investigated in order to provide more points on Fig. 5 shows the effect of Froude number on
tha free surface (?). The transformation shown the free surface movement. Three Froude num-
in Fig. 2 was chosen because the number of free bers of 0.5, 1.0 and 2.0 are shown for a con-
surface (C7 and C8 ) grid points is independent stant Reynolds number of 20 and at a time of

8.0. All three cases were accelerated gradu-of the number of points on the body (C I). The 80 l he se eeaclrtdseu
ally over a time of 4.0. Also, the same time

tansfored plane of Figure 2 forms a T-shaped step size (At - .01) was used in all three
region. The lower part of the coordinate sys- cases. At a time of 8.0 the airfoil had moved
tem is the same as the basic transformation of 4 chords. Comparison of Figs. 5a, b, and c

C is taker a I shows that the effect of the airfoil on the
Figure 1. The cut 12 (2+ 2) free surface increases am the Froude number

thus creating the two common reentrant bounda- increases, as would be expected since the
ries C* and C*. The upper part of the trans- Froude number is the ratio of inertial forces

formed plane bounded by the constant n-line to gravitational forces.

( - "),c8, C7 . C2 are added to the basic Figs. 6-8 demonstrate the effect of Froude

transformed plane to provide free surface and number on the drag, lift, and pressure. The
"infinity" boundaries. The two common reen- time histories for three Froude numbers, 0.5,trant boundaries,C and C creatn r - 1.0 and 2.0, are presented for Re - 20 and

6 a are created to pro- t - 8.0. Referring to the peak drag in each

vide more points on the infinity boundary than figure, the drag is reduced as the Froude
are on the body (Cr). The cuts are taken at number Is increased, because as the Froude

I - I number increases the free surface rises over
half indices because the point (II - , ) the airfoil thus changing the local angle of
has a zero Jacobian. By taking the cut at half attack. From Fig. 7, the lift changes drasti-
indices, the zero Jacoblan point is eliminated cally because as the Froude number decreases,
from the field calculations, the buoyancy forces become more dominant.

From Fig. 8 the effect of Froude number on the
The system of finite difference equations is pressure distribution can be seen. Buoyancy

solved simultaneously by the successive-over- forces are dominant at , Fro-de number of 0.5
relaxation (SOR) iterative method. The number (Fig. 8b), and inertial forces are dominant at
of simultaneous equations to be solved is a Froude number of 2.0 (Fig. 8d).
(MAX - J1 + I)(DMAX - 1) + (JM - 1)(12 - 11
1). Boundary values are specified on Figure 9 shows the pressure distributions

J - .MAX for all it[1, IMAXI. Also. boundary about the Karman-Trefftz airfoil for two
values are specified on j - JMAX for all Reynolds numbera. Re - 20 and Re - 100. The
i[ II, 121. Boundary values or the Neumann constant parameters ore F - (,.5 and t - 6.
boundary condition x, . 0 (normal n-lines to The pressure coefficients for Re - 20 are

free surface) may be expressed on the free sur- larger than the presure coefficients for

face contours, I - I and I - IMAX. At the Re - 100. The lift coefficient for both cases

branch cut for the constant n-line J - J and is due mainly to the buoyancy forces.
ic[1, 11 - 1], we have i, j - 1) - (IMAX - i
+ 1, J). Also, at the branch cut for the Translating Circular Cylinder

constant n-line J - J3 and ic[I2 + 1, IMAXI,
we have (i, j - 1) - (IMAX - i + 1, J), At Fig. 10 shows the coordinate system for a

the branch cut for the constant C-line i - II circular cylinder located one chord below the
and jc(1, 34 - 1], we have i - I - 12. At the free surface at three times. The flow para-

branch cut for the constant E-line I - 12 and meters are Re - 20 and F - 0.5. Two wave iaks
Jef l, JN - 11, we have i + I - 11. are shown on the free surface. The circularcylinder affects the free surface more than the

The basic hydrofoil geometry and coordinates airfoil, which should be expected. F g. 11
shown the velocity vectors for the circular

era shown in Figure 3. The equations of motion
are those given in Section III except that the cylinder. At a time of 6, the stagnution point

non-conservative form of the convective terms ctsrted to move up the front of the cylinder.
in the Navier-Stokes equations was used for
this solution. Oscillating Karman-Treffts Airfoil

Results are presented in Figs. 12-14 for a
hydrofoil in pitching, plunging, and longi-
tudinal oscillation. All solution are pre-

Typical resultssened in the free stream-fixed coodinte
given in Figs. 4-9 for a larmn-Treffts hydro- reference frame. Also all solutions were run
f,01 (Fig. 4) and in Figs. 10-11 for a circular usingethe flow Alto Re so 20tnd Fere1.0.
c) dAer hydrofoil. The airfoil was defined by using the flow prametems, Re - 20 and F - 1.0.

37 coordinate points and was located one chord The same coordinate system was used for all

below the free surface. The field size of the solutions. The Katman-Treffts airfoil was
rh"outer" placed at one chord below the fLee surface.coordinate grid was 54 x 30. The boundary s loted 0 chords

boundary was located 10 chords from the airfoil. The irfol.
from the airfoil.
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In Fig. 12. the atrfoil is moving in the applied on the free surface, rather than
negative x-direction. This solution is equiva- viscous conditions as in Section V. The
lent to the other solutions of previous sec- transofrmation configuration is the same as
tions. However, the hydrofoil is moving rela- that used for the infinite depth channel as
tive to 6he "outer" boundary. The coordinate shown in Fig. 2.
lines close to the body are moving with the
airfoil. The free stream-fixed reference The two configurations, shown ir Fig. 15,
frame clearly shows the fluid being pushed by were considered from the data supplied by
the airfoil. Also, fluid is moving in at th Salvesen [9]. Fig. 16 shows the cross section
trailing edge to fill the space evacuated by of the hydrofoil. To define the hydrofoil,
the airfoil. twelve locations along the chord were specified

with the local thickness. To have the freedom
In Fig. 13, the airfoil is moving toward the to arbitrarily place points on the hydrofoil

free surface. As the airfoil moves toward the surface, the data for the hydrofoil was fitted
free surface, fluid is pushed op and to the to the general equation for a NACA modified
sides. Vortices are created at the leading four-digit airfoil. The resulting hydrofoil is
edge and at the trailing edge of the airfoil shown in Fig. 16. Using a chord of 1.0, the
because the fluid is moving from the upper side maximus, thickness of 0.345 hords is located at
to the lower side. The fluid that is moved up 0.32 chords from the leading edge. After in-
by the airfoil disturbs the free surfaces by vestigating several airfoil rhapes, the leading
pushing up the free surface above the airfoil, edge radius was chosen to be 0.04 chords and

the trailing edge angle was chose to be 16.5
°
.

In Fig. 14, the airfoil is pitching 5* about The resulting hydrofoil thickness distribution
its center chord. Three times (t - 1, 5, 8) agrees closely with the twelve coordinate
are shown. The airfoil takes a time of 10 to points that were given.
pitch from 0* to 5" and back to 0*. The
vortices can be seen formin as the airfoil The field size was chosen to be 62 x 60 with
pitches. JM - 21, I - 20 and 12 - 53. The coordinate

system was converged to 10
-6 

using the SUR
Computer Time iterative method. Next, the uncontracted

coordinate system was used as the initisl guess
Some of the solutions were generated on the for the contracted coordinate system. Eleven

UNIVAC 1106 single processor and the latest n-lines were attracted to the body. The first
solutions were generated on the upgraded UNIVAC 10 n-lines were attracted using an amplitude
1106 dual processor. There are many factors of 20,000 and a decay factor of 0.4, and the
which determine the computer time required for eleventh n-line was attracted using an ampli-
a solution, for example, the way the object tude of 250 and a decay factor of 0.2. Detail
program is loaded in the computer code. The of the first 17 n-lines is shc'n in Fig. t7.'
uncontracted coordinate system requires from The results of viscous flow about the submerged
3 to 6 minutes to converge depending on the hydrofoil for low Re'-nolds numbers are shown in
field size and convergence criteria. Depending Figs. 18-28. Three cases were run: The first
on the type of attraction required, the con- case (Fig. 18) involved the deep-water config-
tracted coordinate system took up to 30 minutes. uration with Re - 100 and F - 0.33. The second
The acceleration parameter for pressure was case (Figs. 19-23) presents results for the
1.8 and the acceleration parameter for velocity deep-water configuration with Re - 100 and
was 0.8. The constant of 0.1 was used in the F - 2.0. Finally, the third case (Figs. 24-28)
pressure iteration on the body. At Re - 20 presents results for the shallow-water config-
and F - 1, the solution took 239 minutes to uration with Re * 100 and F - 2.0.
generate 600 time steps. The maximum number
of iterations for a time step to converge was All three cases had several things in cosm
11 at time step 313, In each case the hydrofoil was accelerated from

a velocity of zcr over a time period of 4.
VI. Submerged Hydrofoil - For the first case the field size was 62 x 55

Finite Channel 1e_ .th 11 and for the second and third cases the field
size was 62 x 60, In each case, JH - 21.

The only modification necessary to the sub- It - 10, end 12 - 53. The time stop else for
merged hydrofoil solution discussed in the each case was chosen to be 0.01.
previous section here wea the change of the
configuration in the physical plans to include The trailing edge pressure wee calculated by
inflow end outflow boundaries with a solid extrapolation of the adjacent surface pressure.
bottom between. In regard to the coordinate An inviscid condition was used on the from
syetem, this change is merely a emtter of surface in each case. The free surface pnes-
changes in the input to the program, replacing sure was met equal to the atmospheric pressure.
the sa-circular outer boundary located at a and the fret surface velocity boundary condi-
great distence from the hydrofoil with a tions become
boundary consisting of three segents--inlet,
outlet, snd bottom. The undisturbed flow
boundary conditions used on the seal-circular
outer boundary were then replaced with undis-
turbed flow on the inlet and outlet sagments.
and free-alip boundary conditions on the solid
bottom. Inviscid boundary conditions were
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Convergence of the viscous solution was is rapidly damped by the strong viscous effects
chosen to be dependent on the change of the so that the rise is confined to the irmediate
velocity and the coordinate system at each vicinity of the hydrofoil. Furthermore, the
iteration. When the change of velocity and the front stagnation pressure on the hydrofoil
coordinate system became less than the conver- increases as the Reynolds number decreases,
gence criteria of 10

-5 
the solution for that since the strong viscous pull of the free

time step was stopped at that iteration. The stream on the flow being Oeflected around the
pressure change was not required to meet a hydrofoil is greater. These effects tend to
convergence criteria, but the pressure was mon- produce a pronounced local upward deflection
itored. of the free surface in the imediate vicinity

of the hydrofoil at low Reynolds numbers. The
The deep-water configuration with Re - 100 strong viscous null of the free stream flow

and F - 0.33 ot Fig. 18 aows a vortex develop- tends to shift this disturbance downstream and
ing on the lower surface of the hydrofoil, and hence aft of the hydrofoil.
the leading edge stegnation point moving up the
leading edge of the hydrofoil as a result of VII. Hydrofoil in Free Surface [8)
the small movement of the free surface for this
low Froude number. This separation did not The physical and transformed planes used in
occur in the insults for F - 2 given below, this solution are shown in Fig. 29. Since the
Additional results at F - 0.33 are given in hydrofoil is in the free surface, rather than
Ref. 11. submerged, the physical region is simply-

connected, its boundaries being the wetted
The deep-water configuration with Re - 100 portion of the hydrofoil contour, 2 - 3

and F - 2.0 of Fig. 19 shows the large mowe- the free surface fore, I - 2 , and aft,
ment of the free surface. In Fig. 21, the 3 - 4 , and a remote saei-circular boundary,
pressure distribution is almost symmetrical, I - 4 , located at a sufficient distance
except for the slight movement of the leading from the hydrofoil to be undisturbed by the
edge stagnation point. The time history of the flow. The transfcrmed plane is a rectangle,
free surface shows the large movement of the with the wetted portion of the hydrofoil con-
free surface. Also one can see the movement of tour transforming to the upper horizontal side,
the first peak from the front of the hydrofoil the free surface fore and ft transtorming to
to the rear of the hydrofoil, the left and right vertical sides, respective-

ly, and the sesti-cireular remote bouidary
The shallow-water configurazion results with transforming to the lower horizontal side as

Re - 100 and F - 2.0 show the et-cct of the indicated in Fig. 29. This configuration dif-
hydrofoil being close to the bottom. 1i 'tg.

2
5 fern from that used for the submerged hydrofoil

the leading edge stagnation point is moving in th, the physical region was doubly-
down to the lower side of the hydrofoil. Also connect,,' with the submerged body.
a slight separation is developing on the upper
side of tie hydrofoil. In Fig. 26, the effect As noted above, the curvilinear coordinates
of the hydrofoil being close to the bottom on (i,n) are taken as the solution of two elliptic
the pressure can be seen. partial differential equations. The particular

equations used in the present solution are
The configuration of Figs. 24-28 corresponds those of 1121, which differ from the original

to one of the feet configurations of Ref. 9 system of [ S), used for the submerged hydro-
(depth 0.99 ft., foil 0.15 ft. above bottom). foil, only !; the form of the coordinate system
However, the depth-Froude number in the present control terms (the terms iiivnv!og the fune-
simulation is 1.09, while the experimental tions P and Q below and in Eq. (2) above.)
results of Ref, 9 had a depth-Froude number Thus and n are determined by the solution of
of 0.706 for this configuration. More signifi-
cantly, the chord Reynolds number of this + &yy

= 
(t2 + Y) P(f) (14a)

simulation is only 100, while that for (he
experimental results was about 200,000, Each
of these discrepancies tends to shift the local
disturbance aft in the bimulation. + nyy (n.2 + ny2) Q(Cn) (14b)

aI" y
Both experimental results [101 and tho pre-

* sent numerical solution iiicate that 'he sft With reference again to Fig. 29, the boundary
* local disturbance moves aft as the Froude conditions for these equations are as follows:

number increases (cf. Fig. 5). The
Reynolds number effect Iti the present results (a) on the wetted portion of the hydrofoil
is even greater, however. The local distur- contour, 2 - : n - i 2 constant,
banes is broader and extends farther aft In the
numerical results at the lower Reynolds number. C varying sonotonically from CI to C2
At the sast time, the initial rise forward of U2 1 E1

) 
from 2 to 3

the hydrofoil is broader at the higher Reynol(t)
numbir and extende tather forward. (b) on the free surface, I - 2 . anti

I - 4 : i.constant on I - 2

Following this trend, it is conjectured that
at low Reynolds numbers the forward propagation C - C2 - constant C o1  - 4
of the rise in surface level above the hydro- n varying monotoncally from nI to 2
foil that oecus at high Reynolds numbers qf)

(n 2  "1 from I to 2 and from 4 to 3.

2OW
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(c) on the remote boundary, I - 4 . boundary arcs In the earlier stages of the
present investigation. Later an unequal spac-

- "il - constant < n2 " i varying mono- ing was used, with the angular separation of
tonically from 1 to E2 from 1 to 4 points varying on a sine curve, so that the

closest spacing occurs adjacent to the free

In t'e present application, the control func- surface.

tions, P and Q, are determined from the speci- Since the free surface deforms in time, with
fied sparing of points on the hydrofoil contourfid fre surfpoitose on the hydyofoing conour csequent motion of its intersections with the
and free surface, those on the body being con- hydrofoil contour, only the relative distribu-
centrated near the free surface and those on t
the surface being concentrated near the hydro- fixed. The points thus slide along the wetted
'oil as in Fig. 30. The details of this deter- portion of the hydrofoil while maintaining the
viosrion of P and Q are given in [ 8]. The prino h yrfi hl anann h
resuin tceation of oordQaregivninat nes same relative spacing from adjacent points as
resultant concentration of coordinate lines time progresses. This is accomplished by lo-
rear the body and free surface is evident in eating the points on the contour at fixed per-
Fig. 30. centages of the angle subtended by the arc

between the two intersections with the freeIn the initial stages oi this study, the surface. This subtended angle, of course,

control functions, P and Q, were taken as sums anges ibis awen t e of ose,

of decaying exponentials that caurs attraction changes in time. When the hydrofoil oscil-

of coordinate lines to specified lines and/or lates, the movement follows the oscillating

points as used for the submerged hydrofoil.

Some of the results given below were obtained he points oa the free surface are initially
on coordinate systems using this type of con- determined by a Neumann boundary condition
trol as will be noted. The new control proce- that requires the coordinate lines to be verti-
dure has the advantage of automating the con- cal at the moving surface. The local elevation
trol and e,iminating the need for judgmental of the surface is determined by the equatlons
estimation of the attraction amplitudes and of motion for the free surface as Aiscussed in
decay factors necessary to achieve a desired Section for the points t s li og

degre o lie cnceraton.Section 111. The points thus slide along the

free surface as the surface deforms it, time.

With the current modification in the control Results of the numerical solution are pre-
functions, Eq. 2 in the transformed plane are sented for a circular cylinder hydrofoil In two
replaced by flow configurations:

x - 26x 0 + Yxnn + aPx + fQx - 0 (15.) (a) Accelerating translational motion
parallel to the plane of the initially
undisturbed flat free surface.

aY F - 28yq E "y' + cy + Pp+ YQy 0 (15b) (b) Oscillatory plunging motion normal to

the plane of the initially undisturbed
flat free surface.

The boundary conditions for x and y are as

follow&: In each case the axis of the cylinder is in the
(a) On the hydrnfoil: plane of the initially undisturbed flat free

surface. The fluid is physically unbounded

rd y specified by the chosen spacing of except by the free surface, with no distur-

points around the hydrofoil contour, bance remote from tha hydrofoil.

rhese points move on the contour with time
as a result of motion of the hydrofoil an! Is the translational case (a) the accelera-

also because of movement of the free sur- tion is linear, with the Reynolds and Proude

fae-body contact points on the contour. numbers given by

(h) On the free surface: r - 20t P - 2t

*. 0 Initially, fixed toafter, y tree numbers being based on the cylinder die-
- toe and current velocity.

from the surface movement, Eq. (i0).
(The first of these allows the points to For the plunging ce* the motion of the by-
slide along the free surface so that the r.foll is einusoidel with the elevation of the
coordinate lines are initially vertical cylinder axis relative to the plane of the
at the free surface.) intiUlly .ndisturbed free surface given by

(c) On the remote boundary: y - A sin(--) where A nd P are the amplitude

and period, respectively. u, the motion. The
x and y fixed and specified by the chosen
spacing of points along the remote btund- velocity of the cylinder to thus

V .- ooA cue 11 and the Reynolds and Prowls

This point dietribution on the body and re- numbers or* then given by R - 20y and P - 2y,
mote boundary wes taken ccording to equi- respectively.
angular epacing over the body and remote
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In etch case the coordinate system Is of the and inward toward the void being left by the
form shown in Fig. 30 and discussed above in rising body. However, due to the viscous no-
thia section, vith 37 pcints on the body and 30 slip boundary condition, a vortex Is created
point: on the tree surface on each side of the near the contact point (T - 0.01 in Fig. 35).
body. The remote boundary where the fluid is (A similar vortex, but of the opposite rota-
-andiaturbei is located at a radius of 10 cylin- tion is, of course, created off the left con-
der diameters. The convergence acceleration tact point.) These vortices move away from the
parameters used were 1.0 for the monntua equa- body and decrease in intensity as the quarter-
tions (Ya-b), 1.8 for the Poisjon equati'n (7c), cyle is approached (cf. T = 0.11 in Fig. 35).
0.45 for the surface pressure equatlon (9), and
1.85 for the coordinate system equations (15). At the quarter-cycle (0.157), the body
The iterative convergence criteric used were reaches its highest point and then reverses
10-5 for the coordinate system ar lC'

4 
for che its motion to move downward. This forces the

veloity and pressure, fluid beneath the body to the aides. The be-
ginning of this sideward notion can be seen at

The initial point distritutiot. on the cylin- T - 0.17 in Fig. 34 juat beneath the body. At
der was detersined by a sine curve, with points this time, inertia causes most of the fluid to
distributed symetrically and concentrated near still reflect the previous upward movement of
each free surface contact point. The initial the body. This inertial effect is evident also
distribution on the fret surface was deter- in the corresponding detail plot in Fig. 35,
mined by a.i exponential curve, with points con- where the fluid adjacent to the body has re-
centratti near the body. It was found neces- versed its motion and is moving downward with
eary to have the points adjacent to the free the boly while the rest of the fluid notion is
surface-body contact point approximately equt- qua]itatively similar to that at T - 0.15 be-
distant from the contact point else stability fore the quarter-cycle.
problems arose with the 7urface. The points
move on both the hydrofoil and free surface as As time passes, the Influence of the dovnwari
time passes, but the ams erelative distribu- motion of the body sprcas progressively
tions are maintained as discussed in the pre- throughout the fluid so that more and more of
vious section. the fluid acquires downward anc sideward motion

beneath the body, with consequent apward motion
AA noted in the discussions above, the toward the surface (cf. T - 0.21 and 0.31 in

curvilinear coordinat- system continually de- Fig. 34). This annihilates the vortices, and
forms as time progresses, always keeping a new vortices of opposite rotation to the or-
coordinate line coincident with the deformiung ginal form just off each surface-body contact
free surface. This behavior is evident in point kcf. T - 0.21 in Fig. 35) These vor
Fig. 30 which shows the coordinate system at tices also move away from the body and decrease
four times for the translating hydrofoil. The in intensity as the body moves toward its low-
free surface rises in front of the hydrofoil, eat point at the three-quarter cycle time
and the fore contact point slides up along the (T - 0.471).
hydrofoil contour. At the rear of the hydro-
foil, the surface falls, and the aft contact At this tite the motion of the body again
point moves downward, reverses, and the body starts back upward.

This causes inward motion to begin jtst be-
Velocity vectors and the hydrofoil pressure noath the Lody (T - 0.49 in fig. 34) with

distribution for this solution are shown at upward motion adjacent to the body (T - 0.49
one time in Fig. 31. The vectors clearly show in Fig. 35). This new pattern of motion then
the fore and aft stagnation points to b well spreads out into the remainder of the fluid,
below the corresponding surface contact points competing initially with the Inertially per-
on the hydrofoil. The pressure distribution sisting motion from before the last body re-
shows a positive pressure spike adjacert to versal. As at the quarter-cycle, the existing
both contact points, but a smooth distribution vortices are annihilated, and new ones of
elsewhere on the hydrofoil. This spike is due opposite rotation again form off the contact
to numerical error resulting probably' from the points (cf. T - 0.53 in Fig. 35). The general
modeling of the contact point moviment. fluid motion is again downward from the surface,

with inward and upward motion beneath the ria-
The initally undeformed coordinate system Ing body (cf. T - 0.61 in Fig. 34) as at the

used in the oscillatory solution is shown in beginning of the cycle.
Pig. 32. A stronger concentration of lins
near the free surface and hydrofoil contour was The movement of the hydrofoil free surface
used in view of the results discussed above, contact points along the hydrofoil contour is
Fig. 33 shows the temporal oscillation of the modeled by a coedition of continuity as dis-
lift coe'ficient. fhe curve is seen to be cussed ii detail in Ref. 8. Essentially this
deformed from a pure sinusodial oscillailon. model causes the contact points to slide along
After an initial rise, the force remains upward the hydrofoil contour in response to a net
throuchout the cycle. imbalance of flow into the cell at the contact

point. Net inflow will thus cause that contact
fig. 34 shows a series of plots of velocity point o slide upward along the contour.

vectnrs at several time during the cycle, Another model based on a condition of zero
while Fig. 35 shows the same thing, but in stress at the contact point wes also inveetigs-
detail of the region around the right surface- ted but was found to be unsatisfactory as also
body contact point. As the body rises initial- discussed in Raf. 8.
ly, the fluid moves downward from the surface
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Figs. 36 and 37 show the surface elevation advantages as noted in spite of the presence of
and pressure at ipprorisately the quarter, half, the zero Jacoblan. The cotifigurations used for
three-quarter, and full cycle times. The ele- the hydrofoil in the free surface (.nd for the
vation curves show that the mean surface posi- external flow about airfoils in other studies)
tion is not flat. but is depressed in the vi- do not have any zeros of the Jacobian in the
cinity of the body. Tht; result is in quali- field. Further study would be necessary to
tative agreement aith a periodic boundary develop better configurations for the submerged
layer solution and expe':Iment.l flow visuali- hydrofoil case.
zation results given in Schlichting [13] for a
circular cylinder oscillating in an unbounded
fluid. There it is shovn that a mean secondary Concerning the hydrofoil In the surface, the
motion exists in which fluid moves from the L oordinate configuration was less of a problem,
sides toward the body (normal to the direction asid no zeros of the Jacobian occurred in the
of oscillation) and then away from the body field. The results given in the present work
parallel to the oscillation direction (cf. Pig. are all at very low Reynolds number, but the
11.7 of [131). In the present case this type solution can in principle be run at any Reynolds
of mean flow would be toward the body, parallel number by increasing the attraction of the
to the free surface, and then away from the coordinate ines to the body and free surface at
surface beneath the body. This then would higher Reynolds numbers in order to maintain a
result in a mean surface depression, sufficient number of lines in the viscous lay-

ers. Such a procedure is currently under lnves-
VIII. Conclusion tigation in coanectioa :1th the flow about air-

foils. The problem is made more difficult,
The technique of numerically generated however, with increasing Reynolds number. More

boundary-fitted coordinate systems is clearly Investigation of the control of the coordinate
an effective aid in treating flow problems system so that sufficiently close spacing is
involving both free surfaces and solid bound- maintained user the free surface as it deforms
aries. With this technique the complication of is necessary, as is further study of the model-
the boundary shape is essentially removed from ing of the hydrofoil-free surface contact point
the problem. It is possible to obtain numeri- movement.
cal solutions for viscous fl:w, with viscous
boundary conditions on the free surface as well Finally, the hydrofoil and/or bottom could be
AS on the solid body. allowed to deform in time without complicating

the problem unduly, This is because all of the
ihe research results presented in this report computation is done on the fixed rectangular

leave several problems unresolved. Regarding transformed grid regardless of the shape or
the submerged hydrofoil solution, the coordi- movement of the physical boundaries. Wind shear
nate configuration used had a zero Jacobian on the free surface could also be added by a
between grid points in the field of calculation change in surface boundary conditions Io include
Ihis zero Jacobian made it difficult to con- applied external shear as well as pressure.
tract coordinate lines near the branch. Also,
an ambiguity in the finite differeoce expres- References
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Figure 4. KarmanTreffz Airfoil , . I '

Figure 6. Continued
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Figure 7. Time history of lift for three Froude
numbers, Re - 2.0 - Karman-Trefftz

-/: Airfoil located I chord below free

Q'~ -*jA\ . /surface.

- - ---- 7.0

(,),.,.o"-"n.I ! -' __

Figure 5. Coors.nate system for three Froude
numbers, Re - 20. t - 8.0 - Karman- .5

Trefftz Airfoil located 1 chord below

fre surface. -4.0.__ ,, , ; -7.0

6.0 -- 50-

0.01 -6.0 -5.0 ,

.455,5.5 N o

Figure 6. Time history of drag for three Froude Figure 8. Preseure distribution f%;r various

numbers. Re - 20 - Kamn-reffts Reynolds and Froude nizabers at
Airfoil located I chord below free t - 8.0 - Karmn-Treffts Airfoil
surface, located I :hord below free surface.
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7. 0 4

a-7.01 j4 "I

Figure 9. Pressure distribution for two Reynolds6numbera F - 0.5, t - 6.0 - Karmen-
Trefft. Airfoil located 1 chord below
a f ree eurfsce -

S -\Figure 11. Velocity vector field at three ties,Wa t 2.0 '- VRe - 20, F -05- Circular cylinder

located I chrd below free-surface.

(b) t-. o ' J4 l~ N . Figure 12. Velocity vector field of Kar:an-
- S \-'~Trefftz Airfoil translating in the

negative x -direction.

Figure 13. VelocIty vector field of Kerman-
Figure 10. Coordinate system at three times, Trefftg Airfoil translating toward

is * 20, F - 0.5 Circular cylinder free eurface, Re - 20, F - 1.0 and
locaed 1 chord below free-ourface. t - 1.75 (free stress-fixed coot-a

dinates).
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Figure 17. Coordinate System -First 17 n-lines

Figure 14. Velocity vector field of Karman-

itseter soyich nga the tihout Figure 18. Velocity vector field at two times
its ente Chod a thre tiesshowing close-up of body, Re - 100,

Re - 20, F - 1.0 (free stream- F -0.33 - Airfoil located 0.841
fixed coordinates). chords below free surface and 2.2

chords from bottom,
F., Swim.

22a

Sn, 5,.,S~fl,,nI,. 3.55. SM,, 0
Figure 15. Deep and Shallow Water Configurations

(Non-Dimensional)

Test hl rofoil (Dimensions in Feet)

$I

Figure 16. NACA Airfoil epproxima, Ing the test
hydrofoil. Chord - 1, moximum thicei- Figure 19. Coordinate syste at two times, Re. -
ness - 0.345 located at 322 chord, 100, 7 a 2.0 .. Airfoil lorated 0.841
leading edge radius a 0.04. end chords below free wirface and 2.2
trailing anogle -16.3'. chords from bottom.
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Fiur 23. Tiehsoyffe-ufaemvmn

showing~ cls-pofb-.Re-10

FRe 100 F -20 A-fl Aiocatedt 084
chor0 841o chords sbelc fre-urac and2

chords from bottom.

4.0 4.0-

.1c3

Figure 21. Pressure distribution at two times, t
Re -100, F - 2.0 - Airfoil located- *..

081chords balow free surface and
2.22 chords from bottom.

0.16 -

WI 0 .0

4 Figure 24. Coordinate system at two times, Re-
100, F -20- Airfoil located 1.56

I chord blow free surface and 0.27

0.0 -chords from bottom.

0.8

Figure 22. Tine history of lift, drag and lead- Figure 25. Velocity vector field at two tines
ing edge moment, Re - 100, F - 2.0 - showing close-up v' dy, Re - 100.
Airfoil locatad 0.841 chords below F - 2.0 - Airfoil jucotod 1.56 chords
iris surface and 2.2 chords from below free-surface and 0.27 chords
bottom, from bottos'.
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4.0 4.

- , .. .-. , (a) Phyxical Plane

Figure 26. Pressure distribution at two times,
Re - 100, F - 2.0 - Airfoil located
1.56 chords below free surface and
0.27 chords from bottom.

1.6--- .. .(b) Transformed Plane

i Figure 29. Relation Between Physical and Trans-

formed Planes

o00 -- ' _______-4--

0. 32, -
Figure 30. Deforming Coordinate System - Trans-

lating Hydrofoil

• 3.0
LIFT CoippICIiwT 0.032672
DRMC COYRFICIENT 0.743114
'CS4ERT COEFFICIDIT 0.251998

0.0 .r

Figure 27. Time history of lift, drag and lead-
ing edge moments, Re - 100, F - 2.0-
Airfoil located 1.56 chords below
free surface and 0.27 chords from
battom. t-- r-

Figure 2B.Tie history of free-surface movement. Velocity Verter

Re - 100, 1 2.0 - Airfoil located
1ir 28 6~ hord: beow fro-urfca mn . Figuret 31. Fors Souton Tanlaig ydo

0.27 chords fro bottom, foil. T - 0.84
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Figure 32. Initial Coordinate System-
Plunging Hydrofoil

Figure 34. Continued

T -. 0 1 -I,

Figurot 33. Lift Coefficient -Plunging

Hydrofoil

AI

Ii -M.1

1 -. 43t.f

Figure 34. Velocity Vectors Plunging Figurs 35. Detail of Surface to£dy Contact

Hydrofoil (0.001 Amplitude. Region - Plunging Hydrofoil
0.628 Period) (0.001 Amplitude. 0.628 Period)

219j



Figure 35. Continued

0._ 

-0.1

Figure 36. Surface Elevation - Plunging
Hydrofil (0.001 Amplitude,
0.628 Period)

0.' ---- I

Figure 37. Surface Pressure - Plunging
Hydrofoil (0.001 Amplitude,
0.628 Period)

220



FINITE-DIFFERENCE COMPUTATIONS USING BOUNDARY-FITTED COORDINATES FOR
FREE-SURFACE POTENTIAL FLOWS GE. ."RATED BY SUBMERGED BODIES

H. J. Hausellng and R. M. Colema
David W. Taylor Novel Ship Reeach and Development CenterBatet**K Maryland 20054

Abstract grid using finite-dif' -ice formulae for
unequal mesh spacing (irregular stars) at the

Finite-difference techniques are used with boundaries as 'n the marker-and-cell method [2].
boundary-fitted coordinates to compute the two- Irregular stars can sometimes be handled
dimensional unsteady potential flow generated efficiently with imbedding techniques [3). In
by a circular cylinder in motion below a free another approach, which is used in the present
water surface. Both linearized and nonlinear work, numerical transformations map arbitrary
boundary conditions are employed for swaying geometries into rectangular regions (4]. The
and translating cylinders. The time-dependent resulting boundary-fitted coordinate systems
physical region is transformed into an H-shaped simplify the application of boundary conditions
computational region. Since the geometry of at curved boundaries, are applicable to three-
the flow region is not known in advance, but is dimensional problems, and are particularly
part of the solution, the transformation must useful with time-dependent geometries such as
be computed simltaneously with the flow field those found with unsteady nonlinear water-wave
for each time step. When nonlinear free- problems.
surface boundary conditions are used, a
numerical filtering procedure is needed to This paper describes the application of
eliminate numerical instability. A comparison boundary-fitted coordinates to the computation
of linear results for surface elevation and of unsteady potential flows generated by a
forces with existing steady-state solutions circular cylinder in swaying or translating
shows that accurate "esults can be obtained motion below a free surface. Both linear and
with such a numerical scheme. Nonlinear nonlinear problems have been considered.
results indicate that the scheme is useful for
analyzing nonlinear free-surface flows In the nonlinear case, the initial numeri-
involving nonbreaking waves. cal scheme was found to be unstable. Therefore,

a numerical filtering scheme proposed by
Shapiro (5) and used by Longuet-Higgins and

I. introduction Cokelet 6 was used to stabilize the calcula-
tions. Comparison of the linear results for

In a previous paper Haussling and surface elevation and forces ith solutions
Van Eseltine (1] discussed the application of obtained by other methods indicates that these
finite-difference methods to two-dimensional finite-difference techniques can yield accurate
potential flows generated by pressure distri- results. Results for nonlinear problems
butions moving over a free water surface, indicate that the method is useful for analyzing
Such unsteady problems were solved with a nonlinear free-surface flows as long as wave
scheme which combined a numerical solution of breaking does not occur.
the Laplace equation with numerical approxime-
tions to the time-dependent free-surface
boundary conditions. Both linear and nonlinear I. Mathematical Formulation
boundary conditions were considered. In the
linear case the Laplace equation was solved in The Initial/Boundary-Value Flow Problem
a rectangular region. in the nonlinear case,
the physical region, bounded above by the wavy Consider a circular cylinder in motion in
free surface, was transformed into a rectangle water of depth d with submergence h below a
to facilitate the numerical solution of the free surface as shown in Figure 1. An (x,y)-
Laplace equation, coordinate system is chosen with the origin

in the undisturbed free surface. The coordinate
When the flow is generated by a body system may be fixed or It may move with the

rather than by a surface pressure distribution, body. It is assumed that the flow Is irrota-
the numerical problem is more difficult. The tional and that the fluid is incompressible and
geometry, evem in the linear case, is much more lacks surface tension. It is also assumed that
complex, and the simple transformation used in the surface elevation can be described at any
(1 for the nonlinear problem cannot be time t by specifying y as a single-valued
applied. Such complex geometries are often function of x: y - Y(xt). This assumption is
treated with a rectangular finite-difference made for convenience and is not valid if the
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d(x)

Figure 1. Body in Notion in Water of Dep'h d(x).

waves approach breaking conditions, represented by i. Arbitrary initial conditions
are represented by *0 and Y0"

The variables are nondimensionalized

according to the scheme The dynamic pressure on the body surface
can be computed from the Bernoulli equation

(x',y') - L(x,y), t'- Lt/U. without the hydrostatic term as
(1)

*' * LU p ,pU
2
p, Y' LY p I -+t+6ux-(#x 2+#y2)/2 (9)

where the primes denote dimensional variables, The resistance and lift coefficients are
*(xy't) is the veloity potential, p is the
pressure, p is the density, and U and L are R - reststance/pLU

2 
-fpn ds (10)

characteristic speed and length scales associ-
ated with the body. L lift/PLU

2 ip ids (11)

The initial/boundary-value problem is where i and j are unit vectors in the x- and
defined by y-directions, respectively, and where the

#xx+oyy . 0. -.<x<-, -d<y<Y (2) integrations are over the body surface.

When wave slopes are small, the linearized

Yt " 6u(t)Yx-XYx+# y at y-Y (3) free-surface boundary conditions

#t " u(t)X'Y/Fr2'( x
2
+ Y2)/2 at y-Y (4) Yt " 6UYx +y Iyat y0 (12)

0 at y - -d Ot SU#x - Y/Fr
2
I

at (5) often provide sufficient accuracy. Similarly,

I n at the body surface If the body displacements are small. the body
boundary condition in (6) can be applied at the

Ox  0 at x • t- (6) mean body position.

40* Y " YO at t-0 (7) The Transformation

To simplify the numerical solution of the
The subscripts x. y. and t denote problem, the time-dependent physical region

differentiation. The velocity of the body is (Figure 1), cut off suitably far upstream and
t t) with horizontal component u. For a downstream, is transformed to a tim-dependent
reference frane moving with horizontal speed u, computational region which, as shown In
6.1 and approprite convective terms are Figure 2, Is composed solely of rectangles. The
present in (3) and (4). For a fixed frame, 6-0 body is apped onto the slit LE, the free
and those terms are absent. The dimensionless surface onto AB. the bottom of the water onto
parameter Is the Froude number III, the upstream boundary onto AN ar4 J1. and

the downstream boundary onto BC and 61. The
Fr - U/(gL)

/2  (8) boundaries JKLMN and CKEFG represent cuts within
the fluid.

where g is the gravitational acceleration. The
unit normal vector to a boundary is Similar transformations represented by
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Figure 2. The Trantformed Coemputational Region.

tl(X.yt) n - n(.yt) (13) KJ ML and KL, and BE and FE are similarly
matched.

have been computeo by Thonpscn et al [4) as
solutions to the Poisson equations For a circular cylinder in water of

constant depth this transfornation yields the
E"+ Cyy =P(&,n,t) (14) coordinate system displayed in Figure 3. Lines

of constant n extend between the upstream and
dwnstream boundaries except near the body

rlx+ fyy Q~~~)(15) which they encircle. Lines of constant run
between the free surface and the bottom, of the

with appropriate boundary conditions. The water except where they intersect the body
source functions P and Q are specfied such surface. The coordinate system is cylindrical
that an efficient numerical scheme results, near the body but also conforms to the shape of
The use of the H-shaped region in Figure 2 is the region occupied by the water.
an extension of the work of Thompson and his
co-workers which, as will be seen, leads to a Again for computational reasons, the
numerical scheme with nice properties for the governing equations and L curdary conditions are
problems under consideration, transformed to the (r,,n)-coordinate syste.,

Equation (2) I s rewritter
For computational purposes, the generating

system (14) and (15) is transformned to the 0 4 +#*~~#C 0 (9
computational space by interchanging dependent C E I1111
and independent variables to yield where

20X, +x yX + J2(pX +QXn)0 (16) a.JP(20)

Cay E -28y~ El +y n J2(Pyt+QY n)*0 (17) Equations (3) and (4) transform to

where (Ytxconstant 'E nt E#yCn ]E/

XT
2 + yn2  a .x ll ly (xE-x# at nil l it (21

Y xC + yj t 1 2 - YC4 (t 'tn-constant" t4 (eyn#,E r Y t( Ex'

The transformation can than be determined by -$nx E)IJwuu(y n# -y C #)/J-Y/Frl
solving (16) and (17) subject to the following nC E (22)
boundary conditions: The (x~y)-coardinatas of y 2 ( x*) 2]/(2j 2)
the free surface are specified .in AB (Figure 2), -t(Y* Cy t i+( E n-#
the coordinates of the body are given on LE
(top 3nd bottom), the coordinates of the lower at n-n
boundary are given on Hi, and the coordinatesI
of the upstream and downstream boundaries ae Since the coordinate system is time dependent,
specified on AN. J1. SC. and Gi. Pteentrant- time deiivatives of the x- and y-coordinates
type boundary conditions are applied on the appear in (22) At the upstream and downstream
cuts as foll ows: The (x,y)-coordinates on CO Loundaries (6) Is replaced by
match those on 6F; the boundary pairs IiN and
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Figure 3. The Boundary-Fitted Coordinate System as it Appears in Physical
Space for Both the Linear Problem and the Nonlinear Problem at t=0.

#n-0at &-t1 and r-t1  (23) (16) and (17) are replaced by central difference

The normI derivative of # at a boundary
can be written in the form (ref. [7]) 2}=/) 1+,I

(Jlg2 /2 ~ (24) 2(i~~~i2 y1J

whiere g *dy/dx is the slope of the boundary. By
multiplying numerator and denominator by Xt. /22~ ~
equation (24) can be rewritten in the form +VY1 l+ilq~ 1Y'~j

V~l ( * 11(~/ 1 ~2 2 (27)
YOs (25) 2f 1 1

Thus (5 becomesjQ 1 /2 i'Yi'j?1

8 1,Y/Jl/2 10. at '1" (2)J''' *xi 5--x-'~

v~)/J ~ t n-nb yIIJIY-JIy.~+

Since the shape of the fluid region is not
known in advance but is part of the solution, /

2
(mij , 'tjj)

the transformation cannot be carried out In -Yi+l'j-l
advance. Equations (16) and (11). which
generate the transformation, must be solved at where O8'j i. anid 'f j are central
each time in conjunction with the solutior of difrneapomtos .(1)
the fluid flow problem (19). (2l)-(23). and dfeec prxmtost 1)
(26).

The transformation has singularities at
the points M, K, 0, and F in the transformed

1ll. The Numar'"aI Scheme plane (Figure 2) which correspond to on'y two
points In ptysical space, With zero source

This sectiorn presents the nuirarical aspect% terms. ( P 40), very large grid cells would be
of both the transformation and flow problem present near these points. The source terms
solution. Further detali concerning the are specified so as to attract grid point%
numerical transforma.tion can be found in toward these singularities to improve the
ref. (0]. resolution In their neighborhood. Source terms

of exponential form as suggesteod by Thompson
The domain of Integration in the (t,s)- et &1 [9) are u sed for this purrtose.

plane is replaced by *uniform network of
poinits specified by -* 1, Ij , - j), with For rn~nvenience. equation (27) is solved

i .19and 4-1 ..,.,2B (Fl gure 2). The by successive overrelaxation (SO0). Similar
differential equations are replaced by difference equations have been solved with
difference equations involving t:,e values of altaflnating-direction Implicit schremes by Gisia,
the variables at thesi grid points. Glia. and Studerus (10], Although the present

calculations were carriod out on a CDSC 6400
To compute the transformation. equations comuter, other research (11] has shown that



I

with a sector processlnq computer such as the yn+l and nl

Texas Instruments Advanced Scientific Computer i,'ne
mesh generation equations such as (27) can be are computed according to the snoothing
solved very efficiently using SOR by sweeping formIla
the mash in the so-called "red-black" manner. fi . -fi+- fi.24(ft lfil)O ]1 (31)

Equation (19) is replaced by the i 1 (31)

difference equation
Such filtering schemes were discussed by

=i~j [(ai,j+xij/2)#i+l Shapiro [5]. They were used successfully by
Longuet-Higgins and Cokelet [6] to eliminate a
similar instability encountered in the numerical

+(3j'Tij/2)i-.l~j+(Yi~j+oi,j!2)4i,j+l calculation of the development of breaking
(28) waves.

rri~~jI.$)+lil.rldljl)(/2(l ,Pi~) IV. Results

The translating cylinder is considered with
which is also solved with SOR. nonlinear boundary conditions for three sub-

mergence depths. For the smallest submergence
Euler's mdified mthod of time differ- the linear boundary conditions are also used for

encing is used to replace the free-surface comparison with other linear solutions. The
boundary conditions (21) and (22) by swayi'q cylinder is considered with lhear and

nonlinear boundary conditions for one submer-

yn+l . n + At(F1+I + Fn)/2 (29) gence depth.

and Translating Cylinder

n+l . n + 6t(G +I 
+ G0)/2 (30) The first problem considered is the

ilT1 t 1,n linearized one for a circular cylinder acceler-
ating from rest to a constant speed. The

where the superscripts refer to time levels, moving coordinate system is used. Thus 6=1 in
at is the time increment, and Fi and Gi are (21) and (22). The characteristic length scale
finite-difference approximations to the right- L is the diameter of the body and the speed
hand sides of (21) and (22). scale U is the final speed. The center of the

cylinder is one diameter below the undisturbed
The implicit equations (29) and (30) are free surface and the depth nf the water is

solved iterativel. for * and Y at the advanced 2.5 diameters. The body is accelerated with
time level. '2 Iterative solution of these constant acceleration from rest at t-0 to
equations is combined with the iterative dimensionless speed -1 at dimensionless time 1.
solution for the velocity potential and the Thus
mesh point coordinates. A time advancement
of the surface elevation and the potential on (-t S t 5 1
the surface according to (2^) and (30) is u j (32)
followed by an updating of the grid point S t
coordnates according to k27) and then an
adjustment of + below the surface according The grid used is shown in Figure 3. The Froude
to (28) and finite-difference approximations to number Is Fr = 0.566. This particular case was
the boundary conditions (23) and (26). Thus considered first for accuracy comparison since
the new grid point distribution and flow field Giesing and Smit [12) have presented solutions
are computed simultaneously. The iteration to the steady version of this problem.
procedure is started with initial estimates of
11+ n+l n+l n+l The evolution of the free surface is shown
I I J , and ylij obtained by in Figure 4. Initially the surface is pushed
extrapolation from two previous time levels. upwaid ahead of and pulled downward behind the
The iterations are halted when the percentage cylinder in an antisymmetric manner. Then a
change of x, y, #, and Y from iteration to wave train gradually develops downstream. By
iteration is lss than some specified small t - 9.6 the surface elevation near the body is
number, 'isually en the order of 0.1%. close to the steady proftle predicted by Giesing

and Smith [11], This linear resuli predicts
When linearized boundary conditions are that the free surface is tangent to the body

applied, the Laplace equation is solved in a surface. Such a solution must be far from
time-independent region in (x,y)-space. Thus, reality since the exact boundary conoitions
for the linear case, the grid system need be applied to such a surface configuration would
generated only once. predict that no water flows over the top of the

body.
To eliminate the numerical instability

encountered earlier by Haussling and In Figure 5 the corresponding lift and
Van Eseltine [1] using a similar nonlinear resistance coefficients for the linear problem
numerical scheme, a filtering procedure is are plotted against time. The resistance is
applied. After each advancement of nonzero at t-0 because of the acceleration
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Figure 4. Linear Free Surface Evolution fo~r the 7ranslating Cylinder Comipared with the
Steady-State Results of Giestig and Smith £12]; h 1, d -2.5, Fr - 0.566.
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Figure 5, Time History of Linear Resistance and Lift Corresponding to Figure 4 Comaered
with the Steady-State Results of (ilesing and Smith.
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Figure 6. Nonlinear Free-Surface Profiles for the Translating Cylinder at t 0.75
Computed With and Without Numerical Filtering: h - 1, d 2.5.

reaction. There is a discontinuity in the 0oe
resistance at t - 1 when the acceleration
ceases. The forces appear to be approaching I
the steady values predicted by Giesing and A 1- 0.3 1
Smith, although at t = 9.6 the force values 0 t,._
are still changing significantly. . : [.5]

0

The next case considered is the fully 0
nonlinear version of the same problem. Calcu- . .
lations were carried out without the filtering 0--o
of equation (31) from t -0 to t - 0.75 when A
growing free-surface oscillations c smell o6
wavelength were noted. The calculatio.s were
rerun from t - 0.6 to t " 0.75 with the

* filtering. The filtered and unfiltered results 0
are compared In Figure 6. Note that the
smoothing eliminates the unwanted high frequency #
waves without otherwise significantly altering a.m
the surface elevation.

6

The calculations, however, could not be
continued much beyond t - 0.78 since by tnis
time features had appeared In the velocity I Apotential near the surface which could not be A 0
resolved by the finite-differece grid. These
features are displayed In Figure 7 where the I A 0
free-surface potential is plottd for several -. A A , -
times. Continuation of the computations would 0000 ' 0000
he meaningless. Such a breakdown of the ooOB Q0
calculations might indicate a deficiency of the a o f [ 3

resolution. On the other hand. a deficiency of
the mathematical nodel might also be indicated-
for example, wave breaking cannot be handled '
within the present potential-flow theory. -eu --
Comparisons with other nonlinear solutions and -e.u a
experiments can help determine which of these
two possibilities is being encountered.

Figure 7. Evolution of the Nonlinear Free-
It Is appropriate to note at this point Surface Potential for the Translating

thet steady, large-aiemvitude. ncw!breakin0 waves Cylinder: h 1 1. d - 2.5.
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x

Figure 8. Nonlinear Free-Surface Evolution for the Translating Cylinder Compared with Steady-
State Linear Results of Zarda and Mvrcus [13]: h = 1.25, d = 2.75.

can exist In certain situations where an attempt
to reach such a steady state with an unsteady 1
numerical calculation for an accelerated body - LINEAR (ZARDA & MARCUS)
would fail because of wave breaking during the NONLINEAR
transient period. Such steady, nonlinear
solutions might have to be approached in a
different manner. It seems quite likely that
at least some of the nonlinear problems con-
sidered here fall into this category.

The translating cylinder was next
considered with a submergence of 1.25 instead
of I and a depth of 2.75 instead of 2.5. Once nPi -- . -
again filtering is needed to eliminate an
instability which appears early in tbe calcu- -

lations, but in this case the flow development ILOWER
can be followed to t : 4.8 before features SURFACE /develop which cannot be adequately handled by
the numerical scheme. Figure 8 shows the free-
surface evolution aleng with the steady linear
surface profile comput,, by Zarda and U R
Marcus [13]. A trough develops downstream SURFACE
from the body. As the gap between the body and
the surface narrows, t.', flow speed in the gap -3.5 O 0.5
increases. This increased flow speed leads to A
increased downstream convection which prevents
the trough from moving to a position over the
oody as it does In the linear case. The Figure 9. The Nonlinear Pressure Distribution
computed pressure distribution on the body at on the Translating Cylinder at t - 4.8t - 4.8 s compared with the linear steady- Compared with Steady-State Linear Results

state distribution computed by Zarda and of Zarda and Marcus: h - 1.25, d - 2.75.
Marcus in Figure 9. Although the linear and
nonlinear pressures are essentially the same
on the bottom of the cylinder, the high flow exists on the upstream face of the growing wave.
speed over the top of the cylinder in the non- In reality a wave developing in this manner
linear case results in a shift of the pressure would break, and continuing the calculationsminimum on the upper surface toward the without a more sophisticated mathematical modeltrailing ond. would be maningless. In any case, the grid

cannot adequately resolve such a surface

By t A 4.8 a very steep slope dY/dx 3.3 configuration and the calculations break down.
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Figure 10. which shows the computed grid at pared with linear steady-state results of Zardo
t - 4.8. reveals that the resolution is bad in and 4arrus. Once more a very steep wave slope
the area of high surface curvature In the trough of about 3.5 develops and the calculations break
and near the wave crest. If meaningful, the down. However this condition is not reached
calculations could be continued with better until t - 6.0. The trough near the body is not

resolution by allowing grid points to move along as deep as with the samller submergence but its
the surface to critical areas and by attracting horizontal location is roughly the same in both
constant n grid lines toward the surface through cases. Since the steady-state linear solution
use of the transformation source terms P and Q. exhibits a maximum slope of aOut 0.3, it Is

very likely that this is a case where a steady-
By increasing the submergence to 1.5, the state nonbreaking nonlinear solution exists but

relative magnitude of the nonlinear terms is cannot he reached with the present approach
further reduced. In Figure 11 the nonlinear because of breaking during the transient period.
results computed with filtering are again coe-

FREE
SUR ACNTV=

Figure 10. The Boundary-Fitted Coordinate System for the Translating
Cylinder at t = 4.8: h - 1.25, d - 2.75.

t - 1.5

t 41

.t L , -- LINEAR (ZARDA MARCUS)

-. .. .

-4 -1 0 1 2 3 *

Figure 11. Nonlinear Free Surface Evolution for the Translating Cylinder Compared With
Steady-State Linear Results of Zarda and Marcus: h - 1.S. d - 3.0.
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Swaying Cylinder velocity gradients or very steep waves develop,
the calculations break down (Figures 7, 8 and

In addition to the translating cylinder, a 11). Higher resolution and/or improved
saying cylinder is considered, A fixed mathematical models are needed. Adjustments to
reference frame is used so that 5 = 3 in (21) the coordinate system are needed to resolve
and (22). In the nonlinear case the finite- flow fields associated with steep waves and
difference grid must deform in response to both moving bodies (Figures 10 and 13).
the surface waves and the movement of the body.
The center of the cylinder is one cylinder For the cylinder translating near the free
diameter below the undisturbed surface, and the surface nonlinear effects are important. The
water depth is 2.5 diameters. The character- wave trough associated with the body is further
istic speed U is the maximum speed of the downstream than in the linear case (Figures 8
cylinder. The dimensionless frequency and 10). Low pressure values occur on the body
(frequency *L/U) is 4 and the Froude ntAber is between the top and trailing end (Figure 9).
Fr - 0.354. The horizontal position of the Nonlinear free-surface effects are not signifi-
center of the body is cant for the particular swaying cylinder problem

considered (Figure 12).
x - 0.25 cos (4t) (33)
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DISCUSSIONS
of two popc

NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS FOR 2D HYDROFOILS
IN OR BELOW A FREE SURFACE
Sniusl P. Shanks And Joe F. Thompon

FINITE-DIFFERENCE COMPUTATIONS USING BOUNDARY-FITTED COORDINATES
FOR FREE-SURFACE POTENTIAL FLOWS GENERATED BY SUBMERGED BODIES

HJ. Hausaling and R.M. Cokln

Invited Discussion independent variables of the coordinate trans-
formation are then interchanged so that the flow-

Joanna W. Schot field computations can be conveniently performed
David W. Taylor Naval Ship Research and on the fixed (&.n) grid which does not change
Development Center with time. The flow equations to be solved must

also be transformed to this computational grid.
Although this step introduces cross derivatives

The two papers just presented demonstrate and complicates the solution of these equations
quite impressively how far finite-difference somewhat, the advantages gained by performing
methods have evolved in dealing with initial- the calculations in the transformed region
bounoary-value problems for two-dimensional include the convenience of a uniform rectangular
irregularly shaped flow domains that deform with grid and greater accuracy in applying the boun-
time. The authors circumvent the well-known dary conditions along straight lines. There is
difficulties associated with the use of rectan- considerable flexibility in the choice of the
gular coordinates for computing free-surface configuration for the traisformed region which
flows around arbitrarily shaped bodies by employ- depends both upon the geome,-v of the physical
ing numerically generated curvilinear-coordinate flow domain and the extent to which grid-point
systems in which a coordinate line coincides density is desired in critical locations. For
with each of the boundaries of the physical re- submerged-body problems, Haussling and Coleman
gion. This means that the curvilinear finite- chose an H-shaped transformed region which
difference grid must be numerically determined exhibits certain advantages over the T-shaped
at each time step along with the solution of region employed by Shanks and Thompson.
the fluid-flow equation

The grid-generating elliptic systems used
It is especially ., eresting to note that in both papers are Poisson equations with special

the technique for generating such curvilinear funcions P(t,n) and Q(t,n) for the inhomogeneous
coordinate systems is very general (conformal term. It is these functions, called source
mapping is a special case), and is independent terms or driving functions, which provide a means
of the flow equations to be solved. Thus, it is el controlling the density or spacing of the cur-
.appropriate that at this Conference we are ex- vilinear-coordinate lines so that greater accur-
posed to the results obtained with the use of acy may be obtained where details of the flow
this approach for two different types of flow behavior are important. Although neither Shanks
formulations. Shanks and Thompson have solved and Thompson nor Haussling and Coleman discuss
the difficult Navier-Stokes equations of viscous how the functions P and Q are determined, they
flow past hydrofoils moving in or near a free define them in terms of exponential functions
surface at relatively low Reynolds numbers. In in their papers. I would like to suggest that
a complementary effort, Haussling and Coleman further research be undertaken by the authors
have treated the infinite-Reynolds-number case on a rationale for choosing, or specifying, these
of unsteady potential flow past submerged cir- functions because of their Influence on the spac-
cular cylinders with both linear and non-linear ing of the curvilinear-coordinate lines. In
free-surface conditions, this connection, the use of computer graphics

consoles as an aid to ,,sualizing and influencing
While there are various ways of setting up the final choice of the grid system becomes very

the numerical procedure for defining the curvi n- important, especially for computing free surface
ear grid system and performing the flow calcula- flows around large, complex ship structures.
tions, both papers here use an elliptic system
of equations with Dirichlet or Neumann boundary Another important aspect of the numerical
conditions to transform the physical flow domain procedure is the behavior of the Jacobian of
in (x,y)-spatial coordinates into a region com- the coordinate transformation. If the Jacobian
posed of rectangles in (c,n)-coordinates with vanishes, or becomus sufficiently close to zero
constant mesh size. The use of elliptic aqua- at certain grid points, inaccuracies in the
tions for the coordinate-generating scheme solution of the flow problem may result, de-
appears to be a natural choice suggested by pending on various circumstances. Shanks and
the extrmum principle for certain elliptic Thmpson point out; as a result of their experi-
boundary-value problems. The dependent and ence with a variety of problems, that the pres-
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ence of a zero Jacouan dept is on the type of shown that there are steady-state conditions with
configuration chosen for the transformed plane. stable non-braking waves that can only b oh-
In order to avoid unaccetable configurations and tamed by accelerating the body through inter-
the ensuing inaccuracies, it is probably advis- mediate conditions where wave breaking is present.
able to automatically monitor the Jacobian as Figure 1 shows the results from an experiment
part of the grid definition procedure, as recom- conducted at the David W. Taylor Naval Ship Re-
mended by Oberkaor,- [1]. search and Development Center in a 40-foot tank

having two-by-two-foot cross section. A sub-
In both papers, the systems of finite- merged foil which spanned the width of the tank

difference equations approximating the coordi- was used as the wave generator. The foil which
nate transformation equations and the flow was towed by a submerged wire, generated waves
equations and the flow c tuations are solved which were sufficiently uniform across the tank
simultaneously using the asy-to-prog-am SOR to be considered as two-dimensional waves.
(Successive Over-Relaxation) method. Much faster
methods could be applied, and are indeed under
investigation by several researchers, for example 7
, GhIa and U. Ghia of the University of Cincin-
ati. Haussling and Coleman rr'er to their work
on alternating-directior implc(it methods in
their paper, and they have recently reported

further advances which illl lead to eve: raster 2rjr
met'~ods 121. ti

The four authors of these two significant
papers are to be congratulated for carrying for- K M
ward the numerical solution of very challengingN 1, Mra
flow problems to a point where they can begin
to be applied to three-dimensional ship hydro-
dynamic problems. However, as these authors - r
indicate, there is still much work to be done, * "
nut the least part of which is to improve the
handling of steep surface waves in the case of
potential flow, and to increase the range of a _ -
the Reynolds number for viscous-flow problems.

[1] Oberkampf, W.L., "Domain Mappings for the v t N -
Nuerical Solutiun of Partial Differential Equa- " . AKI.G

tions," Int'l. J. Numerical Methods in Engineer-
ng. Vol. 10, 211-223 (1976).
21 Ghia, U., Hodge, J.K., and Hankey, W.L.,
An Optimization Study for Numerically Generat-
ing Surface-Oriented Coordinates for Higher
Reynolds Number Flow," Wright-Patterson AFB _._

AFFDL-TR Report (to appear, Fall 1977). 'a to 30,40
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Discussion
byNl-s-Salvesen
of paper by H.J. Haussling and R.M. Coleman The shaded region in Figure 1 indicates the

combined conditions of foil submergence and
The steady-state nonlinear problem of uni- speed for which breaking occurred. The numbers

form flow past a body may be solved by two next to each point in the figure give the maxi-
approaches: (1) It may be solved in the time mum slopes measured at the first crest of unbro-
domain as an initial-value problem advancing in Ken waves. The inception of wave breaking is
time until a steady-state condition has been affected by the acceleration of the foil before
reached, and (2) it may be solved as a steady- breaking occurs. The left- and right-hand parts
state problem where the free-surface shape is of the dotted lines in Figure 1, which we shall
initially assumed and then through an iteration refer to as the lower and upper speed limits for
scheme systematically changed until the free- nonbreaking waves, have been obtained by two
surface conditions are satisfied. Since it different acceleration patterns. For the lower
would be extremely difficult to construct an speed limits, tha foil was accelerated very
iteration scheme that would work for the thr,:e- slowly until breaking occurred, whereas for the
dimensional ship-wave problm, it might seem upper speed limits, the foil was accelerated
that the initial-value approach would be the rapidly to a speed somewhat higher than the
most suitable for three-dimensional problems, limiting speed; then after uniform nonbreaking
even though we have had more success with itera- waves had formed behind the foil, it was slowly
tion techniques than with the initial-value decelerated until breaking occurred. Thus. the
approach for two-dimensional problems. breaking conditions were always obtained by

approaching from an established stable condition.
However, as shown by Haussling and Coleman,

the numerical time-domain solution may often These experimental results seem to indicate
break down before a steady-state condition has that there are steady-state conditions that
been reached. Model-tank experiments have cannot be obtained by accelerating the body from

235



rest without wave breaking occurring at inter-
mediate stages and therefore it seems likely that
any numerical scheme modeling such cases would
also have to break down at some intermediate time
step. I would like to use this opportunity to
suggest some initial-value time-domain approaches
where this wave-breaking problem can be avoided.
For the two-dimensional case of a submerged body
as Investigated by Haussling and Coleman, one
could, for examsple, let the starting condition
be the uniform flow past a daeply-submerged body
and then slowly decrease the submergence until
the desired condition is reached. One could
also let the starting condition be the uniform
flow past an infinitesimal thin body, and then
slowly increase the thickness of the body. Such
an approach would be applicable to both two- and
three-dimensional bodies. However, these ap-
proaches have the disadvantage that the geometry
of the problem would change with each time step.
Therefore, the best approach seems to be one
suggested to me by K.J. Bai, namely, to consider
the body as a porous medium. One would start
with uniform flow, going completely tnrough the
body and then in the time domain change the body-
boundary condition so that less and less fluid
goes through the body until it finally becomes a
solid body.

Author's Reply
WysJWIIfi sling and R.M. Coleman
to discussion by Nills Salvesen

We would like to th.nk Dr. Salvesen for pre-
senting some interesting experimental resulcs
which support the plausibility of our numerical
solutions. To continue his discussion of methods
for avoiding transient breaking waves we point
out once more that the boundary-fitted coordinate
systems can handle time-dependent geometries.
Thus changes in body thickness or depth of sub-
mergence could be treated. However, the most
satisfying solution to tne wave-breaking prob-
lem might evolve from the current studies of the
physics of this phenomenon. With the development
of mathematical-nuzerical models of breaking
waves calculations could be carried out beyond
the time at which breaking first occurs.
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A REVIEW OF NUMERICAL METHODS FOR SOLUTION
OF THREE DIMENSIONAL CAVITY FLOW PROBLEMS*

Robert L. Street
Stanford University

Stanford, California 94305

Abstract three-dimensional, linearized asymptotic
theories wvhere numerical computation is not a

Available and developing techniques for the major feature. Reference to Gilbarg (1960),
numerical solution of three-dimensional, fully- Gurevich (1965), Wu (1968, 1972) and Acosta
cavitating flows about hydrofoils and other (1973) provides the basic background, Wu
bodies are reviewed. Three areas are exam- (1975) gives a more recent overview. Leehey
ined, viz. , linearized methods, methods based (1973) and Leehey and Stellinger (1975) cover

on matched asymptotic Expansions, and fully the linearized asymptotic theories. We also
nonlinear methods. For the first two areas shall not review the classic numerical calcula-
there are presently available two specific tech- tions performed prior to, say, 1965 as these
niques usable for quantitatively accurate de- are well reviewed in the literature just cited.
sign; interestingly both techniques rely on the
use of two-dimensional characteristics o" the We focus on three aspects of the numerical
flow applied stripwise in the three-dimensional simulation of steady-state t-'e dimensional

flow field. The area of fully nonlinear methods flows. We begin with an exa-ination of the
is still developing. The finite element method linearized techniques. Next we review the use

and the inverse, stream function and potential of matched asymptotic cxpansions. Finally we
method have both been applied successfully to close with an examination of fully nonlinear
three-dimensional free surfa:e flows, techniques. While the linearized rnd asvmp-

totic expansion methods yield viaole design

Introduction techniques for finite span hydrofoils, none of
the nonlinear techniques is yet ready for design

It was just over eleven years ago that application. Several of the fully nonlinear
Widnall (1966) published her numerical simu- methods do look ripe for exploitation, howevr.
lation of three-dimensional, fully-cavitating and in the end we focus on the finite element
flow about hydrofoils. That work and work pre- method.
ceding it incorporated a number of limiting
assumptions. Only within the last year or so Linearized Methods
new techniques have become available so that
there are now available quantitatively accurate Widnall (1966) derived a linearized three-
methods for the design and analysis of three- dimensional, lifting-surface theory for fully-
dimensional, fully-cavitating flows. cavitating hydrofoils of finite span in steady or

oscillatory motion through an infinite fluid, The
The purpose of this paper is to review a set planform of the cavity was assumed to be a rec-

of available and potentially valuable techniques tangle of finite length and of span equal to that of
for the numerical solution of steady-state. the foil. Widnall (1966) argued that the predic-three- dimensional, fully-cavitating flows about ticn of lift and moment on the toil is not aensi-
hydrofoils. This review is niot intended to be tive to the assumed cavity length when it exceeds

comprehens!ve: indeed, it Is focused on a few about twice the chord of the foil. It s well
techoute twic th repesntriv oft the foi.fernel

tec'hii 4ues and a represenitttlve set of refer- known that this approximation does not hold for
shoes. shorter cavities, and indeed Is not an accurate

We assume that the reader Is well acquainted representation of the cavity shape for longer ones
with the inviacid theory for steady-state, fully- (see the discussion of Furuya and Acosta, 1976.
cavitating flow and with the state-of-the-art in below).
two-dimensional, in axisymmetric, and In the

*This work was supported In part by the Naval Sea Systemrs Command General Hydromechanics
Research Program, Subproject SR 023 01 01, administered by the D~vid W. Taylor Naval Ship
Research and Development Center, Contract N00014-75-C-0277.
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In Widnall's (1966) analysis a pair of coupled Interestingly, Nishiyama's results seem to
integral equations are derived by use of the follow the trend of the lift data, as it varies with
pressure potential and Gteen's theorem. The cavitation number, better than Widnall's results
known boundary conditions on the foil and the do. However, her results are generally closer
assumed cavity pressure (i. e. , cavitation num- in magnitude to the actual data, except in the
ber) provide enough information to determine case of lowest angle of attack and largest aspect
the unknown distributions of pressure doublets ratio presented by Nishiyama (1970). Although
on the foil and pressure sources on the foil- Nishiyama begins with a lifting-surface theory,
cavity surfaces if the cavity planform shape and he effectively reduces it to a lifting-line theory
length are assumed and the cavity is terminated through the use of large aspect ratio approxima-
by requiring the pressure source distribution to tions. It is not surprising then that his theory
go to zero beyond the cavity trailing edge. works best for large aspect ratio, but that there

is little to choose between the Widnall (1966) and
The numerical problem is solved by repre- Nishiyama (1970) results,

senting the pressure-doublets distribution in a
series with unknown coefficients while the source Tsen and Guilbaud (1974) solved the lifting
terms are represented as simple delta functions, surface, linearized flow problem, usir , a re-
The coefficients -re found by satisfying the fined version of Widnall's (1966) approach.
boundary conditions at a suitabkc series of col- While they apparently achieved improved re-
locition points. The results showed reasonable sults, the results of a comparison with tneory
agreement with available experimental data, were not satisfactory according ti them oecause
indicating the efficacy of the lifting-surface the angles of attack for much of the experimental
theory. data were beyond the range of linearized theory

and because the nonlinear lift from tip vortices
Nishiyama (1970) made an important contri- is important for smaller aspect ratios. Their

bution to the linearized theory by illustrating paper suggests strongly the need for nonlinear
how two-dimensional theory is relevant to the methods.
three-dimensional problem (this had been done
many years ago, of course, for the fully wetted Jiang and Leehey (1977) have refined the lin-
flow; see Va,, Dyke, 1964). This concept of earized lifting surface theory and achieved an
using essentially two-dimensional (or stream- impressive correlation between linearized cal-
wise) components of the flow was to reappear culations and their experimental data for an
in the paper of Jiang and Leehey (1977), which elliptical-planiorm, flat-plate foil of aspect
in many ways is a synthesis of the Nishivama ratio 5. Interestingly. the angles of attack for
(1970) and Widnall (1966i concepts, and in the the experiments range from 110 to 180

, 
well

work of Shen and Ogilvie (1972) and Furuya beyond the normal range of linearize, theory.
(1975b).

Jiang and Leshey (1977) employ distributions
Nishiysma (1970) expressed the flowfield of discrete vortices (on the foil) and sources on

over a fully-cavitating hydrofoil as the super- the foil and cavity. The unknown distributions
position of pressure doublets on the foil and of the strengths ot the singularities are found by
sources over the foil-cavity surface. For lin- satisfying coupled Integral equations at colloca-
earized flow and large aspect ratio (span b > > tion points on the projection of the foil plus
chord c), he demonstrated that, with sufficient cavity plenform. A key element in their solu-
accuracy, two-dimensional flow is maintained at lion is an Iteration procedure in which the span-
each spanwise location over the foil with re- wise variation of cavity length is adjusted until
spect to an effective angle of attack. This angle a uniforin cavitation number is achieved across
is the actual physical angle of attack less the the entire opanwise range of the cavity. Thus,
induced angle, produced at each spanwise loca- Jiang and Leehey (1977) combine two of the most
lion by the induced velocity of the trailing vortex important features of Widnall's (0"66) lifting-
sheet springing downwards from the cavity ter- surface theory and Nishlyamas lifting-line
mination. The induced angle depends on the theory in their new method.
circulation about th- foil plus cavity in each
streamwise plane. Jiang and L.eehey's (1977) method appears to

represent the best that can be obtained with lin-
Nishiyama (1970) formulated and solved an earized theory and clearly provides a usable de-

integral equation for the circulation with a sign tool of quantitative accuracy. While the
specified cavitation number. He expanded the linearisd method has well known limits and has
circulation in a trigonometric series and satis- boon developed so far only for infinite fluid flows,
fled the integral equation at an appropriate num- it does offer simplicity and reasonable cost as
ber of points over the foil to find the unknown attractive features.
coefficients in the series. A key is that no a
priori specification ii needed for the cavity
length which is found to vary with spanwise
position.

236 m



Asymptotic Expansion Methods planing surface becomes representable by a line
of doublets in a uniform flow, In the near field

Van Dyk. (1964) describes the concepts of view we hold the local chord constant as C. 0
singular perturbation analyses. He gives a so that the span approaches infinity and the flow
rule, viz. . a perturbation solution is uniformly in this region becomes approximately tc-
valid unless the perturbation parameter is the dimensional.
ratio of two lengths. In cases where the per-
turbation parameter is a ratio of two lengths Solution of the far field problem is straight-
singular behavior is to be expected and the forward. The key idea of Shen and Ogilvie (1972)
method of matched asymptotic expansions is was to solve the two-dimensional near iield
applicable. The flow past large aspect ratio problem exactly, I. e. , without introducing tin-
wetted and fully-cavitating hydrofoils both offer earizing approximations. The method of matched
cases in which the perturbation parameter, the asymptotic expansions was then used to maich
aspect ratio, is the ratio of two lengths, the near field and far field solutions. The result
namely the span and the effective chord is a uniformly valid nonlinear solution matched
(strictly speaking, the chord of the foil plus the (in this case) to the second order in the small
cavity is the proper length for scaling). Far parameter f = AR-

1
. In addition, this method

from the body the primary reference length is yields an unambiguous definition of the height of
the span. Near the body we recognize a sec- the planing surface above the undisturbed free
ondary length scale, the local chord length, surface at infinity.
Thus, these large aepect ratio prublemsi are
naturals for solution by the method of matched The hydrofoil problem corresponding to Shen
asymptotic expansions in which the asymptotic and Ogilvie's planing problem was solved by
eapansion of the far field solution is expressed Furuya (1975b). His objective was "to provide a
in terms of the inner variables (i. e. , variables simple yet accurate method for design of super-
scaled on the chord) and then matched term-by- cavitating hydrofoils of large aspect ratio near
teir. to the asymptotic expansion of the near a free surface, having practically no limitations
field solution expressed in terms of the outer on the admissible foil profile and angle of
variables (i.e. , variables scaled on the span). attack. " In the context of matched asymptotic

expansions as described above, Furuya (975b)
Leehey (1973) and Leehey and Stellinger employs a two dimensional nonlinear free-

(1975) have successfully applied the method of streamline theory for the near field flow region
matched asymptotic expansions to linearized and Prandtl's lifting-line theory for the far field.
flow past large aspect ratio fully-cavitating The small parameter c = I /(Aspect Ratio) is
hydrofoils. However, their method is essen- used as in Shen and Ogilvie (1972), with (Aspect
tially analytic, involving no substantial numer- Ratio) = (span)Z/(projected area of the foil on the
ical analysis. Accordingly, we do .t review horizontal plane). The matched asymptotic ex-
their work here. pansions are taken in the limit as ..0. The

effect of this approach, it should be remembered,
Shen and Ogilvie (197L) developed a non- is to eliminate consideration of the '-'havior of

linear hydrodynamic theory for the planing of the flow near the foil tips. Thus, the cavity
large aspect ratio Surface- by the use of the width (spanwise) is equal to the foil span exactly
theory of matched asymptotic expansions. Al- at and near the foil. Furthermore, for the far
though their work is also essentially analytic, field problem to be a lifting line flow, it is
we describe it briefly because of its relevance necessary that the foil plus sit3 chord be
to the numerical method developed by Furuya small compared to the span. Accordingly, the
(1975b) which ts the focus of this section. theory is valid in principle only for "short"

cavities.
Shen and Ogilve (1972) treated tha three-

dimensional flow generated by a high-aspect- Furuya's (1975b) configuration is shown in
ratio planing surface gliding with constant Fig. 1: the notation is self-explanatory. The
speed and at arbitravy angle on the free sur- spanwlse foil submergence h(i) is taken to be
face of an infinitely deep weightless fluid, of the order of the chord length so h/(span)
After defining the small parameter f = AR- O(C).
where the aspect ratio AR=(Span)Z/Wetted-
Planing-Area, they sought a solution asympt- In the limit as ( .0 with foil span (=k) held
otically valid as C - 0. This leads to the defi- constant the far field flow appears as a lifting
nition of a near ;laid where distance from the lins (the foll) with trailing vortices, all lying in
planing surface is comparable to the chord the free surface (Fig. Z), The solution to this
length of the planing surface and of a far field problem to order (

Z 
had exactly the same form

where distance from the planing surface is as that for a fully wetted foil except for a factor
comparable to its span. U the span is normal- of 2 in the first-order term, cassed by the
lized to Z. then the chori vanishes in the far imaging at the free outface. This lifting line
field view as t. 0. In the far field view the solution has in it an unknown vortex strength
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y(z), to be determined in the matching pro-
cess,
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The full set of nonlinear equations relating CJVITATION MAWR O

to parameters of the problem contains five . e
ur'-mowns. The last of the equationa is ob- 

I  
"

tained by specifying the flow angle of the upper - - . - - -

cavity sheet et downstream infinity in the two-
dimensional solution to be equal to the "down-
.iash" angle obtaine in the three-dimensional

solution. Of the previous four equations, two
were generated by the near field solution and .. . ..
two by the far field solution through the match- t

ngprocedure. r-tLFi

Furuya (1975b) describes a numerical itera- FI

tive procedure to solve the system of five
nonlinear equations described above. His pro- . i: '=

cedure converges rapidly and stably in 4 o 8 - -'' ...
iterations to relative errors of less than 3x0

- 3  
.0 o. a s 01o .OS 0a .

for rectangular flat-plate foils. For these
foils the numerical results are in excellent ri re 5. Typical Results for Drag Coefficient
agreement (for lift and drag) with experimental Versus Cavitation Number a and

data for aspect ratios of 2.5, 4 and 6 at various Aogle of Attack " [After Furvya
angles of attack and cavitation numbers. Al- and Acosta (1976)).

F though the theory assumes large aspect ratio,
short cavity and shallow submergence the nu-
merical results are good even for f = 0. 4, Goo Experimsnol Data

at 
= 

0. l and h = 2 chords. Theory 1975 b]

Furuya and Acosta (1976) present a set of

experimental data taken to test the Furuya (
(1975b) theory. The test hydrofoil had a fiat
lower surface, sharp and straight leading edge.
and a partially tapered planform. The taper

served to simulate somewhat an elliptic loading
and to avoid strong tip vortices observed on
rectangular planforms. The theoretical pre-

dictions are excellent for lift and drag (Fig. 4
and 5) and give impressive agreement for cavity

shape (Fig. 6). It is clear, from Fig. 6, that
the variable cavity length with span approach is
an appropriate improvement employed in the 0 I 2 3 4 5 6

recent models of Furuya (1975b) and Jiang and
Leehey (1977).

SFigure 6. Spanwise Variation of Cavity Length

- - at One Chord Submergence and or 150.
(a) or = 0. 13. Wb ao- 0. 07Z,

Furuya (1975b) notes that, while the method
his only been applied to flat plate foils, the tech-

nique is applicable to arbitrary planform and

eFLATo-FLA e foil profile, including a rounded leading edge and

of AT .. a small dihedral angle. Thus, although the actual

__•__ flow behavior near the foil tips has yet to be
". 'treated, this nonlinear method is a powerful and

""- accurate design tool for large aspect ratio fully-
CA K 0 a 0 0cavitating hydrofoils near a free surface.

* Figure 4. Typical Lift Coefficient Versus
Cavitation Number a and Angle of
Attack a [After Furuya and

Acosta (1976)J.
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Fully Nonlinear Methods location of an initially unknown free surface (see
Larock, 1977. in these proceedings). In prin-

An Overview ciple this technique can be extended to general

three-dimensional flows. Interestingly, a very
There are several major categories of nu- similar technique wus developed by Armstrong

merical techniques applied to free surface and Dunham (1953). They applied a vortex
flows, including finte-differ-nce and finite- sheet singularity to free streamline flows.
element methods. Amongst the finite- thereby generating an integral equation whose
difference methods we also find formulations solution formed part of an iterative procedure
in which the problemi is solved in a stream to locate the initially unknown free surface.
function and velocity potential space or in They solved several axisymmetric cavity flows
which the formulation is based on the distri- in an infinite fluid field and obtained reasonable
bution of singularities on the free surface of agreement with experiment.
the flow (normally called a boundary integral
equation technique). The application of the finite-element method

to free streamiine flows was first made by
Our work in numerical simulation began with Chan, et al. (1973a. 1973b). They showed that

a study by Mogel and Street (1974) involving the finite-element method could be used to
two-dimensional cavitating flows. We used a solve for the velocity potential in two-dimen-
finite-difference technique and solved a prob- sional and axisymmetric ideal fluid flows in-
lem of flow past a plate in a water tunnel by volving a free surface. The trial-free-boundary
employing a Rirbouchinsky model and imaging technique used involved assumption of the loca-
to achieve an exact formulation. Irregular tion of the free surface, solution of the resulting
finite-difference stars were employed along the well posed problem, and relocation of the free
curved free surface boundary. We also em- surface according to the free streamline bound-
ployed a refinement of the finite difference grid a ry condition.
in the neighborhood of the separation point on
the flat plate. The solution of the finite- In the next two sections we follow up on two
difference equations for the velocity components methods. First. we review a three-dimensional
was achieved by successive over-relaxation formulation of the inverse stream function and
(SOR). Because the velocity components were velocity potential by Jeppson (1972). Second,
employed as the unknowns, the solution required we deucribe our own progress in the application
simultaneous satisfaction of the Laplace equa- of the finite element method to three-dimen-
tion for each velocity component and of the non- sional flows.
linear free s irface boundary conditions. The
solution converged and gave reasonable results. The Inverse Method
However. the cost for the two-dimensional case
was equal to the cost for a solution of similar Working independently Jeppson and Brennen
accuracy for a three-dimeusional disk-in-water- both developed inverse solution methods for free
tunnel flow by the finite-element method, streamline flows and presented these results In

their Ph. D. dissertations in 1966 (see Brennen.
Brennen (1969) combined a finite-difference 1969, and .eppson, 1969 and 1970. for example).

technique with a mapping to the stream function Jeppson (197Z) and Davis and Jeppson (1973) sub-
and velocity potential space to solve the sxi- sequently developed an inverse formulation for
symmetric flow past a circular disk in a cir- three-dimensional flows in which a velocity
cular water tunnel using a Riabouchinsky potential and two stream functions were used.
model. A difficulty with the extension of this By changing the conventional roles played by the
technique to more general bodies is that the variables of the problem, the inverse method
solution te inverse because the stream function converts a free surface with an unknown posi-
and velocity potential space solution must be tion in physical space into a plane of known
mapped back to physical space to obtain the position in the inverse stream function and
final geometry. velocity potential space. The major disadvtn-

tag# of the method is that the shape of curved
White and Kline (1975) developed a general solid bodies cannot be exactly prescribed in ad-

tthod for the solution of turbulent separated vance in physical space. However. ,eppeon's
.xisymmetric flows. In their general develop- method has been successfully applied to a

ment they employed a boundary integral tech- three-dimensional groundwater flow with a free
nique for the potential flowfield outside the surface and to fully-wetted flow past a body
bounaary layers developing in their diffuser moving beneath a frue surface. Accordingly. it
flows. Unlike grid techniques, the boundary seemed appropriate to review here the funda-
integral method requires computation of un- mentals of his formulation.
known only over the flow boundary. The
solution technique obtains the potential flow Consider an inviecid, steady-state flow in
from the numerical solution of Green's third three-dimensions past a body in the presence of
identity and iteratively solves for the correct free surfaces or cavities. Let the magritude
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of the c irtesean coordinates ( d. y, a) be the z .dx b 2dependent variables and define a velocity potn-_ 0- -' -L8--" 2X

tial 0 and two additional functions 6P. , #) asa
the Independent variables. The two streamThsaraseofculdnnier.ist
funn.tions defined by Yih (19S7) us surfacesThs rasto opldnoierist
normal to equiptentil surfaces and ange- order prtial differential equaons. When om-

tial to the velocity vector (such that their in- bined with appropriate boundary conditions this

tersections define the stream lines of the flow) set comprises a well-posed boundary value

meet the necessary requirements. As a result problem. This coupled set of first-order equa-
tions must be solved simultaneously and has

aean a major stumbling block to more aggres-

_ !!f ID.ye use of the method. Jaeppson (1972) says,
By as "a by Bx "They cannot be combined, at least in an obvi-

ous manner, by differentiation, for example, to
S- - = __ obtain a reasonably simple higher order equa-

- B x 8-y (3) tion for only one dependent variable, " [cf..as aBrennen, 1969. 1 Davis and Jeppoon (1973) add,
"The writers believe a more satisfactory

S h 080 (4) method (or methods) must exist for solving the
ex $I By (4 B space boundary v-alue problems associated with

three simultaneous, nonlinear partial differen-

in which, ,. v, and w are the components of tial equations."
velocity vector I in the x, y, and a coordinate
directions, respectively, 1.e. ; . + vT + A Suppose we consider the flaw past a body in

Using vector notations Eqns, 2, 3. and 4 can be a rectangular channel Then Figs. 7 and 8

written as from Davis and Jeppson (1973) Illustrate the
coordinate systems and boundary conditions in

Ox By Ba

Se 84A

3s: by &a 0.0

a grad 4 x grad 4o* (5) ..

It follows that V. I a 0, i.e., the incompres-
sible, steady-state continuity equation is satis-
fied.

The surfaces formed by holding %P and *
constant are orthogonal to equipotential sur-

3f..e.. Howrever, the two surfaces formed by
holding 4# and 0* constant are not necessarily
orthogonaL Jeppson (1972) imposes the re-

quirement that 41 and ** are orthogonal axes
and demonstrates that the selected functions
are orthogonal. This yields a wel defined ----------- '

orthogon .3-space for (4, *, .).
Employing implicit function theory one finds

hee mathentical formulation governing the in-
vera., uctions (,4,.4*),. *. ,.,*)d

5040.0), Vial.,,L
Bx . ! " It . AL |6) Figure Coordinate Systems and Boundary

SO 85 84* 34- Conditions for a Rectangular Chan-

nel in the Physical and Inverse
! a .! a OZ s (7) Spaces. (After avis end leppson

0 34 3(1973). 1
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settled on a modified Gauss-Seidel method.
Because only first-order differences appear in

a the three, coupled nonlinear equations, which
must be solved simultaneously, only first-order
differences can be used in the finite -differencea
scheme; otherwise, point-iterative methods
will not converge. Eight possible combinations
of first-order differences (forward and back-
ward) exist and can be used to represent Eqns.

I - (6-8). Davis and Jeppson (1973) use a weighted
sum of these e.ght, the weights depending on
the location of a given node point in the */e

- i - finite-difference grid.

Jeppson (1972) presanted a successful sim-
ulation of a three-dimensional porous media
flow with a free surface. Davis and Jeppson
(1973) solved three-dimensional flow past

S..prolate spheroids in a rectangular duct and in
a rectangular channel with a free surface.
They also formulated, but did not solve, the

u, Ccavity flow problem. No comparisons to ex-
. '. ..... . perimental results were made.

/ A major advantage %. the inverse method is
that the solution is carrd out in a simple

a, .- - domain of known geometric properties, in
spite of the unknown locations of free sur-
faces. Major disadvantages lie in the inability
to prescribe curved body surfaces directly in

F ,re 8. Illustration of the Formulation of the th3 physical space (the shape is given para-
Problem of Flow Around a Three- metrically in the Oijq(, space and known in
Dimensional Body in a Rectangular physical space only after the solution is ob-
Channel in (a) the Physical Space and tained) and in the difficulties associated with
(h) the Inverse Space. [After Davie solving the set of coupled, nonlinear, first
and Jeppson (1973). ) order partial differential equations. It appears,

however, that this method deserves further
the physical and inverse spaces. Sides 5 and 6 study.
represent the inflow and outflow sections.
Sides 1, 2 and 4 are solid boundaries, while The Finite Element Method
side 3 is the free surface. The location of the
free surface can be found from application of Larock and Taylor (1976) applied finite-
the Bernoulli equation during the solution pro- element techniques to solve the jetflow from a
cess if the total head in the flow is specified, circular pipe and orifice under the influence of

gravity. The resulting flow is three-dimen-
Equations (6-8) are solved oy the method of sional, namely, the jet remains essentially

finite differences. The *++* space is replaced circular but droops under the action of gravity
by a three-dimensional finite-difference grid, creating a three-dimensional flowfield. They
with the values zijk, Yijk, Sijk to be found at the employed the velocity potontial as the depen-
node points of the grid. Jepp eon (1972) did not dent variable and allowed it to vary quadrat-
difference these equations directly. He first ically within each isoparametric hezahedron
combined them by differentiation to obtain sep- element. An iterative approach was used to
sirate second-order equations for x, y, a in determine the free surface position whose
different planes within *+al* space under the precise location is initi&lly unknown. The
assumption that certain relatively small cross- formulation of their problem is relatively
terms could be taken as known at each level of straightforward and they are able to prescribe
an iteration scheme. He then solved the result- the flowrate in the pipe and then proceed with
ing porous media flow problem by SOR and LSOR their iteration to find the location of the stream
methods. The details are given in Joppeon surface.
(197Z).

Street and Ko (1977) solved the problem of a
On the other h., Davis and Jeppeon (1973) fully cavitating finw past a disk in a water tun-

attacked the first-order equation system di- nel. To illustrate the use of a finite-element
rectly. After testing several methods they technique. we repeat their formulation here
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and apply it to the case of flow past an elliptic r 0 1plate in a rectangular water tunnel.

The flow is assumed to be incompressible. 0= N 1 ,N-N 2i =N] 0 I
steady, and irrotational. Hence, it is governed I
by a velocity potertial O(x, y. z) which satisfies to 2  (15)
the Laplace Equation VZ = n within the fluid
and generally We employ a quadratic variation within the

hexahedral 20-node element. In Eqn. (15) the
(9) 4i are the values of the velocity potential at

the corner and mid-side nodes of the element,
while tho N i are the 'veil-known shape func-

so, in the usual notation and Cartesian coordi- tions.
nate system, (c) The isoparametric element.

u = -P "lax; v = -80/8y: w -80/az (10) We have chosen, as noted above, a 20-node
hexahedron element. Figure 9 shows a sche-
matic of our isoparametric element in the phys-
ical Cartesian space and in its transformed

dz w space.

dx u d x u 
(I

describe the free surface, where in the absence
of gravity influence

2 2 z 2
u +v +w = q = constant (1z)

As a consequence, in terms of a coordinate

system oriented along the streamline, the
change of potential on the free surface is given
by

" s
=

qc (13)

In the finite-element method we represent a Laceg (WNurol) Ca-adkw te4.m Co-ow.dhs

problem solution as a continuous function in
terms of values at the edges of finite volumes Figure 9. The Isoparametric Element.
in the problem domain and with a specified var-
iation locally within such volumes as functions Now the functional in Eqn. (14) is mini-
of the edge value. Partial differential equa- mized with respect to the nodal values oi
tions are replaced by integrals which are sub- within each element (Huebner, 1975). Thus,
sequently replaced by a set of algebraic equa-tions which can be solved directly and exactly. 8-'°= 

N
, I

N J| 
I N, ON

There are three parts to a finite-element o _

" '-

method formulation- 9N. MI

(a) The variational principle. + i | dV = (16)

Functional: f

fl -!T ' 2 2or for each elment

v z- By azON h] jol s - 0 (17)

in which the functional ) is minimized with
respect to the velocity poteea.sl values opeci- The global sum over all elements produces a
fied at finite elament nodes V~i. linear algebraic equation set

(b) The functional represntation within an ale- 0 (I)

Within element: A unique solution is guaranteed by specification

2f4



of the 0t or 4P derivatives along the flowboundaries. v.

For the isoparametric element of Fig. 9 we
write a transform from the physical space to a
set of natural local coordinates (t.,.) such
that each element occupies the cube bounded by

17,, 1. Generally then (Huebner, 1975)

20

20 . S So, . -

(,9)yFigure 10. Schematic of Cavity Flow Problem.(19)

20 centerline section for one qLarter of the flow.
S(R, I,) Ni(C, 1. ;)a. The flow velocity is prescribed upstream

while a Riabouchinsky cavity model is used;

thus, only the forward half of the cavity is

z0 shown. The upper half of the flow (not shown)

4(0,,,) Ni(4,.,t.)0i is symmetric to the part shown.

The boundary conditions for a fully-cavitat-
ing flow in a water tunnel are straight forward.

wher, xi, yi, a1 , and oi are the nodal values in With a Riabouchinsky model, the downstream
each element. The key idea is that the mathe- boundary is an equipotential line. If the poten-
matical formulation is easily made on a set of tial downstream is taken to oe aero, then when
cubes while physically we can handle complex a free surface shape is known (assumed or cal-

curved boundary surfaces. culated) the potential can be computed on the

free surface by Eqn. (33). The remainder of
The essence of the transformatior. (Eqn. (19)] the flow boundaries are rolid or no flow bound-

4s in the 3acobian aries, except upstream from the plate. Typi-

cal boundary conditions are illustrated in Fig.

WOEa ByI84 8 /at 10.

13] 8xi81) By/il) :/9/ (20) If F. W, U, P, Q, and L are given, there

xet( By/8 8I8 exists a unique value of the cavitation number

which relates, for example, ( \2 Poo" PC
I (Z3)

dxdyds a l3ld"I dtd (21) /u

and in which o. is the magnitude of the velocity on

the free surfae.e, Uo- ' Lhe prescribed up-
AN F IN stream .- component of velocity, po, is the up-

stream pressure, P. is the cavity pressure,

ex and p is the fluid density. In our case we

elect to prescribe U4, and to determine q.
(N) ONj and O as part of the solution process.-- • J] • -(22)

[ { by With the given boundary conditions (cf.,
ON, ON Fig. 10), an assumed free surface location,

and specified geometry of plate and tunnel, the
, J L 0 J finite element methnd can be used to find the

nodal values 0 of the velocity potential and to
Figure 10 is a schematic of the physical determine the fluid velocities u. v and w. We

problem. We model the flow past an elliptic next move the free stream surface to a better
plate of semi-exas P and 0 in a rectangular location.
water tunnel of half-width W and depth D. The
elliptic plate is assumed to be supported on one The total process can be sumirarised as
side of the tunnel. In Fig. i0 is shown a follows:
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a. Establish the geometry. Input all data noticeably from its axisymmetric counterpart
including locations of all corner nodes. assumed for small W/P. i. e. , where wall effects are
form of free surface, assumed UO, etc. The large.
computer program then locates all the mid-
nodes. We have bogun the simulation of cavitating

b. Generate "stiffness" matrix H (Eqn. 18). flow past the elliptic plate in a rectangular
Account for various boundary conditions where water tunnel. No definitive results have been

Oi or (0 derivatives are specified and for iso- obtained, but the cavity shape appears to re-
parametric mapplngs, main elliptical during the first few iteration

c. Solve for 0i by Gaussian elimination steps.
and back substitution.

d. Calculate fluid velocities.

e. Move the free surface. Movement is LI ,
accomplished by integration (cf., Larock and -_ ro b..
Taylor, 1976) along free streamlines beginning
at element corner nodes on the edge of the
plate. This establishes a -et of lines which are SYJ T P1W

tangent to the velocity in accordance with the L4
streamline equations L/P 2.

dv dt w 1a).2 -

d,, u 1', u

A periodic cubic spline interpolation is em- .qI
ployed in planes x = constant to locate the ele-

ment transverse mid-nodes which are missed
by the in tegration process. 04- -Some T~, Fim

f. Establish new values of 0 on the free 0, T

surface. .WAhns
g.Mdfrthe "stiffness" matrix H. Only 0.5 .lellsp5

elements near the free surface are changed by -

the move so only a small part of H in changed. o.e .
h. Rbturn to Step c unless free surface

movement is less than an arbitrary, preset,
small amount. If this happens the solution is 02
complete.

The solution program has been implemented 0
on the IBM 360/91 and 370/168 Triplex System 0 2 4 5 5 10 12

at the Stanford Linear Accelerator Center. w/P
With 13Z5 nodes and Z24 elements in a typical
case. one iteration (Steps a through h) takes
about 45 seconds and solution is achieved in Figure . Wall Effects in Cavitating Flow

about 15 iterations. Past Disks.

Street and Ko (1977) applied the above tech-
nique to two geometries. First, they repro-
duced the geometry used by Brennan (1969). via., Prognosis

a Riabouchinsky model of flow past a circular
disk in a circular tunnel. The finite element The prognosis for numerical simulation of
results for 9 and cavity radius B agreed to thr e-dimensional, fully-caviiating, steady-
within 2 percent with Brennan's results when state flows is good. Jiang and Leehey (1977)
the physical geometry was specified. Second. have developed a linearised method which is in
they examined flow past a disk in a square water good agreement with experimental data and is
tunnel, demonstrating for the first time (a) a not limited to large aspect ratio or short cavi-
fully nonlinear. three-dimensional cavity flow ties. The method of Furuya (1975b), while
and (b) the effect of three-dimensionality on the having such limitations in principle, works well
wall effect in thic flow (as compared to that in ovtside those limits and is nonlinear with re-
the axisymmetric case). spect to angle of attack. Neither of these meth-

ods accurately models the tip regions of the
Figure 11 shows the wall effects for flows flow, but this does nct seem to be a malor lim-

past di -s in both circular and square water itation at the moment.
tunuels (in Fig. i . the square tunnel flow corra-

;Ponds f 0 id In W). The square-tunnel Street and Ko (1977) have successfully
flow (which is three dimenalou.

1
) deviates applied a finite-elerent method which i fully
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nonlinear to simple pure drag flows. AS iius- Formulation and Finite Differences"

trated herein their simulation can be extended Utah Wat. Research Lab. Rep. PRWG-

and is applicable in principle to hydrofoils in 96-2. Utah State Univ.. Logan.

lifting flow. This method directly handles the 7. 0. Furuya (1975a). "Nonlinear calculation

tip regions, but may experience difficulties at of arbitrarily shaped supercavitating

low angles of attack due to the rapid changes in hydrofoils near a free surface" 3.

flow near separatior. and the extreme curvature Fluid Mech., 68. pp. 21-40.

of the free surface there. 8. 0. Furuya (1975b). "Three-dimensional
theory on supercavitating hydrofoils

Th(. inverse method of Jeppson (1972) and near a free surface" J. Fluid Mech.

Davis and Jeppson (1973) deserves further 71, pp. 339-359.

study. In spite of the difficulties associated 9. 0. Furuya and A. J. Acosta (1976). "An

with solving the governing equations, the method Experimental Study of a Superventilated

has been successfully applied to free-surface, Finite Aspect Ratio Hydrofoil Nea," a

non-cavitasing flows. An extension to cavitav- Free Surface" Proc, Eleventh Naval

ing flow based on a Riabouchinsky model appears Hydrodyn. Syrp. London.

feasible. 10. D. Gilbarg (1960). "Jets and Cavities"
Handbuch Der Phy.ik. Strtmungrneck-

A method likely to make a major contribu- anik Ill, 9. Springer-Verlag. pp. 311-

tion to fully nonlinear flow simulation is the 445.

boundary integral equation technique. White 1I. M. I. Gurevich (1965). 
7
;eory of Jets in

and Kline (1975) used it successf.ally for axi- Ideal Fluids (Transl. from Russia -

symmetric free-surface flows. Larock (1977) Academic Press.

presents an application of the method in these 12. J. L. Hess (1972). "Calculation of Poten-

proceedings. Finally, Hess (1972) has demon- tial Flow About Arbitrary Three-Dimen-

strated the power of the technique in fully- sional Lifting Bodies" Douglas A, v-

wetted, three-dimensional, lifting potentidl craft Co., McDonnell Douglas Corp.

flows, Rep. No. MDG 35679-01.
13. K. H. Huebner (1975). The Finite Element

Acknowledgments Method for Engineers Wiley-Interaci-
ence.

The finite element work for three-dimen- 14. R. W. Jeppson (1969). "Numerical Solu-

sional cavitating flows reported herein is a hons to Free-Surface Axisymmetric

joint effort of the author with Peter Y. Ko Flows" J. Enigrg, Mech. Div.. Proc.

under the sponsorship of the Naval Sea Systems AS9 5E J pp. 1-20.
Command General Hydromechanics Research 15. R. W. 3eppeon (1970). "Inverse formula-

Program, Subproject SR 023 01 01, administered tion and finite difference solution for

by the David W, Taylor Naval Ship Research and flow from a circular orifice" J. Fluid
Development Center, Contract N00014-75-C- Mach., 40, pp. 215-223.

0Z77. .6. R. W. Jeppoon (l7Z). "Inverse Solution
to Three-Dimensional Potential Flows"

References 3. Engrg. Mech. Div.. Proc. ASCE,
98, pp. 789-81Z.

1. A. J. Acosta (1973). "Hydrofoils and Hy- 17. C. W. Jiang and P. Leehey (1977). "A

drofoil Craft" Ann. Rev. Fluid Mach., Numerical Method for Determining
5, pp. 161-184. Forces and Moment# on Supercavitating

2. A. H. Armstrong and J. H. Dunham (1953). Hydrofoils uf Finite Span" Second Int'l.
"Axisymmetric Cavity Flow" Arm. Re- Con. Numaer. Ship Hydrodyn,, Berkeley,

search Estab., Kent, England, Rap. 12/ Sept. 19-21.
53. 18. B. E. Larock (1977). "An Application of

3. C. Brennen (1969). "A numerical solution the Boundary Integral -Zquation Method to

of aulsymnmetric cavity flows" J. Fluid Cavity and Jet Flows" Second Int'l Conf.
Mech., 37. pp. 671-688. Numer. Ship Hydrodyn,. Berkeley.

4. S, T. K. Chaa end B. E. Larock (1973a). Sept. 19-Zl.

"Fluid Flows from Axlsymametric Orn- 19. 0. E. Larock and C. Taylor (1976). "Com-

(ices and Valves" 3. Hydr. Div., Proc. puting Three-Dimonsionsl Free Surface
ASCE, 99, pp. 81-97. Flows" Int'l. J. Numer. Moth. .Enar..

N. S.T.K. Chan, B. E. Larock andL. R. 10, pp. 1143-115Z.

Herrmann (1973b). "Free-Surface Ideal 20. P. Leshey (1973). "Suporcavitating Hydro-
Fluid Flows by Finite Elements" J. foil of Finite Span" Proc. IUTAM Syrp,

r ., Proc. ASC. 29, pp. 959- on NoA-Steady Flow of Water at High

974. Sped. Lenlngrr.d (June 1971). Moscow,
6. A. I.. Davis and R. W. Jeppeon (1973). pp. Z77-298.

"Solving Three-Dimensional Potential 21. P. Lehey and T. f. Stelllnger (1975).
Flow Problems by Means of an Inverse "Force and Moment Measurements of

240



Fluids Engr .,* Transact. ASME, 97.
pp. 453-464.

22. T. R. Mogel and R. L. Street (1974). "A
Numerical Muthod for Steady-State
Cavity Flows" J. Ship Re.. $ pp.
22-31.

F 23., T, Nlshlyama (1970). "Lifting-line Theory
of Supercavitating Hydrofoil of Finite
Span" ZAMM, 50. pp. 645-653.r 24. Y. T. Shen and T. F. Ogilvie (1972).
'Nonlinear Hydrodynamnic Theory for
Finite-Span Planing Surfaces" 3. Ship
Ran.. 16. pp -20.

Z5. R. L. Street and P. Y. Ko (1977). "Nu-
merical Methods Applied to Fully Cavi-
tatting Flows, with Emphasis on the

Finite Elemet Method" Symp Hrzo-
dyn Ship and Offshore Propal. Sys..
Det Norske Veritas, Hlivk. March 20-
25.

Z6. L. F. Tsen and M. Guilbaud (1974). "A
Theoretical and Experimental Study on
the Planform of Superventilated Wings"
J. Ship Re .. *18. pp. 169-184.

27. M. Van Dyke (1964). Perturbation Meth-
ode in Fluid Mechanics Academic
Proess.

28. 3. W. White and S. 3. Kline (1975). "A
Calculation Method for Incompressible
Axisymmetric: Flows, Incduding Un-
separated. Fully Separated, and Free
Surface Flows" Dept, Mech. Enujrg
Thermosci. Dv., Rept. MD-35. Stan-
ford Univ.,* Stanford, CA.

29. S. E. Widnall (1966). "Unsteady Loads on
Supercavitating Hydrofoils" J7. Shin
Res., 9, pp. 107-118.

30. T. Y. Wu (1960). "Inviscld Cavity and
Wake Flown" Basic Develop. Fluid

r n .Academic Press. pp. 1- 116.
31. T. Y. Wu (1972). "Cavity and Wake Flows"

Ann. Rev. Fluid Mach., 4, pp. 243-284.
32. T. Y. Wu (1975). "Cavity Flow and Nu-

merical Methods" First Int'l. Sym;
Numer. Ship llydrody.. *pp. 113-153.

33. C. a. YiL (1957). "Stream Functions in
Three -dimensional Flows" LaHoulle
Blanche, 12. pp 4-450.

pp. 44



A NUMERICAL METHOD FOR DETERMINING FORCES AND
MOMENTS ON SUPERCAVITATING HYDROFOILS

OF FINITE SPAN

C. W, Jiang and P. Leehey
Masachusetts Institute of Technology

Cambridge, Masshusetts 02139

Abstract solution for large aspect ratio has been
derived by Leehey (1973). The paper by

A numerical lifting surface theory Leehey and Stellinger (1975) showed good
was derived for a supercavitating hydro- agreement between asymptotic theory and
foil of finite span in steady flow. experiments for lift and drag coeffi-
Discrete vortices and sources were used cients in a certain range of j/a (cavi-
to represent the physical model, and tation number divided by angle of
the coupled integral equations were re- attack). Theoretical moments were too
duced to a set of simultaneous alga- large, indicating the need for lifting
braic equations. The cavity length was surface corrections.
iterated to get the desired cavitation
number over the cavitated planform. The This numerical method in a lift-
calculation of supercavitating hydro- ing surface theory for a supercavitating
foils of elliptic planform was perform- hydrofoil of finite span. The discrete
ed and compared with analytical solu- vortex and source method is used to
tions and with experiments. Results of formulate the equations. The governing
these calculations indicate that this equations for this problem are a pair of
numerical solution gave a more accurate coupled-integral equations relating the
prediction of lift and moment coeffi- unknown boundary values of the upwash
cients on a supercavitating hydrofoil and the cavity pressure to the unknown
than existing asymptotic theories, distribution of vortices and sources on

the foil-cavity surfaces. An iteration
I Introduction scheme is used to alter the cavity

length until the desired cavitation num-
Considerable theoretical and ex- bar is reached over the cavitated

perimental work has been done on three- planform.
dimensional supercavitating hydrofoils,
but the agreement between the theory dad The numerical accurary of the
experiment is not fully satisfactory. present method is tested in two-

dimensional flow. The results zompare
A few attempts have been made to well with the linearized analytical

apply a numerical lifting surface solution of Geurst (1960). The predi-
technique to cavitating hydrofoils. cated results of elliptic foil were
Widnall (1966) and Unruh and Bass (1974) compared with analytical solutions by
used a double lattice - source repre- Leehey (1973), end with experiments by
sentation for the prediction of forces Leehey and Stellinger (1975). The
on suporcavitating hydrofoils of finite results show that the improvement has
span. Both make priori assumptions of been made after considering the lifting
cavity length which are not appropriate surface effect.
for short cavities. Efremov and Soroka
(1975) used the Lawrence approximations It Linearised Theory
and an elliptic source, vortex distri-
bution along the span to transform the The linearized problem for a
three-dimensional problem to two- cavitating hydrofoil of finite span in
dimensional equations for rectangular steady flow can be represented by a
supercavitated wings. Nishiyema (1970) set of coupled integral equations. The
made no a priori assumptions regarding deriation proceeds ther from Green's
the cavity length, which was determined theorem of from the solution for the
from the two-dimensional results and velocity field induced by a distribution
corrected by using induced angle of of vortices and sources. This distrib-
attack. The integral equations were ution must be chosen to satisfy the
simplified by the condition of large revelant boundary -onditions. The
aspect ratio. A matched asymptotic numerical model we are about to describe
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is shown in Figure 1. (1961) proved that for two-dimensional
steady flow, the re-entrant jet end
Riabouchinsky models for cavity term-
ination reduced upon linearization to a
statement that the-cavitv is closed at
its end. The recruirement that the
source strength be zero beyond the caw-

_-.-' , ity trailing edge and the sum of sources
is zero are necessary to meet this

CAVITY 4) condition.

i Based on the boundary conditions,
the integral equations for three-

0- CONTROL POINT dimensional steady flow can be writ-
AT ((k i /wI ten as

±(X --o 3) ( , )~~SriE

Figure 1. Foil Planform and Typical f JJ
Vortex Source Element

The source distribution q(x,z)
represents the slope difference between + _ --___
the upper cavity surface and the mean qI
cami'or line of the foil or the lower
cavity surface at the point (x,o,z).
The vortex distributions (y(x,z),(xz)) ( )
create the perturbation velocity differ-
ences in the x and z components between
the upper and lower surfaces at the 'p.
point (x,o,z). This leads to the 2" u,-
result

'-(vo,))-vx,-o.)), - (4,), )us

( s,),,L ( (+o,) r(J,-.,4). (4-)

The boundary conditions specified f ,
are the normal velocity on the wetted
surface of the foil, a constant pressure
in the cavity, and closure of the cavity.

where Sa is the projection of the foil

,.-O.) U. 9I,)), surface on to the x-z plane and S. in
the projection of the wake region on to
the same plane. p. is free stream
pressure. The unknowns are the source

PC- P(,to',), (Z) strength, vortex strength and cavity
surface location.

The solution of these integral
0 " e(,S)4Ed$, equations will represent the linearisrd,

supercavetating hydrofoil of finite
span in steady flow. The forces and
moments can be calcualted usinq the
Bernoulli equation.

where h(x,z) is the y-ordinate of the III Numerical Method
wetted surface. Sc is the surface of The solutiun of the problem is

the cavity as projected onto the x-a
plane. Pc is cavity pressure. Geuret
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obtained by reducing the coupled inte- wJ se integration becomes
gral equations to a set of simultaneous
algebraic equations. , 1(t)

The surface is divided into smallj f 2 a -as
elements. The element used in this
model is one obtained by dividing the
foil and cavity semispan into strips
with cosine spacing, while the chord is
divided into strips of constant spacing
on the foil and on the cavity behind (vU%.s- -
the foil. In order to increase the rate
of convergence for the number of ele- - ' I$)

ments used, the first two elements of
each chordwise strip, near the leading 1w)

edge, have only one-half the chord spac-ing of the rest of tho elements on the + (,foil.

The model uses discretv vortices A/0)
and sources to represent the foil ane
cavity. Each element contains a bound
line vortex, a trailing vortex and a = 0. (7)
line source. The quarter-chord line of
each element contains the bound vortex,
and the induced velocities are calculat- The first integral is zero if the
ed for all elements at their midepan, cavity is closed both at its leading
three-quarter chord positions. James edge and trailing edge. The second
(1972) showed that for the best effi- integral is zero due to the symmetry of
ciency the vortex and control points the cavity. This integral therefore
should be arranged according to the represents the stripwise closure condi-
Pistolesi approximation, i.e., at the tion.
quarter and three-quarter chord points
on each element. The concentrated line The effect of all singularities
source is taken to be a constant dis- must be calculated at each control
tribution across each element at its point. The Biot-Savart's law is used
three-quarter chord position. Since to calculate the induced velocity at a
the source distribution is singular at control point due to a constant strength
the cavity leading edge and termination discrete vortex segment. The lirchhoff's
point, these control points should be law and Kelvin's theorem must be satis-
placed away from the singularities. fied for the vortex distribution. Con-
Therefore, the first control point is sider the vortex segment (x1 ,o,z1 ) to
located at the three-quarter chord and
the source is located at the quarter (x2 ,o,z2) with strengthY per unit length.
chord. The local vortex or source Defining (,C) as the coordnates of a
strength in given by the discrete vortex general point on the vortex, and (x,z)
or source strength divided by the ele- as the coordinates of a control point,
ment width, the induced velocity at (x,z) due tothe

Since the cavity length is unknown, bound vorticity, ya, is

a closure condition is applied to indiv- -.IL (s.o, ) 2a
" + b

idual spnwise strips in the calculation. ----1 8
Otherwise, the iteration technique does 2a(24 6 CI ,(8
not converge. This condition satisfies
the overall global condition. It also
allows the variation of cavity length
along the span to vary. This approach I t .
is exact for a aymetric foil. The
source integration along a stripbetween
2 .'l and x -al is

f 1) Ais, 'JS J)I +c~ 55 ~

where xY(O and () are the spanwise 4 .

profiles of the leading edge and cavity
termination points, respectively. Let
9+ (x,a,) represent the profile of the C a e' ()
cavity-foil combination. Then the strip-
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The induced velocity due to the trail- (2) for Z<z 1
ing vortex (x,o,z1 ) to (x3,o,z3) with

The total velocity induced by a ( b t, )

vortex distribution is the sum of the
influence of all the spanwise and chord- (3) for z>z 2
wiet vortices.

According to the linearized IT 2a'
Bernoulli equation, the pressure induced 

a
by the source component is

OX + 2--.f- 1, I,,
where (9 is the source potential. The An interation is used to alter the

Sdncavity length until the desired cavita-
P. due to the line source ((x ,O,Z ) to tion ni:aber is reached over the cavitated
(x2 ,o,z2)) can be calculated by the line planform. A cavity length is assumed

and the matrix coefficients are calcul-
integratio., ated. Solving the matrix with appzop-

(I.A) fiate boundary conditions, we can get
the distribution of vortices and sources,
and the cavitation nun er on each strip.

2 ) - Then a new cavity length is chosen using
the calculated cavitation number. The
length is adjusted by using Newton's
method with Geurst's steady state
analytic solution.

- Oz i ) The linear algebraic equations

ZW d ((-+( )P () which satisfy the boundary conditions
are solved by using Gaussin elimination
with equilibration and partial pivoting
(e.g. Isaacson and Keller (1966)). The
convergence tests had been made both on
two-dimensional cavity flow (Uhlman &

W1 a,b,d are defined the same as Jiang (1977)) and three-dimensional
be e. supercavitating hydrofoils. Table 1

gives the number of elements chosen in
Equations (8) and (12) are not the numerical calculation.

suitable for numerical computation if
d//E becomes small (Kirwir Oppenheim
(1974). The following approximate
formulas are used for this special case. Table 1 Valuen of Vortex and

(1) for z 1 < z< z 2  
Source Element

4-1 0. ti .Y No. of element
Ir (24+6 b along the chord 12

oa the foil

l (i) No. of element
2 in the cavity a to 14

behind the foil

±7- No. of element
S (14) along the 6

~t ) . emispan
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IV Comoarison Between Theory & Experiment hydrofoils of finite span by using a
geometrically similtr family of three

P -esent numerical results for two- hydrofoils (. 5). He showed that the
dimensonal eupercavitating flow are previous tests by Leehey and Stellinger
compar!d with Geurst's analytic solution were reliable. The standard wind tun-
(1960) and Golden's numerical scheme nel wall correction is adequate when
(1975). Golden used a uniform distri- the foil span is equal to or less than
bution of the si:,gularity in each half of the tunnel depth. It should be
element and the best choice of control noted that the data of Leehey and Stell-
points. Figure 2 simply confirms that inger was based on the cavitation number
these methods of solution lead to iden- calculated by using the vapor pressure
ticle results, rather than the measured cavity pres-

sure. In the comparison with present
The lift and moment calculation results, for the aspect ratio 5 foil,

for supercavitating hydrofoils of experimental data for the medium foil
elliptic planform was performed and is taken from Maixner's results where
compared with analytic solutions by measured cavity pressure were used.
Leehey (1973), experiments by Leehey
and Stellinger (1975) and experiments Figures 3 and 4 show the ratio of
by Maixner (1977). Leehey utilized the the lift coefficient to the angle of
method of matched asymptotic-expansions. attack, C L/. versus a/a for the aspect
The theory is valid to first order in r
angle of attack and second order in the
reciprocal of aspect ratio. In the The agreement between theory and exper-
experiments of Leehey and Stellinger iment is good. For small values of a/,forces, moments and cavity lenths were there is much better agreement with the

forcesemomentsrandlcavityrlengthswwer
measured for aspect rato 3 and 5 super- present numerical theory than with
cavitating hydrofoils of elliptic plan- Leehey's asymptotic theory. The foil
form. Mainer investigated the water and cavity combination is no longer of
tunnel wall effects on supercavitating large aspect ratio at small o/n, so the

asymptotic theory is not valid.

The moment coefficient is taken
about the mid-chord, consistent with
the right hand rule. Figures 5 and 6
show the moment coefficient for the

- Gt aspect ratio 5 and 3 hydrofoils.

o 60" Since Leehey's matcht' asymptotic expan-sion theory neglects the lifting surface
b o e0 , MMe effect, it is expected that the present

numerical lifting surface theory would
show better agreement with experiments.

0

4. bo

0

S a *.I,' ) ',

4.. s. . 4

0

I I 1 .l * __ .... __ _| ..
10

z 4 1 .o I1 0 o Ia,
0 2 4 G a 10

Figure, 2. Cavit'., engh vs. i/o Flat pl'ate figure 3. C /a vs. 0/a, M -5
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1.41 0 a a Ew.15 Leehey 5 StenltaQw
. 12 POnM.1

15::: aItWq a

U.. o..3

to o 2. ,
0. -a -10 &

0 1.0 2.0 3.0 W/o

oT/a

Figure G. CM/a vs. a/a, Ai-3
Figure 4. C L/a vs. co, Mt-3

The nondimensional cavity length
Versus the ratio of cavitation number

to ang Ie o attack is shown in Figures
7 and S. The cavity length is measured F . /. -
from te leading edge at the spanwise aP to" .

location of the centroid 
of the foil srae

area. Generally speaking, the agree-ment between the theory and experiments
is very good.

In Maixner's experiment, thecavity pressure was measured with a foil
surface pressure tap. A noticeable

"hook " found in the lft and momentdata at higher angles of attack (Figures "
3 & 5). Ram effects on the cavity 0[ ________
pressure measurement, due to the dynamic 0 1 1 3 4 a
pressure, were further investigated on UC¢

The cavity pressure readings are taken Figure 7. a. /a vs. L/C, )R-

-- Ik ,¢el im,.I

0 I---- 5

Figure 5. C/h vs. i/c, A-s Figure 8. to/ta, L/C, 3

headtub, an onthefoilsurace
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Figure 9. cc vs. av

downwards into the cavity from the upper 2 Geurst, J. A. 1960 Linearized Theory
tunnel wall so that it was parallel to for Fully Cavitated Hydrofoils. Int.
the oel1 surface and pointed towards the Shipbuilding Progress, Vol 7, No. 65.
leading edge, away from the impinging
re-entrant jet. Figure 9 shows that 3 Geurst, J. A. 1961 Linearized Theory
the readings from the fol surface of Two-dmensional Cavity Flows D-pressure tap are consistently higher rural Dissertation, Technical UJniv.,
than the measured cavity pressure, Delft, The Netherlands.
especially at higher angles of attack
and shorter cavity lengths. If the 4. Golden, D. W. 1975 A Numerical
improved cavity pressure measurements Method for Two-dimensional Cavitating,
had been taken in the experiments of Lifting Flown, M. S. Thesis, MIT.
Maixner, the discrepancy from theory
at higher angles of attack and shorter 5 Isaacson, E. & Keller, H. B. 1966
cavities would probably hlave been smaller. Analysis of Numerical Methods. John

Wiley G Sons.
V Conclusions 6 James, R. M. 1972 On the Remarkable

The discrete vortex and source Accuracy on the Vortex Lattice M ethod,
method was developed for supereavitsting Computer Methods in Applied Mechanics
hydrofoils. Tho cavity ]-.!,gth was and Engineering, 1.

iterated to got a uniform cavitation
number over the cavity planform. The 7 Kerwin, J. E. & Oppenheim, B. W.
lift and moment coefficients for super- 1974 A Lifting-Surface Program for Trap-
cavitating hydrofoils of elliptic plan- c:oidal Control Surfaces With Flaps,
form in steady flow was performed and Rep. No. 74-15, MIT.
copared well with previous experiments. LahyP.17SurcvttnA more accurate prediction o lft and

momtent coefficients was obtained by the Hydrofoils of Finite Span, Proceedings
present numerical method than with of the IUTAM Symposium in Leningrad,
existing asymptotic theories. Nauka Publishing House, Moscow.
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SUPERCAVITATING FOIL OF AN ARBITRARY SHAPE
BENEATH OR ABOVE A FREE SURFACE OR IN A CASCADE

David W. Taylor Naval Ship Re, ir n rn Development Center
Betheada. V, tw" d 20084

1. INTRODUCTION pressure distribution,'
5 1

0 this does not guarantee satisfactory
foil performance. One other possible design method would

Linear and nonlinear models of supercavitating foils be to specify the favorable camber shape first and then
have been investigated extensively. '

1 4 
All investigations determine the angle of attack and the leading edge cavity

involve a considerable amount of numerical work. Thus the thickness. For this purpose, it is necessary to have a method
advent of high speed computers naturally requires efficient for computing the flow field about a supercavitaring foil of
numerical methods to be applied to the solution of the flow arbitrary shape. The significant physical quacirties of the
field and the design of supercavitating loils. Recently a large flow field include not only the pressure distribution, the
effort has been exerted toward numerical computation of lift and tile drag coefficients, but also the shock-free angle
cavity flowl

5 
either by the singularity method

16 
the finite of attack.

4 
and the foil cavity shape.

difference scheme
17 

or by the finite element tlechnique.rt
This effort seems to be particular;y fruitful for three- The present study deals with these problems, exploiting
dimensional flow, highly complicated boundary, and many advantages of FFT. A particular advantage is that the
consideration of nonlinear effects. In the present study, "n shock-free angle of attack is readily supplied by FF1.
application of numerical technique to a linear two- Numerous results o computattvns are shown for " c of
dimensional supercavitating foil is considered, especially a cascade. The design of a sup'.aviiirng foil is accorn-
from a design point of view. plislicd by combining three different elementary foils. a

shock-free foil with a given camber shape, a flat plate witll
Fourier series have long beer. used in linear airfoil an angle of attack, and a point drag

5 
to increase the lcadirrp

theory.
19 

And a theory of hydrofoi-airfoil correspond- edge thickiess. The relative effective irs of the angle of
ence

l
t1i has made the Fourier series useful for the linear attack and the point drag in increasing cavity thickness is

theory of supercavitating foils, lowever, when the boundary examined numerically.
conditions become complicated as for foils in a cascade
Fourier series become cumbersome' when carrying out The present method and tile flriprIer pr igi may i'i
computations. Fortunately, as ir other applications of utilized effectively for the desigin f .. itsting roil
Fourier series, such as to informlion theory, the use of the for a high speed hydrofoil or a superc:ril-iting propeller.
Fast Fourier translorm (FFTt technique

t 0 
greatly assist

numerical computations. 2. FORMULATION W[. iROBLEM

In tlhe present theory, in order to use tire FFT A supercavitalifig toil with i irnfinitely lung cavity is
effectively, many physical quantities are convenieritly first considered rear a free surface or in a cascide. 'lie
represented by Fourier series and its coefficients. It is angle of altarik rif tie fril is 'ui rod the flow periurballoin
demon.raled thai FFT computation can be performed due hli tl : oil i assumed to he silalL . i,- A ilicar theory
accurately in a relatively hurt lme, By a simple change of is consideed to be applicabi. l,, I ii. rn-alii, I riM'
the transformation fur,.lion. le meihrd can be earl), statical boundary for Ihe foil and svi i; nir"-
applied it different boundary conditiliss such as those for a aiong the s axis which is palnel to tie velocity at v - --
infinite medium. beneatl a free surface, or ii a c ascade, where the velocity is unity. Four pissible flow geometries

tif a foil s mt, ",l ire trrir l rlt lrrfr ; In , cat.:l
lie linear theory of supercavitatiig toils is particularly '-r v t Figll-", I

uwful trr designing the foil, since. in addition to the great
advanlages r superposilion, the usual foil at its deign For convenience, the complex perturbation vel .ity.
cornditionf has a %msall anle it attack and a thin cavity, u-iv, is changed to a modified c'ompleil, vd,!

v

Besides, many paramelerst uch as cavity thicknss, angle of Fitji I t, 0u 2 - IV -_) where t i the , ,. ' - - ,trir
attack, lift coefficient, and camber can be contirolled easily derinedt by tife pressure u 5 "t. P. arvi the pressufr it
in Ih linear theory. tile cavity P,

There are three importaut increla.ed general requife- P " P
merits fir supercavitathlrg toils large lift-dral ratio, lilt fce -
cavitatlion, and adequate cavity thickness. Although the Pv,
linear theory indicates

I
%

" 
that the center if pressure should

be near fire tfailing cdge, fin tile v Oirenent of taige lilt- where p is the deity of wa.er I i bouldaro
l , 

are Iran.
drag ratio, this kinl of toil may base negative cavity formed to th h!df plarnres dli-wi in Fliguirs I b, c 4b,. , and
thickness.

5  
A negatlve cavity thicknvess iould be avoided ty the coilsttnding rnlormrtlvt futt,..l al %flown ilk

supeeiponing anle o ittack, b i still the camber shape may Fligures I, 
4
, 1 h- it r us uig to tre tilersoilt .,itt

be vuln rale to lace cavitation, Although the conventional correusponden.ia
i IO 

the tiri;otsutic praite bcttirie the
dvsign metli(si ha' been conrsidered tor live a ltavorable airfirt plane where airfoil tireory c4rt Ile applied.
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&. FOURIER SERIES EXPANSION v B.csn()

It is well known in airfoil theo~re that when the ".0
circulation distribution is represented by an expression i

0> t-10l-Cosa)>-,

Acot!+,PAnSin no (I)
2 2'- 0 <6< I

on the two-dimensional wing ir. the domain 4. LIFT. DRAG. AND NORMAL VELOCITY

0>t> - In equations (1), (3) and (5), Fourier coefficients can
be easily and quickly computed on a high apeed computer

I by the Fast Fourier Transform (FF1) technique. Then the
-1 -~e ~< lift coefficient of the transformed airfoil is:

dt I sin Oda (2) to (- 202K di

I - 2at Siny + 
2 2

then the velocity F normal to the taxis on the wing can he
written

K(A cot~+ A. sin nO) sin 0

n--A+Z A cos nO (3) rx _ dO

n1I + a(i - cos 0) siny + a (I -CosO9)
and4

G/2 - v/2 - u

vo.- v 2jf {A(l + cosOfZ Hitcos On

A av_ -A, (3a)

That is, in the transformed plane, equations (0-03) hold +f A~sin nO Bn cos O sin 0) dO
where( 0 is the leading edge, and I lis the trailing n.1 n-0
edge of the foil. The rirmal velocity repreusted by

v. A. cos nO -f,, (3b) 2e 0B+3 1  nj.. nenl.
a-0

is the Fourier expansion of the foil shape dy/dx -f,(x) in -cs( )0 0 o Od
the transformed plane. *Thus the coefficients An change-co n+IOj2.Bacn

0 d
when the translormAd plane changes. Then, even if the 5 .0
same foil is given in the physical plane, the aigle of attack,
Aa s differvint depending on the boundary shape. That is, - 2w A /IB+!B i 4+-BA,
A0 is not only relatvid to the geomtry of the roil itself in 2 21 0 2 +~BA 2

relation to the velocity at a - - but also depends upon
the boundary surfaces of the fluid. On tuac vher hand, the
effective angle. A, is uniquely related to the pressure t ~ B,,(An, I A, (6)
singularity at the leadir.g edge as Is seen in equation (1).
According to equations 0sa, h) - A0 is the ingle (31 attack n-2
with respect to the velocity at a - - w and A is the angle of
attack with reapect to the direction of the flow at x -* The moment coefficient of the transformed airfoil Is

According to TablelI, when the lift distribution is
sasedw to be given by

-45(j) 2to - 2ul fi (4) ise 0' l2a - 7
2u) j2 4

where T((l - I In an Infinite medium,

TQ - for ahove or beclow the free surface, and 04 {Ail -cos~t)f . cot rig

TOC) - K in a casicanle,-
I -2 sin 517+03t, + Asin n Ba xis I -cuoa) fin 0)dY

then there exist simple relatios between the coefficients of -00

lift, moment and drag in the phtysical and transforned

aie. To obtain caeiienta of lift and moment, tL and I5 -c I
ithe transforissd plane, T(Il In equation (4) Is repre JEA B os.

arented by s Fourier martes.0 .
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In <-I Usually Al, and v, are negative se that A has to hi
positive to prevent face cavitation. Thus. in general. I A I

! r will be much smaller than I An 1. Shock-free entry can be
v-v°=- obtained by setting A = 0, or

Fi

A, (14A)
AII+cOs61t+.I Anjcost-l1l0-costn +tIt0 1  4K

a +adO In this analysis, it is interesting to note the relationsa + cos 0 h-twee,.n [ihc angles of attack and the velocity tt .

F, / (4 K in Equation (141 is lte angle of velocity at - due
= - A I + - a to pure camber on a shock-free foil. If : = f. ihen in lite

17 case .er nat plate

A = A,

in /I - I On + where

=A.
n-4K ___ _

= Aa-I- v7~ Antl~an 2a sin ' (BO +! u)(B, l,- tl) + 4K

7 n I I the general ase. II -A 0. we can write

with a = - 2 > I A = (AO, - F i / 4Ktl 16)

In t > 0 This. when we consider that any foil is represented fy =

Ssuwrposition of attack angle and camber, the effective angle
a + I nv]-- N of aftack ttle to camber is the sarme as that due to a flat

- vA-- +LAni - 1-" tOI+ plate with the attack angle, - F, /4K.,

6. CAVITY THICKNESS
with al I 4 21>1I

tIlie cavity thickness is obtained by integrating v shown
The velocity at x as may be expressedn in terms of C1  in equations (9) and 10t along x. To build an actual
and FM- supercavitating foil, the cavity thitukness has to be thick

enough to provide adequate foil strength. The cavity thick-

- f-a si y a
2  ness is not known a priori, whether the given value is the

- 4wK t pressure distribution on the foil or the shape of the foil.

_o a As in the case of designing a supercavitating foil with a
u 4 2 T xnk Cos 7 givn load distribution, the cavity thicknes may still be

negative even when a camhcr shape is given. Then either

5. SHOCK IREE ANGLE angle of attack and/or a point dragll can be suprposed to
provide cavity thickness. In the present solution, an

From Equations (31, flit. (9) and (I I. unreasonable cavity shape of the liven foil near the leading
edge can be detected easily by simply observing the sign of

v- - A+ AO the constant A. Low-drag cambers such as two- or three
f(2) term cumbers in an infinite medium have been chosen for a

A I, shock-free foil in an infinite medium. However when this
4K 2{ La i , sin + 2 - - . - camber shape is used near a free surface or in a cacade i
4 ', n 7 'T 2 . 4K will no longer be shock free. In the present analysis, from

equation (14), it is easy to ind th= angle of attack that
where makes the given camber shock-free. If the camber shape

- iha pusitise curvature everywhere on the foil, the shock-free
S I AA] camber shape has no negative cavity thickness although the

2a evity thickness near the leading edge may be too small. Lin- z general. shock free entry of a low-drag cambered foil does

not necessarily make the cavity thickness non-negative
- A, , - 0' , ( - - -r it1 )

The cavity shape due to a fat plate can be obtained
- . , , by integrating

5I-(Av.-'t) Q si n- :2 . (A 0 - .i) -/ ) (17,i

Illencl. Itiv eteslltetv angle o iltackl. A, is given by
where v2  is the y component of velocity at - dun to

F, -4K An just the flat plate.
A ( 1I1 Mle fl-plate contribution :o cavity thape is obtained trom

{:a,,.,- (B4+ B)lei +A-(Ilo )}t4K

22



S
dx nol intended to be mathematically optimum. This optimiza-

vx) dx 
=  

q) dt lion aspect is investigated in the following section for a
i supercavilaling foil in a cascade by systematic change of

parameters. A mathematical formulation of a general
2variational problem is not very neat because with a shock-

Si d I 1 X) free foil. neither negative strength of [Ihe point drag. kO, nor
I - 2av ein ,Y + .,2 t negative angle of attack. at is allowed. However. when a(

increa-s.kt, has to decrease because the cavity thickness is
The inlegrand with respect to t behavcs helter in the given. thus. th pernissible range of a and k0 fall in a
neighborhood of e = x = 0 than in the integration with narrow domain for a given camber shape, rendering an easy
respect to x without using the transformed coordinates. numerical plot.

The cavity shape due to a unit-strength point-drag 8. OPTIMUM ANGLE OF ATTACK
singularity at the leading edge is"

The cavity thickness of tie foil is considered at a given
y . --viny ,xil + -.. lan sn + point xI as a superposition of a shock-free camber, a flat

S-ra cosy Cos 7esy plate, and the cavity of a point drag. Tile cavity thicknesses
may be writtco respectively as

which re stls from integration of the y component of Y/CX = f, /('L
velocity

y /('L = /('.k 0 / I t i
S- asin Y/('L = ki f1 i 20)

with respect to x. where f , f, ind f3 are function! of cascade parameters.
For convevience y . y , y ). c. a. k, and the cavity thickness

lie present analysis asn he msed for either a given of ile composile foil. Ii, ) are all considered to be divided
arbitrary shape of foil fact- or a given load distribution on by a given design tift coefficient. (I or all the quantities are
the foil. If tile shapic of Ils loil is givein in the physical cionsidered for a unit ('L If tile comnposite foil is considered.
plane. say rise cavity thickness i.

y = fIx) = Y+ y, + y.

hen from linear theory, = c
"
i t f, + kvi (2I1

v= I(x iQ) t ite drag coefficienst is, from Table I.

tlus, v in esulition (3 is known. If the toil has a biit - a s"il 'Y +2
leading edge. I f I may be infinitely large at the leading edge, - : '- + -a viny + a + (2
andI eqtuationl Of can not bie used. In this case, the foil is . sr( /
considered to consist of two foils: a thin !cading-edge foil
Ii and a non-lifling foil consisting of a point drag.12 that is where

V s f, Ixt l . flit (xQ1))K - a sin I +k i, (L23

where fil -f-k IKill 1/$- siny) is small and can he 11(
be expanded in a tourier series. After performing an I--
analysis with fis, tile point drag will be added sparately in I cC OC a c 1>14
a simple way as shown in the following sections. "l M

7. FOIL DESIGN where C'1 and ('au are given by equalions (i, 17), and
113 t fisr a given foil. (r and CkI are very isccinctly

the deaign method for a sut'crcavilaling foil near a free reprenlted by equatois h), (7, and ( 13) because tor a
surface has been studied for zero cavitation number. For a fliar rie, An - OIt n I, 2-...) with only non-tero
cascade, a given pressure mode was considered to create a cefflicient All, and for a point drag,

1 3

reasopable foil
11, 1 3 

It would he very useful to design a
supercavilating foil with a circular-arc camber or so-called ('L 4

two-term camber or any other given cimber shapes In a
cascde or beneath a free surface. A typical lechnlque

'
tti C -I 1251

involves a superposition of three elementary foils, a shock
free foil with a given camber shape, a flat plate with an angle Now is a given t. tlre ratio of the cavit thickneso lil te
of attack, and the point drag, for which all the useful given C' -
formula are given In the previous sections.

Ihe philosophy of superposition of the three eleni. I - a( ' .

tary foils to design a good supercavilatlng foil involves first y I " to I -- - f 1 isl
naking eavily thicknes positive by angle of attack and then (s
making the cavity thickness near the leading edge thicker by
a point drag. Although this philosophy has been bsed on a ut
general knowledg of low-drag nonfifting thick foileat the

combination of the angle of attack and the point drag was ki,, k, v k+ o 1-271

263



where the cavity pressure and the down stream pressure, with a,
and a3coresponding to cavity ends as shown in Figure 4,

t f, However neither the pressure distributions on the foil nor
k --t" _ " f I- (281 the foil shapes of the solutions w and w, are necessarily the

same. because the cavitation number changes according to

and the cavity length. If the lift distribution of the infinite-
cavity foil is kept the same when designing foils having

k M2 I'r f2 finite cavity length, the above theory can be conveniently
k2 F- - . (2) used.

10. COMPUTATIONAL PROCEDURE AND
Csi and CLI are tunctions of cascade parameters: lI are NUMERICAL RESULTS
functions of x, as well as the cascade parameters. Therefore,
if the camber shape, cascade parameters and x, are fixed, When the foil shape is given in a cascade, or beneath a
Clfi, CLi and fi are all constants. Thus, c and k0 are linear free surface, the foil offsets in the transformed plane have
ft.nctions of a and CD ICl is a quadratic function of a. to be represented by a Fourier series. Thus, for a given
Thus the optim'um value of a should be either the point at boundary geometry, transformation parameters a and K are
d/da (CD /CL) = 0, or at the boundary of the significant computed. In general, "a" is computed by Newton-
(, ko ) domain. Raphson's method for the given geometrical parameters.

The initial approximation of "a" can be selected from the
If o = 0 and a = a, in equation (271, and correspond- corresponding graphsm

0 
Then for a given t in the trans-

ingly k0  kR and k = 0, then physically significant values formed plane, the corresponding x of the physical plane can
of (a. k0) lie in the domain easily be computed from the transformation equations in

Figures t I) through (3). The offsets in the transformed
0 < a < 0, plane are expanded in a Fourier series by FFT.

0 < k0 < kg (30) There are several FFT routines available at the David

W. Taylor Naval Ship Research and Development Center.
with increasing a corresponding to decreasing k0 . These can be used to obtain either the Fourier coefficients

or the sum of Fourier series at each small interval. The
When the amount of camber factor c is given, the angle number of intervals or the number of terms in the Fourier

of attack has to be determined from series is 20. The routine which was used here to get the

Fourier coefficients of v in a cascade in Equation (3b) took
I - Ct 0.18 seconds of computing timi with n = 8 and 0. 11 seconds

M 2 with n = 7 on a CDC 6600 computer. With these two sets
of Fourier coefficients, the computed values of CL and

Then the condition of the leading edge thickness will deter- CD /('L differ by less than 0.1 percent with the solidity
c/d -I, and the stagger angle "y = I radian. If the solidity

mine the strength of the point drag, kq. Since the large is larger than 1.5, the accuracy is decreased slightly. Fourier
camber may induce face cavitation. the camner naturally alto coefficients A0 from Equation (3b) and An from the shock-
has an upper limit. free relation in Equation (14) contribute to *he actual shock.

9. FINITE CAVITY EFFECT free angle of attack. The difference between these two
numbers, o%, is the extra angle of attack to be added to the

For a design problem with an arbitrary lift distribution given foil in order to make it shock-free. Thus, the shock-

given on the foil, the solution for the supercavitating cascade tree nose-tail line is the sum of ao and the nose-tail line
angle of the given foil with respect to the x axis. In Figure

with a finite cavity length has been readily obtained
12 

by a 5 a circular arc foil and the two-term camber foil in an
superposition of a simple functton of cavity length parwmeters; inflni:e medium are shown at the shock'fre angles. The lift
onto the solution fur the infinite-cavity problem with the coefficients and the dra-lift ratios at the shock-free niles
same lift distribution, When of these two foils in a cascade are computed front t16i ations

W I au - in1  (31 (6) through I), and are shown in Figures 6 and 7 as normal-
ized by the lift coefficient in in inflnite medium. A

noticeable feature Is that the curve of drag-lift ratio is almostin a complex velocity of infinite cavity length with a lift paedlel na very close to the curve of noa-taill line
distribution, shock-free angle. This means, the drag originates mostly

from the shock-free angie of attack, and very little drap
mltis from camber. Also shown In the figures are the
considerable cascade effects rissaltting f. om Increasing

then, a solution w for the finite-cavity length with the same sollditle. However, the circular arc and the twsa-term
lift distribttit can be writen cambers have relatively samall cascade affects compared with

- w (1,2) those of flat plate shown in Flure 7. The two-ters
camber foil performs very slightly better than the circular

where arc foil.
a

rIs 2 __ _ a" The cavity shape is obtained by computlan normal
waf) J- dl "i u) lotg - u + iv, velocities on the cavity from Eqtion (10) and nuanerictaiy

- 3 integrating them with respect to A. For the flat plate.
133) Equations (17) sad A(I) are used Foe the point dreg, the

nJ cavity lsape is available in Equation (19), With the cavity
shapet, the cavity thickner i, computed and fl in Equation

wi,(i-O,w,(r)-=0 forx-.'.. (20) i prepap d. Thus, fou lsapi of composte foll with a
given cavity thick4nee at a riven x, or xI, ae salysed for a

w] Is the complex velocity due to a constant negative presute shock-fre circular arc foil. When the le.41-dg cvty
distribution on the cavity and foil equal to the difference of thickners divided by the chord lkngth and the lift coeffilent

t3

I'm•q i . m
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Y/CLO 415v (x+ 8/3 X
3 2 

-4.2) insa
Cascade of Stagger Angle I Radian, at
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in a Cacade of Stan" Angle I Radian,
at Shock Free Angic, a/CL 0  

*400

is 0.1 at XI - 01 C /C 2 and the point drag singularity0 0 0 3 4
ke/CL Versu te agle Ci' tie flat plate superposed are a/CL "Galt'S
shown In Figure 8, where (d/da)(('D/C() is positive. A

s imilar curve at at - 0.5 is shown in Figure Q. where Figure 8 - Draii-Uft Riou avid Strength of Point-Drait
(dad)(( 0 /( 1 ) is negative. in general, when the cavity Slngsslanhy for Compsilte Fail of Shock-Fr Circular

is positivei..the point drag is more efficient for increasing Cascades of Sta=rr Angle I Radius with Cavity

th edn-dethickness, When the cavity thickness is Thickseut IteCL( -O0t at x - 0.1
specified near the trailing edge, I d/do"t 0 /' i rglic
i.e., the flat-plate angle of atak is more efficient tu
increase the trailing-edge cavity thickness. However, ilopei t-lgure It. As expected, the smaller the x-coordinate of
of (d/d*)(C1 /CL2) are very small, i.e., the cavity tthickvt% maximum camber, the larger the shock-free angle of attack.
and the amount of camnber mostly determine ~' ~ ~ The drag due to the comber alone is negative when the x-
irespiective or the shape ot camber. coordinate of manisisam camber is les, than 0,5, Tiat is,

To investigate the intfluettce of camber shaper o the the amount of negative pressure near the leading edge cvcr-
Uft sid11wde~-l~t raioa vriaionof cccslarsrccamer cowts the positive pressure nn the foil. The dragl-lift ratio

of the shock1-free deformed circular arc decreases when theis conasidered s in FWgsse 10. The n-coordinate of the x-oordinate of maximum cansber Increases, even when the
maximum Camber is Van~ed by a factor (01l 4 bit) to (he eda decvt hcns .seiid shsbe
circular arc y - 44x - x3) where a t ilts, - i~l)tI + hxj)) ledinusedg ofteIy thc~ peat theife. Af cambesen

iscuse thee fato toe make the maximumic cabe eamual totaais te W ir o mke te mximm cmberequl t 1,and on lift and drag Is related to thse cavity thickness distribustion
thes x coceinas of the maxismunm camber is on the foil. Thua. with a& Sven cavity thickness at only one

X I-S a /S . 1-4A)/(2A) with A -3b, and R - 2(t -hb. point, the diianon cl the Influence of the canmber shape
The lift coeMcient. the shock-freer artajei osf attack, and the on the lift and drag cannot be completely general. In general.
dnagfl ratio of the defored circular arc ort ahown in when the curvature of the foil face Is positive everywhere.
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Figure ItI - Lilt Coefflcieat, Drag-Lift Ratio of
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0 1).2 0.4 Ott 0.5 1.0 y/fu - a I - %I fI I + bvt in v Cascade of
Sol: 1tv 0.984 and Stagger Angle 1. 1868

a/e Raton at Shock-Free Angle of Attack

Figure 10 - Variatiotn of Circular Arc a/f0 . Normalized by (amber fu
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.1hsftffto tire maximum v-amrber towa~ds thec trailing vdiii'
slightly reduces the lift-drag ratio and tire section modulus, 1.0
for a given Ivadinitrie cavity thickness.

Aui examptle of afoil cavity shltaie with two-tein0*p .

ciittli. and a given IrAhling-edlge cavity thickness is stiown C,
in I'igure 12 top their with the coirrespovndinh tift ditit'i -_________________
ho.). The analysis fif a supecanitaling calicade is particularly
uw.fut for designing mipercavilating; propelers. As an__
example. the cascade inarameters for d model of a super- ICL *0.5
cavitaling; propelter tested at the David W. laytor Naval Shipi
Resericht and Developiment ('enter ihtodel J1770) are shown
inIifugre t .I. lhii ranges ol solidities and stagger aiigte irt -1.0
very iarfe,

ttike effect of fitit cavites is directly relted] to tile0 0. 0. 0. S 10 1. 14
cavitation ni-iter OIf cot-se. for ati isiolated suapercavitaitug irk
fint beneath to free surface, the cavitation nunmbet is rirk
Mtsen the cavity length iv infinite lFor a cascade, the choke-
Cow cavitation numbter is ;I functioin (if cascade ponameoters Figure I2 I Foll.4ianity Shape and Lift Distribution
atti the leaingf-edge thickness. In Figure 14, it Is shtownl in a Supeecanllatift Cascade with c/d - 0.471118
that thle hkikvid-I1,kw c4

5 
wiiii Inuher is a linear Iticiton -I t .1015 kind. CD W (C- 01231I

,the cavity thrickiiess per utit t',. itt a -- ca ct ot
s-,,le l'iatuictet, .1iti a tised c of a in I quitii I (-ti

Oni Figures 14. 1 c , - S , Ii',o two tert j itiil I )ie chtittel cavity. the~ finite cavity etfect i% anatyzed as %flowti iii
larger lin: sittiity. dII larget it. "h ofe itt ace cI the , Eitattonsi I1 -111t using te technique of Refortniet I I
dliikd t11W caviltivin numtbet %ktil neicti I the oucreaiigi Ihrict the lift, the drag and the cavity-fool shape wilt be

-,,1iy IfIkues Ass tt n haf ll tie It.4 clsiiutiili ott t fiinlIwsin of the cavitsair' number. Of course. th- cavitation
t~itie~i~ t suer.at taiiiltil is the ac as v thm1, 5. as- it ntutmber is a function of cav ry tengrh.1 I'i h relations
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(01Figure 25 lion Between Cavitation Number and
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0S 0.6Aflthough most cxampc m the preset study are for
awicde,. the foils kortili or Aixvc a ree 7iurface can he

> 0.4 0.7 treated in [hte same w,, by lost changing the trainsformation
Li function for the tourict ,zoefficicrits B, in I-quition (5. In

Ihe caiw of in ifinie fluid. where B. I and H,, = 0
0.n I. 2.. I, Ihe problem liecoose much simpler. and the

01 9use of 1-6* ouild sinpltfy the Analysis of arny foil shape.

0 Cos 0t 0.16 0.2 0.26 ACKMCJLEOGEMENTS
LEADING EDGE THICKNESS. I/CLlit 'I 1 'a'iii' %ml, ii' r, -ii upoiled b% tire N'ii 1l.1i,,

I iimari )s,,I I.,I.,miir I uirdringt 0 , Irj' ons Pfl'tulf'i
Figure I .- Rellam Hewen 0hokd Flow Cavilaims ,s lnith !siuer %asal kvhtude. I II, aijthi' A"s, sst, I"i
Numbser and LeawlgFdo Thiems '( Supez,-is" n Is prt- II hisapriii, I,- Il, Niufin,- M %title lir iiti

Catscaide in Blade see'mms of Sape .' Ii, rumi uith i tr, -i,l,, arid tou 1), Will,,,,,I B Shnpr.,
Propeller Moidel .l'/0 .,i Mi Jiisn Ii Wdiwi ft I,,, lirr-ir mii %i..l,icu

lie'ween th 11w rtimiato numb"r and lIhe cailhy ictill Arm
shown in Figure 15 for propefler Model 3770 Figrur IS
shvons that near the lsvb where the solidily :s larg. the
sAvilaluirn number divtided h) time lift coefflceenl Sartes Iefl
lttle wmib cavity lenigth Throughtout tmost %eiltu n% of ti,
proller-bidei a cavity of lIo and orr-half chord knolli.
gives the same effect as a Ce&nity 01 infinite length the
dlemnn section c;avitallii numbe" divined by lift dueffu,vcnt
foe propeller Model 3770 is shown us Figure I4 for cA~b
sccrIje. 11w cainty-thiclea of Wh (odi I"iure I iis
aibusled to the desagn value of cavitationr :iurnber per unit
lift toefficent. Aotdmg to desAIner requirements to make
the entire section suoerianitale, the foil shApe could be
desmwwd 1o have routgi ily thekknessi at A lsen desin

secton cvirs" nube?
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A

AN APPUCATION OF THE BOUNDARY INTEGRAL EQUATION
METHODTO CAVITY AND JET FLOWS

Bruce E. LarockUlmiyof Calilfornia
D.Is, C.1fomnlagW18

Abstract surfaces. Trial free-boundary techniques de-
pend upon shifting of the free surface portion

A discussion of the use of boundary inte- of these boundaries as the solution proceeds
gral equation techniques to solve cavity and iteratively. Finite difference methods are not
jet flow problems is presented. The need to ideally suited to the treatment of boundary
model such flows as a mixed-boundary-value conditions at non-rectangular boundaries, and
problem is demonstrated. Application of the so they usually either (i) use irregular compu-
basic method requires four steps: a suitable tational stars there and suffer some loss of
discretization of the problem, formation of accuracy, or (ii) solve the problem in a veloc-
the resulting matrix of linear equations, solu- ity potontial and stream function domain [1,2]
tion of these equations, and use of a system- and tr.sform the solution back to the physical
atic shifting algorithm to improve the free domain, thereby sacrificing the ability to pre-
surface location. Although progress has been scribe the physical geometry a priori. Finite
made recently, examples show step four is still element techniques do not have these problems
in need of further research and improvement. but do require an automated mesh adjustment
To illustrate procedures, simple two-dimension- scheme near free surfaces, preferably a qua-
al jet and cavity flows are presented. dratic representation of the velocity potential

and possibly the use of isoparametric elements
along the boundaries.

I. Introduction
In jet and cavity flows the most interestingIn recent years the design of high perfor- and useful infonrmtion from a solution are the

mance surface vessels and other marine vehicles spatial location of all free surfaces and a
has continued to focus attention on the need knowledge of velocities and/or pressures along
for computationally practical solutiois to the boundaries. This realization causes one to
progressively more complicated jet and cavity feel that full-domain techniques stch as the
flow problems. Iydrodynamicists have now finite element technique are in a sense compu-
sought these steady-state solutions for over a tationally inefficient, for in the course of
century; to date no totally satisfactory developing the required boundary information
approach has been presented which allows a it literally generates reams of interior data
convenient and suitably accurate fully non- which is often of minor use.
linear computation of these flows, especially
in throe dimensions. For these reasons the search for superior

computational techniques for high-speed freeDuring the past decade the use of conformal surface flows continues, This presentation
maping, finite difference and finite element suggests that a variant of the boundary inte-
techniques have all contributcd substantially gral equation method holds promise of being
to progress in understanding jet and cavity such a technique. In this method all computa-
flows. However, none of these approaches is tions deal directly with domain boundaries.
free of limitations or shortcomings, and the For free surface flow problems the vital miss-
great majority of the work has been restricted ing ingredient in previous Implementations ofto two dimensions. Conformal mapping Is of the method was a systematic algorithn for
course limited solely to two dimensions. From shifting the trial free-boundary between suc-
a conceptual point of view, finite difference cessive iterations; the present paper presents
and finite element approaches to jet and cavity two possibilities.
flows can be formulated in terms of a velocity
potential so that there is little if any dif-
ference between a two-dimensional and a three- II. Basic Theory
dimensional problem; the shortcomings here are
mostly practical ones. Several basic ideas underlying the method

have been understood for a very long time
toth finite difference .idn finite aiwmnt (e.g.. see [3]), but most computational pr,-

techniques must fill the tire flob J-main. gress has occurred in the last 20 years during
The physical doeMin is always -ret ja - in the computer era. Hess, Smith and co-workers
shape and often possesse, cur. t, nadir at Douglas Aircraft have been among the most



persistent contributers to developments over this particular technique offered at best athis entire period (see review articles [4,5]), 'cut and try" approach to adjusting free sur-while a more diverse interest in applications face boundaries until all appropriate boundarysuch as solid mechanics [6] and seepage flow conditions are satisfied.
[7) is becoming apparent in the last few years.
In retrospect the approach proposed herein is The next sections will demonstrate how so-closely related to boundary integral techniques lutions to jet and cavity flows can be soughtdeveloped at Stanford University by Kline et systematically by use of Eq. 4 as the basis ofal. as part of a continuing investigation of a numerical treatment of a mixed boundary val-stall prediction in diffusers [8-11]. ue problem.

The method is based on Green's theorem for
III. The Present Technique

f(FV2
G - GV2 F)ds = JFG - GVF)-ndr (1) Implementation of the current BIE methodr depends on four steps (Hess [5] has written

extensively or the first three steps and cana domain 2 bounded by a surface F having be referred to for a mere ccmplete account).a unit outer normal n. The functions F and These steps are: discretization of the prob-G are to be continuo sly differentiable. lem, computation of the coefficient matrix forWhen both F and G satisfy the Laplace equa- the unknown values of 0 and ¢fan, solutiontion, the left member vanishes and one obtains of the resulting linear equation system, anda boundary integral equation (BIE). In the adjustment of the free surface.
present case one function is chosen to be the
velocity potential 0 (let F = *) and theother to be a fundamental solution of the I. Discretization
Laplace equation. The most common choice for
1 is Equation 4 normally can not be solved in

closed form for o and aOs n. The usual
approach is therefore to discretize Eq. 4 toG - In r in two dimensions (2) obtain a set of N algebraic equations in the
discretized unknowns 0i and (a n), whereG - 1/r in three dimensions (3) 1 = 1,2 .... I, j = 1.2,...J and I t 3= N so
that the equation system is determinate. This
process involves i discretization of both thewhere r = rpo ; the distance from any arbi- boundary geometry and the urknowns.trarily chosel point P Iii £, to a point Q

on the boundary r. By use of a limit process
in the neighborhood of P, one finds

0bp = 4 - G dF (4)
*k an 3 an)(4

noting that VG'n is equivalent to aG/In. If 11 rP does not lie on F', a 2nZ in two dimen-
sions, a - 4n in three dimensions. If Plies on r, then a is the "internal angle"
subtended in passing around P. Subsequent
sections of this paper assume P lies on F.When a problem is well posed, either 4 or (a) Exact domain
at/In will be known at each point along the
boundary, and Eq. 4 then becomes an integral
equation relating the known function G and Z
the complementary function * which is to be 2
found. One additional noteworthy point is
that the technique is inherently mesn-conserv-
Ing in its exact form; that is,

J~drsON-1

Since the form of the fundamental solution (b) Approximation by N segments
chosen for G ha, the same mathematical form Figure 1. Discretization olf boundary
as the velocity potential for a point sourceof fluid, the approach is called the surface- Geomet. Figure I depicts in two dimen-source method. Hess at al. have fashioned sions the process of approximating the truethis technique into a'i"iilly efficient method b g by d i i0 zovin thepur Remnn roblm o extri- boundary geoetry by dividing It into N seg-of aelving the lure Neumnn problem of exteri- ments of known (by coolce) shape -- straight-
or flow over solid objects of known shape in l segoentn thi sap straihttwo and three dimensions. However, Ness cor- line segmnt t his us se. Straight lnes
rtctly remarkad [7, p.1] a decade ago that are simplest to use. Higher-order polymial
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segments can better approximate the boundary
but require more effort to implement. Circular
arcs closely approximate parabolic arcs and are 0(s) j+ (0j+l-0j)(ss )/(sj l-s ) (6)halthematically mre tractable [12]. In three

dimensions the line segments become plates of
quadrilateral or triangular shape; both have
been used. Some [13] have rejectpd the use of and
quadrilaterals because adjacent segments some- 11a 1j ;Aj, at
times can not be aligned to give a C continu- j'(s) an do s-s/s l-S j
oux approximation to the original surface and nn a Iii n
the elements "leak"; Hess [5] discounts this by
considering this discretization as a mathemat- (7)
ical approximation rather than a physical one.

where s is the coordinate along the segmentconnecting points Pj and Pj+l"

Unknowns. The simplest approach is to as-
sume that- and a/an are constant on a
discrete boundary segient, and historically it 2. Equation Matrix
is the most frequent choice. Assuming a linear
variation of the unknowns on a segment is be- When Eqs. 6-7 are employed in Eq. 4, the re-
coming more common, however, and higher order quired integrations can be completed in closed
interpolation functions have been used on occa- form to yield expressions linear in the 0j'

sIon 12]. and (a0/n)j s and involving logarithmic and
inverse tangent functions. In a higher-order

The choice of order-of-approximdtion for the approximation the superiority of circular arcs
boundary geometry and the discretized unknowns over parabolic segments becomes apparent here
is still regarded by many as an independent due to greater ease of integration. In axi-
pair of decisions, but Hess [12] has shown by symmetric problems where integrals can not con-
series expansion techniques and numerical ex- veniently be evaluated in closed form, one must
periments for the Neumann problem that mathe- use numerical integration with care to achieve
matical consistency requires the approximation accuracy. On the other hand, when rpQ is sev-
of the geometry to be one order higher than te eral times the segment size it is often possi-
approximation of the unknowns. Although the ble to use simplified results in place of
selection of straight-line segments and linear lengthier, exact expressions; this factor be-
interpolation of the unknowns is thus deemed an comes most important when three-dimensional
inconsistent approximation, this choice is be- problems are considered.
coming common and often yields good results.
(It will also be used in the examples in this When Eq. 4 is evaluated for each of the 14
paper.) Finally, fur two-dimensional BIE for- points Pi (I - 1,2 .... N), the result is a set
mulations based on complex function theory, of linear algebraic equations of the form
order-of-approximation arguments appear not to
be applicable because the resulting expressions ,
become path independent so that ooundary curva-a + -'J, 0 (8)
ture does not play a role (14]. 

1t '1 * V
im

As an example of approximation of the un- where summation over j - 1,2,...N is implied.
knowns, refer to Figure 2. For the linear At each of the N discrete points on the

boundary either *0 or (ao/an)1  is specified
as a known boundar4 value, and the final N
equations to be solved are

Aij qj • (9)

Equation g is obtained from Eq. 8 by transp-
Q osing to the right side the N terms known

L P from the boundary conditions, and qj is the
remaining vector of unknowns.

'PQ At some points on the boundary of the flow

it is desirable to represent exactly a discon-
/ tinuity in ao/an; in particular, this occurs

at a corner where one segment represen
t
ing a

wall connects with another which has fluid flow-
ing across the domain boundary. To medel this
case exactly. one simply places bio nodes t
and j atop one another at the corner (they a, e
connected by a bo,,diry segment of zero length)

Figure 2. Portion of discretized boundary One can then ass , bondary value for aoan
to fode i andi .kij J; if only one value of
p i n Is speciticvi, cm:n * can be specifiedapproximation on4 write
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at the other node. Equation 9 must also be progressing from a downstream reference value
augmented with the equation *i - . Normal of * to the upstream lip from which the free
computations for the segment of zerb length ar,- surface springs. Here V - fluid speed on the
then omitted from Eqs. 8-9. free surface. After Eq. 9 is solved for values

of 0 *An)i along the free surface, the
streamline tangency condition is used to adjust

3. Solution of Equations the surface, beginning now at the known coordi-
nates of the lip (|rst the new local free

The coefficient matrix Ajj is full and un- surface slope m(n1j1 is compue4 at each node
symetric in distinct contrast to the finite i in terms of the old slope ain;, local tan-
element formulation of these problems, which gential,speed V and current value of
would yield a symmetric, banded matrix. But (/an)ni; the relation is
the number of equations N via the BIE method
is much smaller than. for a full domain method.
Moreover, the diagonal coefficients tend to be 

( tl )  
W (n)

relatively large although the matrix is not ( Vm(n) + (10]

strictly diagonally dominant. V - m(n)(a 3onTnnT

in two dimensions and in smaller three-
dimensional problems this kind of linear equa- with use of an outer normal. It is convenient
tion set is solved directly (e.g., Gaussian to insert these slopes directly into a cubic
elimination). For large three-dimensional spline interpolation scheme to find the new
problems, iterative solution techniques may be free surface. Whether V varies along the
preferred, free surface because of gravitational effects

is of little consequence. The sirgle remaining
problem is proper selection of the downstream

4. The Free Surface value of V; as the next section indicates, no
one approach currently appears superior for

It is the treatment of the free surface it- both jet and cavity problems.
self that spells success or failure for the BIE
method in jet and cavity flows. Earlier BIE
techniques concentrated on formulation of the IV. Exanles and Discussion
pure Neumann problem. Once a tentative free
surface location was assumed, a jet flow could BIE techniques [8-11] at Stanford University
be formulated and "solved" as a Neumann prob- have in the last couple years been applied to
lem. but after a check had ascertained that the the (assumed) potential flow core of stalling
trial location did not satisfy both the stream- flows in two-dimensional and axisynmetric dif-
line tangency and constant pressure conditions, fisers and are typified by the flow shown in
no algorithm was available to adjust the free Figure 4a. Line AE is the centerline of the
surface systematically to an improved location, diffuser where a OAn - 0. Flow across the
Cavity flows were even less susceptible to such
a treatment.

It now appears that the BIE method should
properly treat jet and cavity flows as mixed
boundary value problems which are solved in 0
conjunction with the kind of general surface
shifting algorithm used by the writer and sev-
eral othrr investigators over the past five
years [8,9,15-19]. A E

The essence of the scheme is to assure a (a) Diffuser jet
constant pressure on a trial free surface,
Fig. 3, which may initially be incorrectly B C'

2--2

Figure 3. Schematic of free surface A_ _ , R2 ----4'E
located, by assigning nodal boundary values of (bl Jet or cavity
* by Integration of 34/3s - V. usually cigure 4. Jet ag d cavity fow examples



iiiet section iJ. cnd outlet section BE is lower value; spverl iterations with V 5.9c, s-dimensional; the velocity aq01n is pro- caused the velue of 3 $fn at the lip to con-

scribed at AE and computed at DE at the verge toward a positive value. Hence, the cor-
beginning of each computational cycle from con- rect value of V must lie in between, end sev-
tinuity. Along the solid wall BC 4Pl n - 0. eral automated interpolative sequences gave a
The free surfacrx Co separates from the wall final free-surface value for 3a/n at the lip
at C; ths fluid outside surface CD is as- which was appcoximately -C.036 when V - 5.94.
sumed to at coastant pressure. With the The initial and final free surface ar plotted
',elocit V computed at 0, boundary values of in Figure 5.
y are assigned ilong the trial free surface,
,d Eq. 9 is formed and solved. The computa- 2.0

tional cycle repeated until a ctonvergent
sol;ltion is attained. In axisymnetric problem
[9] the lnvestigatu; iiac to undercorrect the
amun of the local slope adjustment
(n+)-m(n)) strongly to assure convergence Lip
of the technique; only 10 to 20% of the comput- .5
ed change in slope was actually used in adjust-
ing the surface at one time. Undercorrection
was apparektly not needed in two-dimensional Final
problems. All work employed straight-line sag- e"
meats and a linear approximation for unknowns;
apparently each free surface experienced a to- 1.0 -
tel angle change of d50 or less (local free
surface slope Iml 1.0) with no more than a Initial
50 change in direction per segment.

The author applied the foregoing procedure
to the configuration shown in Figure 4b; it is
a two-dimensional jet flow from a slot with
a- 70° and yl/y 2 - 4.0. Twelve segments
were used to model the free surface; for conve-
nience the velocity across AB was unity. Un- 2 x
accountably the scheme did not converge to a
solution even though the initial trial free Figure 5. Initial and final cavity 'Free
boundary was a smooth exponential curve located surface
reasonably close to the expected solution. The general free surface adjustment scheme

seems to perform differently when implemented
With a different physical interpretation and in the BIE technique rather than, for example,

a different assignment of boundary values, fig- the finite element method. The probable cause
ure 4b depicts a Riabouchinsky cavity flow past is that the BIE approach is inherently mass-
half a symmetric wedge in a water tunnel. Let conserving, as Eq. 5 states :1early. Conse-
AE be the tunnel wall, BC' is a line of sym- quently, when a portion of a trial free surface
metry, and C'C is half the wedge; along all is too low and causes computed local values of
these boundaries assign a0)n - 0. Thus DE D$/3n to be positive. Eq. 5 apprently ensures
is at midcavity and is a line of constant ve- that 3$tdn will be negative over another por-
locity potential *, but the normal velocity tion of the same free surface to conserve ass.
across DE is nonuniform; assign * - constant Possibly this effect Is more pronounced for
across DE. Across AS the oncoming velocity axisymmetric flows and led to the need for
Is uniform and * is also constant but un- undercorrection of the free surface.
known; for convenience assign a unit velocity
to section AS. On CD * can be prescribed
once V is selected. Again yl/y2 - 4.0, and V. Pr g.
for this example x1/y2 - 7.73 and
x2/Y2 - 1.57. At this point C a double node Formulation of the boundary Integral equa-
was placed so tnat a3/an - 0 on the wedge. tion method as a mixed boundary value problem
but * was also prescribed at the lip from holds promise for the efficient solution of jet
free surface considerations. and cavity flows. In several respects the

technique is still not well developed, hcwever.
The free surface was sought by the followifa; Although some free surface location techniques

procedure. By comparison with the related jet- have been shown to work for certain kinds; of
flow whose solution is known [(0J, V - 6 was problems, much room for both Innovation and for
chosen. Several computational cycles were improvement remains. Extension of thee tech-
computed without adjustment of i; tVe trial niques to the much more challenging, prac:tical
free surface location converged toward a stable and exciting three-dimensional jet and cavity
location during this process. It was observed flows remains to be accomplished, but prospects
that aq/fn at the lip end of the froe sur., uf eventual success appear reasonably good at
face. whi-h was not prescribed and which can this time.
play no role in free surface adjustment because
the lip lec&tIon is fixed, also convergd te- t
ward a negative value rather than the desired Refer
value of zero which mould indicate proper flow
behavior at the lip. Next V was changed to a I. S)nnon, C.. "A numerical solution of
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DISCUSSIONS
of three papers

A NUMERICAL MErHOD FOR DETERMINING FORCES AND MOMENTS ON
SUPERCAVITATING HYDROFOILS OF FINITE SPAN

C.W. Jlang and P Leehey

SUPERCAVITATING FOIL OF AN ARBITRARY SHAPE
_BENEATH OR ABOVE A FREE SURFACE OR IN A CASCADE

AN APPLICATION OF THE BOUNDARY INTEGRAL EQUATION METHOD
TO CAVITY AND JET FLOWS

Bruce E. Larcck

Invited Discussion due to the large cavity thickness clearly become
Important. Non-linear cascade calculations have

M.P. Tulin been mad* qarlier by Furuya, (ref. 1), based on
Hydronautics Inc. the approach of Wu and Wang to the non-linear

supercavitatiq flow past a given isolated hydro-
foil. and Yim himself has earlier considered the

The vastness of the literature for steady non-linear problem (ref. 2). The superproblem
plaii;,r free-streamline f;ow attests to the power for the supercavitating propeller and a great
of available analytical tools for the solution challenge for numerical analysis involves the
of certain physical problems (especially super- calculation of the flow past the collective blade
cavitoting flows) through their reduction to cavities treated as a fully-three-dimensional
mixed. boundary-value problemrs. These tools oroblem, but which more resembles a short axi-
include: suitable modeling (cavity termination symnretric cavity (in the limit of many blades)
and wakes,, analytic functions and mapping, shed by a porous disc (the propeller blade) than
bounuary integral equations, asynptotic (i.e. it does a cascade. I refer to the model I sug-
linear) approximations, and combinations gested in ref. 3. It is the inflow distribution
thereof. A sizeable number of important engi- to this disc Just as much as the flow over the
neering problems have by now been given adequate blades considered as a blade element that requires

tion throughi the application of theory. I numerical calculation, since at the present time
wo; d mention especially the design of super- we have available for the inflow estimation only
cavitating propellers. The second paper (#18) the results of supercavitating propeller momentum
today, 6y Ym. is a further and very elegant theory. Yim is, I know, working on the full
contribution to this literature, He utilizes supercavitatlng-propeller problem, toward which
known tech.ques of supercavitating-foil theory: the present work is a step, and we should all
linearizations and mappings to the "airfoil" look forward to his future results.
plane, co-inations of incidence, camber, and
"paraboli type" thickness (really a leading- The gap betweer three-dimensional super-
edge sinliarty). He has succeeded in a very covicating flow theory and the present status
useful sfithesis of these methods and finally is being losed with efforts such as those of
applied ,ne fast computing techniques. I was Jiang and Le-3hey (paper #17). It is the latest
especi,, y pleased to see the hydrofoil-3irfoil result in the long effort to develop a practical
equival ace generalized, as these rules Imne- numerical lifting-surface method for supercavi-
diatel, ivc much insight as to the relation tating wings, a history beginning with the rneo-
betweef the chordwise pressure distribution (at electeic analogy work of T.S. Luu in Paris in the
design) and the lift/drag ratio. Yim's results, early 1960's (ref. 4). It is a difficult problem,
which include free-surface (infinite Froude avon in its linearized form (as is the case with
number) and cascade effects, attest again to the all numerical attempts), as it involves two
power of analytical methods, more so in this case coupled integral equations and an unknown area
than to the power of numerical hydrodynamic tech- of integration; the authors have made a prodigous
niques. effort. They have tested their numerical tech-

niques in the two-dimensional case by comparing
Uieful and general as Yim's results are, I with analytic results; they obtained a good com-

would like to suggest a little warning in connec- parison, but first I would like to suggest the
tion with their jtilization in hydrofoil or possibility of an additional perspective that
propeller design. In both cases, it is often arises through coparison of numerical calcula-
necessary to utilize non-linear corrections based tions such as these with approximate theories
on theory. For foils it is also of some impor- that are more or less well-proven. I refer to
tance to take Into account the down-wash due to the semi-empirical methods startin? with linear
gravity effects on the cavity, Further, I have two-dimensional theory, factoring n lifting-
some doubts about the utility of the planar surface corrections such as the Jones edge
cascade model in application to propeller design, connection, plus corrections for non-linear
except to estimate cavity-section interference effects based on theory, both for the section
during off-design uoeration--and this is the effectiveness and cross-flow drag. In 1975, C.C.
design region where we most need better methods. Hsu presented practical formula* for wing force
In the off-design regime non-linear effects are coefficients together with comparison with the
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data for rectangular wings of Reichardt and tent to keep foremost in mind the results needed
Settler, Schiebe and Wetzel, and Dobay, includ- from the computation and to test the computations
ing free-surface effects and for angles of in terms of the accuracy of those results. These
attack as high as 16

°
. The comparison with the may often involve (jet flows, for instance) the

data lend confidence that Hsu's formulae may be pressures in regions where cavitation is to be
used for preliminary design with confidence. feared, as at bends--I think of the crest of
The Jones' edge correction for supercavitating dams or spillways, wnich were many decades ago
wings, oriinally proposed by V.E. Johnson, has being studied numerically using relaxation tech-
been well-confirmad, Incidentally, by the numeri- niques, or at the entrance of valves as studied
cal lifting-surface calculations of Tsen and by Chan and Larock. Sometimes very sharp cor-
Guilbaud (ref. 5) carried out In France and which ners or discontinuities in shape or boundary
are the a - 0 counterpart of the results of conditions are involved, and it would then seem
Jiang and Leehey, and which would make a very appropriate and even in some cases n-cessary to
important additional reference in their paper. supplant numerical calculations such as proposed

by the author with imbedded analytic expansion.
In Figure 1, 1 show a comparison of predic-

tions using Hsu's formulae for the aspect ratio REFERENCES
5 elliptic wing tested by Leehey and Stellinger T. Furoya, 0., "Exact Supercavitating Cascade
for a - 210. The data are those reported by Theory," Trans. ASME, J. Fluids Engineer-
Maixner at the recent ATTC conference in Annapol- 1noi, Vol. 97, 1975, pp. 419-429.
is (ref. 6). Note first of all the relative 2. iim, B., and Higgins, L., "A Nonlinear De-
agreement of Hsu with the small foil data, which sign Theory of Supercavitating Cascade,"
are, according to Maixner, free of wall effects. Trans. 3 Fuids e , Vol. 97,
Note also that Jiang and Leehey actually lie 175pp420433.
under Hsu for the values of c/o reported. This, 3. Tulin, M.P., "Super,avitating Flows and
TF-s-eems to me, poses a grave difficulty for the Practice. Applicat' is," Cavitation in Real
theory of Jiang and Leehey as non-linear effects Liquids, Robert Day Ps (editor), Elsevier
are very large at this angle of attack. Most Pess, Amsterdam, " ,
probably at this aspect ratio, the non-linear 4. Luu, T.S., "Hydrofoils supercavitants
effects must reduce the linear predictions, thus denvergure finie. 'mnulation rh~o-
worsening the compar'son between the present cal- 6lectrique," CoJjo11 international las
culations and experiment. To drive the point techniques de calcul analpique at Jirique
home, I show in Fig. 1 the predictions of Hsu's in e6roneutt Liege, September 1963.
wing theory, omitting the non-linear corrections. 5. Tsen, L.F. and Guilbaud. N., "Mithode du
I believe that for this aspect ratio any "correct" potential d'acc&1gration pour le calcul des
linear theory must lie closer to the dotted line ailes supercavitantes finies," Bull. Asso.
than to the da-ji"and I wonder whether or not the Tech. Mar. A6ron.. Vol. 70, 19767
authors would agree and whether they can illumi- 6. Mexiner, M.R., "An Experimental Investiga-
nate the situation this poses for their numerical tion of Wall Effocts on Supercavitating
results. Incidentally, Tsen and Guilbaud show Hydrofoils of Finite Span," Cavitation
that for an aspect ratio 4 wing, the data of Committee Report, 18th ATTC, Annapolis,
Schiebe and Wetzel and Kermeen lie in genei_' August 1977.
well below both their own linearized numerical
calcuTations and those of Widnall, even at an
angle of attack of 10

°
. Finally, I hope that the Author's Re 1

authors persevere and eventually go on to con- y C.5 Jtan9 and P. Leehey
sider the practical problem of the free surface to discussion by M.P. Tulin
for high speeds, and pod-strut interference with
wings, for which numerical computation methods The authors appreciate the cents of
should be welcome, invited dis sser e',d will endeavor to reply

the questions raised by him.
How to do truly non-linear free-surface

problem? This is the subject of Larock (paper The discusser made the comparison between
019) who has earlier been Involved In the our linear numerical results with su's (1975)
numerical calculation of such free-streamline non-linear empirical expression. Our present
flows as from orifices and valves. In particu- numerical lifting surface theory is as good as
lar, he addresses the question how to carry Hsu's non-linear results 'see the figure pre-
out a stable iteration for the free-surface pared by the discusser). The mpirical expres-
configuration In space, In conjunction with boun- sion of two-dimensional asults of Hsu was
dary integral techniques. The method seams based on the results of -eessor W (1914).
natual, and I believe that essentially the Based upon a compriso, of near and non-linear
s tochnilue has been used previously In con- results of Hsu, discusser eajected that our
junction with finite-element calculations (I linearized results woull overprodict the re-
refer to the work of Chan, Larock, and Nerunn, sults. Wu't (or Hu',I linearized theory,
and to Sarpkay). I would ask the author two however, Is not the sa as oura. Our numaer-
questions, though: 1) is the algorithm optimm cal method Is based or rte '1Ierized ta-
in any sense (speed of convergence, for xmple). dimensional theory of 6,mtirst as expressed by
that is. why this method rather than any other? our Fig 1. The following romprison of two-
and 2) is It possible to optimize an aloritth dimensional 'ft coefficiemt is instructive:
through mthietical analysis? a-0.1 n-O.1 a-0.436

a-IS a-10* 610*
Finally, in designing nurical methods and r-IIner(u) O.X? 0.20 0.$6

in testing their accuracy. I think it is tmpor- lineer(Geurst) 0.4. 0.29 0.54



These relative errors are far less than
those quoted by the discusser. One may referthis to the discussions following the paper byLeehey and Stellinger (1975) for details.

We also wish to mention that the steady-state experimental data have have been takenfor different reasons by several investigaters
during past four years. A dynamometer and thehydrofoils heve been modified for special pur-
pose at each test. We do believe those dataare reliable.

15.Hsu. C. C., 1975. Some remarks on the pro-gress of cavity flow studies. Trans. ASNE. J.Fluids Engineering, vol. 97, pp. 439-448.
16.Wu, T. Y., 1965. A note on linear and non-linear theories for fully-cavitated hydrofoils.CIT Div. of Eng. & App. Sci. Rept. No. 21-22.

Author's Rel

to discussion by M.P. Tulin

Tulin directs two questions to this writer.
MY responses follow.

1. The major alternative to the presentfree-surface adjustment scheme is somehow tosatisfy initially the streamline tangency con-dition with chosen boundary values, then solvethe corresponding boundary..value problem, andfinally employ the constant-pressure conditionto adjust the free surface; this scheme ap-parently is always non-convergent for high speedflows. The algorithm Presented in the paper is'optimm" only in the sense that It is success-ful and the major alternative cited above isnot optima because it fails. In the more con-ventional sense, the writer would not claim any* optimality properties for the present algorittm.*It is indeed quite possible that the globaladjustmnt scheme proposed by Hess (paper 20)possesses advantages over the present approach.
2. 1 do not know if it is possible, but Iwould welcom the interest of mthemticiansand specialists in numierlcel analysis in free-surface adjustment schemes. Perhaps they could

answer the question positively.

Ta
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PROGRESS IN THE CALCULATION OF NONLINEAR FREE-SURFACE PROBLEMS
BY SURFACE-SINGULARITY TECHNIQUES

John L Hess
John L. Hess, Asoclates

Long Beach, California

Abstract sihgularity distributions - source, dipole,
vorticity -on the surface of all bodies and on

This paper describes the status of a computer the true location of the free surface. This is
program for solvinq the full nonlinear problem in contrast to small-perturbation approaches
of a two-dimensional body performing steady that use singularity distributions interior to
translation near a free surface. The method of the bodies and/or on the undisturbed location of
SolUtion Is based on distributions of simple the free surface. In the surface singularity
Rankine-type singularities on the body and on approach, the strengths of these singularities
the true location of the free surface, which are determined from the boundary conditions in
must be obtained by iteration. The key is the terms of integral equations, which are approxi-
iterative algorithm for determining free surface mated by matrix equations for numerical imple-
shape. It must account for the mutual influence mentation. The singularities used are of the
of various portions of the surface. Various simple "Rankine type,' which are appropriate for
stages of development of the procedure are des.- problems without a free surface. For example,
cribed, including the final successful tech- the point source potential is log(l/r), where
nique based on a higher-order singularity pro- r is distance between the source and the point
cedure. Comparisons are presented of free- where the potential is evaluated.
surface shapes calculated by the present method
with those calculated by a previous finite-dif- General Description of the Flow Problem
ference solution for a submergoO point vortex.
For the higher-order solution, agreement is It is supposed that a body Is translating par-
quite good. Futu" directions of the work are allel to a free surface with uniform velocity
indicated. U. By superposing the negative of the body's

translational velocity on the entire velocity
Introduction field, the problem can he stated as shown in

Figure 1. The body surface S. which my he
The problem of Interest is that of the multiply-connected, is stationary in the prtsenct

steady translation of a body in the presence of a uniform onset flow of magnitude U perallel
of a free surface. 1he fluid below the free to the positive x-axts. Above the body at a lo-
surface is inviscid and incompressible, and the cation y - n(x) that must be determined is the
flow is irrotational so that it is a potential free surface, which Is a streamline of the flow
flow governed by Laplace's equation. The fluid along which the pressure is constant, The flow
pressure is constant all over the free surface, field for y • n(x) Is a potential flow, which
In three-dimensions this probam finds Its chief has zero norml comonent on S and approaches
applicatin in the calculation of wave resist- the uniform freestream for x -- or y .
ance both for surface ships (the surface- (For definiteness the Infinite-depth case is
piercing case) and for undersea vehicles (the considered, but the finite-depth case may b
submerged case). In two dimensions the flow handled by use of a siugle Image of the body and
about hydrofoils Is chief application. Although free surface.) The undisturbed position of the
the problem of main practical Interest is the free su-fpce is y - n - 0.
three-dimensional one, becauso of its very for-
midable nature, the present aIffu. his been If the tangential velocity at any point on the
devoted to the two-dimensional problem, Whre free surface is denoted V, the constant-pros-
the only solution techntques considerejd are sure condition can be written
those with direct three-dimensional analogies. 2 (1)

The intention is to attempt to solve this
problem In its full generality, I.e. without or
any ass-options of smll perturbations In regard
to either the body or tm free surface. This V*"'t-ztg (2)
is a nonlinear problm because the location of
the free surface Is unknown and mist be solved where q Is the accele-ation of gravity.
for as part of the rolm. The method of solu-
tin to be used is the surface-sIngulrity To solve this problem by a surface simngjlir-
approach (reference 1). which utl ices Ity approach, the body surface S is covered

1



Strictly speaking, it is not sufficient to

,.consider only the tree surface and the body as
boundaries of the problem. The domain should be
closed by the addition of three more boundaries:

l. (1) an x - constant boundary at a large negative
value of x on which freestream conditions (nor-
mal velocity equal to U) are prescribed; (2) a
y - constant boundary at a large negative value
o y on which zero normal velocity is prescribed;
and (3) an x - constant boundary at a large
positive value of x on which a "radiation con-
dition" of downstream waves is applied. However,
the philosophy that has been followed in the
present work has been to try the simpler

Fig. 1 A two-dimensional lifting body perform- approaches first and to add comlications only
ing steady translation near a free when these simpler approaches prove inadequate.
surface. Accordingly, the above three additional bound-

aries have been Ignored in the work to date.
with a source density distribution. (There ir This is equivalent to the assumption that these
also vorticity to produce circulation about S boundaries will have weak enough singularity
in lifting cases.) The free surface is covered strengths to give a negligible effect in the
with either a nource or a vorticity distribu- vicinity of the body. Almost certainly it wli
tion. The two distributions, i.e. on the body always be possible to ignore boundary (2), but
and the free surface, are determined from the some form of boundary (3) may prove necessary
boundary conditions on the body and free surface. in the future.
However, there are three boundary conditions,
i.e. zero normal velocity on S and on The Prototype Problem
y - nix) and constant pressure on y - n(x).
Thus, two singularity distributions are insuf- To conserve computing time during the search
ficient, and an additional "degree of freedom; for a convergent iteration algorithm, the each-
is necessary. This is the location y - n(X). anism responsible for disturbing the free surface
which Is determined from the boundary conditions has been taken as a submerged point vortex, as
along with the source and vorticity distribu- shovn in Figure 2, rather than a lifting body,
tions. as shown in riqure 1. Some distan'e from the

The surface singularity method requires that
the locations of all boundaries be known. The
7re-surface problem must be attacked by itera-
tion. At any stage the location of the free ' W
surface is assumed ard a flow calculation is, T
performed. PresunAbly one (or both) of the
boundary conditions on the free surface are not -

sat!:¢ied. Based on some algorithm the location
of the free surface is then changed, and the ccl- -*"--fi -.-
culation is repeated. The above process Is . '' a

iterated until convergence (in some sense) is
obtained. The algorithm for altering the free-
surface location Is highly nonunique. Many
possibilities can be postulated and probably
most of them lead to a divergent process. The
mein task in applying the surface singulerity
method to the free-surface problem Is selection Fig. 2 The prototype problem. Flow about a
of a convergent algorithm. This is somewhat sbmrgd point vrtex.
similar to the classic inverse problem, where
the velocity distribution on a surface is speci- body its velocity field approaches that of a
fled and the surface shape mist be computed, poiht vortex, so this appears to be a reasonable

approximation. In any case I is know from the
Basically the calculation can procead in one literature that the shape Of the free surface

of two general ways. At each stage it can sat- due to a submerged point vortex is qualitatively
isfy the condition of zero normal velocity on similar tO that due to 4 Subm 0ged lifting body.
S and on y -n(s) and then kerate to obtain Thus, It sW likely that any proposed Itera-
constant pressure on y - n(N). Alternatively. tice V -oritle ftr dotenrimnin te fee-surface
at each stage it can satisfy the condition of shape would either converge for bait a point vor-
zero normal velocity on S and the €o.aliton of teax and a lifting body or diver for both. The
constant p essur& n y - eix) and then Iterate saving In ,o puting tim comas fr,. the fact that
to obtain zero normal velocity . y - n(x). only the free surfe Mee be defined by surface
While both possibilities mast bo kept In mind. elem ts. Thus, the ondr of the matrices that
It is the second one that has been used scoess- mast bn formed and solved is reduced. Aother
fully in inverse roblema, and It 4s bean given iNprtmt re4on for considering ti point vortex
fir't attention. Similarly either a source or a is t"t this cas? hen been conside 'd by previous
vortIcity distributica my be used on t f I nvstligatort. notably van ierc.ek end M en
surface. So far the wae of s vortex distributio (references 2 4nd 3). T , solut'ons obtained
on the fre surfac. has proven mre effective,

Z1
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by the present method of this report can be comn- its imiage (if any). Then the total normal and
pared with theirs to yield an essential quanti- tangential components of velocity at (ii~
tative test of accuracy. are

The essentials of the point vortex problemEA Usit + (3are illustrated in Figure 2. The vortex which V NI 2 11"1jr -u5n~+v1 1  (3
has a strength K. is located at the point
xi;0, y --h. Here K -r/2w where r is the
cirulation. The problem has been addressed bothE UCoa+V (4with and without an image vortex of equal and V +i u cso + v (4
opposite strength at the point x -0, y -+h,Vi iivi
and it was encouraging to note that the conver-
gent algorithms yielded exactly the sam results where ij Is the slope angle of the ith element
in both cases. Durina most of the work to date, as shown in Figure 2, and where the summations
an image vortex was included. All cases follow are uver all Plements. The equations that must
references 2 and 3 in using a freestream velocity be satisfied dre
Ui of 10 feet per second and a submergence depth
h of 4.5 feet. Various vortex strengths K are r"0()
considered, which lead to various wave heights.0()
During most of the present effort only reference
2, not reference 3, was available. In tnis paper V T '4 -2Qy Vi(ii) (6)
all coparisons are for the two vortex strengths
of reference 2, K - +1.15 and K - -1.4. It in the present pr'ocedura- 11 free-surface shape
should also be noted that the results of refer- is assumed, and the t are outained as solu-
ences 2 and 3 have been ootained for a finite tions of the sieultan?,s linear equations (6)
fluid depth of 9.5 feet, so that perfect aqree- with left sides given by (4), i.e. the pj are
went with the infinite-deoth results of the determined to satisfy the constant-pressure
present method cannot be expected. boundary condition. These values are then used

in (3) to calculate normal velocities. which are
The free surface Is represented by singular- not, in general, equal to zero. An iterative

ity distributions from MI or x ( see below) algorithm is then applied to alter the free-
to Xlg (Figure 2). From x~to Nthe surface shape.
velocity is required to sati sfy the free-surface
condition of constant pressure and the shape is Local Algorithms
allowed to vary to p roduce a condition of zero
normal velocity. The physical variables are The simplest algorithm computes the ciange of
u. h, and K. The "numerical variables' are slope angle 6'Oi of each element as
xg. , xNz. and the elemenit length ax x +-I

-iwhich is used to define the free surfico. 6o0 . tan' (V1 /Vri
In ill cases presented, a constoat spacing is NiT
usad. and Ax is a single number. These are added to the -I to obtain new 1

which in turn are used to calculate new y
To Implement the surface singularity method successively, beginning with som fixed upstream

of reference 1. the free suiface or its approxi- value,, The t# enieclua Ioni eetd
motion is represented by a set of points (xj. This agorithm converges fur theclsia
y ). During the course of iterating for the iitvorse problem of potential flow, in which the
flee-v urfece shape, the Ki rmin fixed end prescrie value of tangential velocity at each

tey are altered. Theportion of the sur- (ii. ji) is independent of location, but It
fac b~bve sucesiv SF.11OPoints (si. yj) diverges in the present application.

:ad (x J#l' y ,) is a surface elemen on which
singularity RIthis case vorticity) is distrib- This algorithm may be called local because the

uted. In the "first-order* version of 14e local slope correction Is detarsTn-Wfrom the
method the surface element is a straigfi. line local deviation of the calculated results from

frm xw*y) to (U41 - VJ41) on which the the satisfaction of the boundary condition.
singular ty5 constant. In the mire accufte rhr"e such algorithm have bean investigated
,hIgherorder* version (references I and 4) the and all diverged.
elmnt Is a parabola and the singulatity varies
liarily. Boundery conditions are applied at
a single control point (1-1. y) of each Sle. 1l108l Aloogrithm
meet, and this poist is thielioit of the Ile-
meet In both versions. To obtain convergence It is necessary to

emloy a jg~ iterative algorithm which con-
Lot ~ dewte the varticity strem~th at t'e siders fthiffiects at grelements ofa

contel 21nt of the Ith element, Ond lot AJ Chtage In *is and whic TOSM l 1CON-
and 41, be. respectively. the mormal and putes (to ft t order) changes in slope angle

tanemtgl ~mnntsof eloityat he eeri.I and vortici ty strength that correct the normal
psle (as yi)of te it .le deeto awrit velocities while maintaining the cotant rs

valdo of vorticity at the control point af the stve condlition on all elmet. It should be
ith elmet. Futher. Iet V aOW vTi be. emphasised that the final coverged shape Is
respectively. 3he wroml and 9Mia 41"on not In any %aem a small-perturtetion solution.
(ats at (is. yj) A* to the point vertex endA While sml 1-pertiorbation formlai are wood to
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compute shape correctins, each iteration per- In all cases the initial approximation to the
forms a full putential-tlow solution in the free-surface shape is the undisturbed loratlon of
sense of reference 2. Thus, the converged solu- the free surface y = 0.
tion has the correct normal velocity (zero) and
the correct tangential velocity for constant- Reresentation of the Free Surface
pressure. Deviations, if any, of the computed Wth No Flat
shape from the correct shape can only be due to
nonuniqueness of the basic problem and to numer- The initial form of the global alqorithr,
ical discretization, namel) the fiite length of fixed the upstream end of the free surface at
the elements and the finite locations of the x = Xq. y = 0 (Figure 2) and applied the above
xM, x0  and xN. equations to the entire free surface from xO

to xN. Some of the results obtained for theBasically, a change of shape of the free free-surface shape are compared with correspond-
surface affects the local velocities in four ing results from reference 2 in Figures 3 and 4.
ways:

1. Rotation of the local surface through a
fixed velocity field.

2. Change of vorticity strength with fixed
induced-velocity matrices.

3. Change of induced-velocity mdtrice. with "___7
fixed vorticity strengths.

4. Effect of vertical translation on vortex \J /
velocity and on the constant pressure boundary
condition.

The local iterative algorithm accounts only for ----
effect 1, while the global algorithm below

accounts for effects 1, 2, and 4. Experience Fig. 3 Free-surface shapes for K = 41.15.
indicates that effect 3 may be ignored safely First-order solution, no flat. Ax 1.
if surface slopes are as low is those occurring
in surface wave problems.

When the free-surface shape is altered, first- ,
order changes in the velocity components (3) and
(4) are

Ni LAijavj - NVi

+ (eVi (8)

6VTi • E Bijllj  + V Ni 1  + --, (VvTi) ii (9)
A s gFig. i Free surface shapes for K- -1,4.

A simle geomtric calculation First-order solution, no flat. Ax - 1.

6i - Ejj (0) One very gratifying result is evident from
these figures, namely that the present ca 'la-

expresses the changes in vertical displacement tions yield waves. This was not at all oL ,us
in terms of slope angle changes. The conditions a priori. A monotonic shape might have been
to be satisfied are obtained. Howover, the one constantly occurring

result in applying the present method Is that It
6VN * -VNI (11) always gives waves, even In divergent cases.

Moreover. the waves have approximately the cor-
6VTI " 6Vi(ji) . [Vi(ji)]vyi (12) rect wave lengths.

hiile the results of Figures 3 and 4 are not

UNing (8), (9) and (10) in (11) and (12) gives absurd, they are clearly unacceptable as results

a set of linear equations for do and I, , of a method of quantitative p diction. However,

the latter of which yields a new ree-surfaie attempts to improve the resa ts oy decreasing

shape v. Thus, the flow calculation can be the point spacing Ax lead to divergence. In

repeated. fact, any change In Ax leads to divergence.
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The iterations only converge for Ax = 1, a solution is sensitive to the magnitude of the
clearly unacceptable situation that requires a numerical variables. Figure 7 shows free-surface
new approach. shapes calculated by the present method for three

values of the downstream termination point xN.
Representation of the Free Surface All three calculated shaoes have the same wave

with an Initial Flat length (which is somywhat in error) and the same
locations of peaks and zeros. However, the wave

To render the calculation more stable, the height is evidently dependent on the downstream
free surface is preceeded by an initial "flat" termination point.
that is constrained to lie along tht x-axis.
Specifically, the portion of the free surface
from xM to xO (Figure 2) is required to lie I
along y - 0. and the tangential velocity is , '

required to equal the freestream velocity U. ,
The remainder of the free surface from x0  to
XN is treated as described above. On x,, x
•xo both source density and vorticity aVe
used to handle the two boundary conditions, and
the above iterative equations are modified in
that region to account for two singularity
changes with no change of shape. It was found ' ,.,.
by numerical experiment that as long as the flat -- - ,, :: .,:, ,
has a certain minimum length necessary to ensure ... . Q,,,. , ,,,.
convergence, further increase in the length of
the flat has virtually no effect oi the results. Fig. 7 Free surface shapes tr K - +1.15.
Computed results are presented for flats of suf- First-order soluti,;n. a4 - 1. Effect
ficient length without specifically listing that of downstream termination.
length. Usually xM --20 is sufficient. More-
over, unless otherwise stated the end of the An effort to increase the accuracy of the
flat x0  is at -10. calculated solution by reducing the point spac-

ing to Ax - 0.5 is shown in Figure 8. The
Calculated results for the two vortex strengths wave height is significantly overpreelcted for

considered are shown in Figures 5 and 6 for a the case with the flat extending to x -10.
very short representation of the free surface and an erroneous "bump" at negative values of
(termination on the figure) and a unit point x is evident. Moving the flat termination to
spacing. The wave heights agree rather well x0 - -5 removes the bump and reduces the wave

height, but the wave height is still incorrect
and the wave length is still in error,

/ \

Fiq. 5 Free surface shapes for K • +1.15.
First-order solution. Ax - 1. - ,

Fig. 8 Free-surface shapes for K . +1.15.
First-order solution. Ax * 0.5.
Effect of flat termination.

A Nonnigueness Due to NumericaL Inalc racy

\ , /\\ / It turns out that the above-described sensi-
tivity of the results to the numrical parameters
is due to a nonuniqueness arising from Insuffici-

-.. ... ,,. . . ant numerical precision in the first-order formu-
lation of the surface-singularity technique.
This can be illustrated by a saI*le calculation.

Fig. 6 Free surfve shapes for K * -1.4. An original shape was selected that is flat from
First-order solution. ux 1 1. x . -30 to x - -10 and that has a wave-like

shape for x -10. It Is sho" as a nolad curve
with those of reference 2, but the wave lengths in Figura 9. Flow about this shape in the
are somewhat too lonq. Unfortunately, this oresence of a uniform onset flow parallel to the

Mi



*flICACMLtM. i kMII

...- t wi , . m - w11 f• bMTIMU Sf, n M,,
....... , n U,-, , , Fig. 10 Free-surface shapes for K S +1.15.

Fig. 9 Nonuniqueness study Higher-order solution. AX 1.

x-axis was calculated usin a surface source
distribution and a point spacing Ax - 1. The
resulting surface velocity distribution was input ,,,
into a program using surface vorticitv that was
required to reproduce the surface velocity. If .
the problem had a unique solution. the resulting In v "
normal velocity distribution should be vanish-
ingly small. Instead it was a periodic function
with maximum value equal to 5% of freestream
velocity. When the shape was allowed to alter
itself iteratively to produce both the prescribed ,- n ,,, , ,,,
tangential velocity and zero nral velocity, ..... " UO *,S o.
shapes like those shown in Figc-e 9 were obtained -- ,LCMC,''U. ,
for different downstream terminitions. These
differ from the original curve ty amounts similar Fig. 11 Free-surface shapes for K = -1.4.
to those of the preceeding figuts. it is not a Higher-order solution. Ax - 1.
question of the finite length of the shape, solutions obtained for the same three locations
because termination at x , 50 s!ve essentially of downstream termination that are shown in
the sare results as that for x • 50 (Figure 9). Figure 7. Figure 11 shows two barely distin-

guishable results obtained for two downstreamIf the above procedure is carried cut with the terminations. Thus the higher-order iterative
same point spacing using the higher-order version procedure is apparently an accurate reliable
of the surface singularity technique (references method of obtaining nonlinear free-surface
I and 4). the magnitude of the normal velocity shapes that had previously been obtained only
that expresses the degree of nonuniqueness is by a much more time-consuming finite-difference
reduced from 5% of freestream velocity to 0.5%. technique. No further refinement seems to be
Thus, with sone suitable upstream point fixed, required at least for the two vortex strengths
the iterated shape would be only about a tenth shown, although some additional testing with
as far from the original shape as the iterated different spacing ux is planned. Stronger
shapes of Figure 9. This would be quite accept- vortices having greater wave heights remain to
able accuracy, and it implies that use of the be investigated (see below).
high,--order version Is the key to quantitative
accuracy of the present method. This appears Summary of Iterative Algorithmsto be the case.--

For the two vortex strengths considered above
Higher-Order Procedure the results of tests of the iterative algorithmsmay be sunmaized as follows:

When the higher-order surface singularity
procedure of reference 4 is incorporated Into I. Local alqorithms - always divergent,
the above-described global iteration procedure
with initial flat, the result is a method that 2. Global algorithms, no flat - divergent
oppears to be quite successful in predicting except for Ax - 1.
free-surface shapes. Moreover, it appears to
be stable with respect to the numerical param- 3. Global ealorthn with flat convergent
eters. Calculated results for vortex strengths but results sns itive to numrical parameters.
of +1.15 and -1.4 are shown in Figures 10 and
11, respectively. rhe agree:Bent of the wave 4. Higher-order globel algorithm with flat -
shapes obtained by the present method with always converqent. Results insensitive to numer-those from reference ;', is essentially exact ical parameters.
when due account is taken of the fact that the
shapes from reference 2 have been calculated irectionsAfFuture Work
for a finite depth by a numerical procedure.
The curve of the present method in Figure 10 One modification will be made to the higher-
represents three graphically indistinguishable order procedure. It can be noticed in Figures
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I0 and 11 that the calculated curves have errone- The most important area of future effort is
ous bumps or bulges immediately downstream of the calculation of free surfaces having larger
x = -10, the end of the flat. These are due to wave heights. Recently data were obtained from
the fact that the numerical differentiation pro- Dr. von Kerczek that define the free-surface
cedures in the higher-order method are somewhat shapes obtained for a large nuner of vortex
unstable at the junction of the flat and the strengths as reported (but not presented) in
curved portion of the free surface. A straight- reference 3. Cases have been successfully
forward modification should remove the instabil- computed using the present method for vortex
ity and smooth the bulges. Evidently, this flaw strengths of +1.7 and -2.3 for which the wave
in the method does not have a large effect on the heights are approximately 50% larger tha those
calculated free surface for these vortex strengths, for +1.15 and -1.4. The calculated free-surface
but it might at larger strengths. shapes are only slightly less accurate and

slightly more sensitive to downstream termina-
Some improvement of the iteration procedure tion than the cases shown in Figures 10 and 11.

seerf devirable and quite possible. FPIiro 12 Time did rc* ;'ri,2t n.l1usion of graphs of Lhese
shuws Oev free surface shape computed by the results in the present paper. A case has been
present method in the first iteratimn and in the attempted fur K - +2.7 for which the wave
final sixth iteration for which the normal veloc- heights are twice as high as the above and of
ity is everywhere less than 0.1% of freestream the size that experimental results indicate are

on the verge of breaking. This case did not
converge, and it is planned to devote consider-
able effort to obtaining convergence in cases
of large wave height.
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THE WAVE RESISTANCE FOR FLOW PROBLEMS WITH A FREE SURFACE

C. Korving and A. J. Hermans
Delft University of Technology
Department of Mathematics

The Netherlands

Abstract condition is again satisfied if the calculation
is continued by solving the Neumann problem for

A numerical procedure is presented for solving the new fluid domain etc., but generally the
free surface flow problems. The boundary value correct solution is not obtained. This" is
problem in terms of Laplace's equation subject illustrated in the example of a symmetrical
to non-linear free-surface boonrlary conditions bump on the bottom of a running stream.
is considered to be composed of two fundamental Assuming undisturbed flow upstream of the bump
subproblems. the above-mentioned procedure leads to a
The first problem is defined on a fluid domain solution which reproduces an unchanged symmetry
with a fixed boundary and is known as the Neumann of the free surface with respect to the vertical
problem whereas the second problem consists of axis through the top of the bump. In fect, a
the determination of an improved position of singularity is creatcl it the free surface. As
this boundary. The solution is obteined by a a result, no waves are found downstream of the
process of successive iteration on both sub- bump. The example demonstrates that the proce-
problems. In view of the intended extension to dure must be extended in order to satisfy the
the three-dimensional case, the Neumann problem radiation condition downstream of the obstruc-
is solved by a procelure using finite elements tion. This paper contains an explanation of
in a dimension lowered by one as a result of this extension in the two-dimensional
an approximation by splines. representation.
Up to nov the correction of the free surface The Neumann problem is solved by a procedure
has been developed in a two-dimensional version. which is based on an approximation with splines
The procedure was applied to the two-dimensional , along one coordinate. This coordinate is
steady state problem of a running strew with eliminated by a collocation method which is
a flat bottom. Then, somewhere upstream a combined with a transformation of the system
disturbance of the free surface is introdaced of differential equations into a system of
in order to calcalate the effect in downstream dominant diagonal terms. Each equation,
direction. Besides this, numerical results were described in a lower dimension ie individually
obtained for a running stroam, upstream undis- solved by a Galerkin finite element method, this
turbed, with a bump on the botts. operation being part of a process of successive

iteration on the complete set of equations, The
I. Introduction procedure was developed for three-dimensional

flows *. but in view of the low computation
Contrary to methods using singularities * at time the method is successfully used in the

the boundary of the flow region, the solution two-dimensional version for the problems in
of the problem of determining the wave resis- consideration.
tance of a moving obstacle partially immersed
in the fluid in based on a direct numerical II. Mathematical Formulation
method. The advantage of this approach arises
when the method is extended to cover the case
where the non-linear effects resulting from the A y
dynamic free-surface bundary condition is taken
into account and atteaps are made to solve the
three-dimensional problem. The direct approach
appears from the simplicity of the procedure
to solve basically the Neumann problem on the 0
one hand, and the problem of iproving the u
free-surface elevation on the other hand. The
difficulty, however,is hether convergence can
be achieved when both subprotleu are solved in
an Iterative way. Starting to solve the Neumann
problem which is formulated on a fluid domsn
of a known shape, it is evident that the results We consider steady uniform flow past a fixed
can be used to calculate a new free-surface two-dimensional buip on the bottom. The .undie-
elevation from the dynamic free-surface boun- turbed free surface upstream of the bump Is at
dary condition. The kinematic free-surface

Srot , 2, 3, 4, 5 ref. 7.8



a constant value h. above the bottom. The flow free nurface y = ri (x). The x
3 
coordinate

is treated as steady and irrotational. It is coincides with the vertical coordinate y
assumed that the fluid is inviscid, incompres- and xI is the ccordinate perpendicular to both
bible and without surface tension. This x

2 
and x

. 
(Fig. 3.1).

two-dimensional steady-state potential flow yX
problem is formulated in terms of a velocity
potential s(xy) which satisfies Laplace's
equation

Y(2.1) -- 2

everywhere in the fluid domain. The potential K 0

must also satisfy the following boundary conti- - *

tiono: no
1) on the unknown free surface y = n(x)

a) the kinematic conuitior is:

Fig. 3.1
- 4 + x = 0 (2.2a)

y x n
The known free sjrface elevation y = i 0

b) the dynamic condition corresponds to x - 0 and toe bottom y .-E(X)
corresponds to x

3 
= -I. Using the metric tensor

1 2 1 2 =quantities g.., Laplace's equation is described_{x2 (1 2 (2. :b) by the equatign:

a- (ij 2-4 ) = 0 (3.1)
where g is the acceleration of gravity an' x 3x
U is the undisturbed uniform velocity in

upstream direction. where G

2) Far upstream the flow is assumed to be and
uniform with no waves: = det igi

U 0 (,.3)

an - iU (note: g is the acceleration of gravity, to be
distinguished from )

3) Far downstream at a station where the mean
value h of the free surface above botton The dynamic free surface condition (2.2b)V h d
is originally unknown, the flow is also changes into:
assumed to be uniform, hence

at hI [
0 0 

2(O ,3 as as + 33( 3'
u_ (-(A _ , )

an h 'h 
U 
0 ax' ax ax

3  
ax

3

41 The bottom condition at depth X - Il) g n U 0

SInstead y - n*(x) we look for a new positionan of th free surface determined by

y - r(x) , (x) X(a)

Ill. Comrutation of the free-surface elevation
or

An impurtant part in the solution procelure ar x Z(x
consists of a correction of the 1osition of the
free surface with respect to the fix d pcesition The transformation to the new variable
of this curve during the preceding calculation, using thn reiations
Consequently the Neumann problem being solved
with a free-surface elevation y - no the '1 3 dO
dynamic free-surface condition is generally G d

not satisfied. tlines the pressure distribution, d ii dx

tien involved at the free surface can't lead
to convergence of the perturbation method, or . 22 *r d
outlined below, first t'e value of no has to dx 2 3 dx
be replaced by th, corrected value nto' "

It is calculated from the dynamie free-surface
condition after te substitttien of tile surface (n can be approxiM or r - r 0 * ) 

)

velocities following from tire nolution of te leads to the kinematic free-surfat condition

Neumann problem.
We consider the problem iii a curvilinear systm
of coordinates where x' is defined as a
coordinat, which follows the bottom and the
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33 at 
2
3a d 22 at 23 3 - (x

2 )  
0

3x
3  

ax
2  

dx
2  

3 ax 3 (x
2
)
2  

(ax3)

(3.2b) is solved by the method of separation of the
varibles:

Now, the potential $ is considered to be Then, we substitute the s,rieu
composed of a contribution of the potential
determined by the solution of thi preceding 3 2 3
Neumann problem and a perturbation potential * xx,x

3
) = { f.)x) him) (3.5)

with the assumed property:

and we arrive at the ordinary differential
cc __ 21 so 1 equations2 cx ' x3

ax 3m 3s

.' 2 2
Besides this, the derivative of with respect 2 a. 8(x )f.i 0
to x2 is assumed to be much smaller than 1. (dx) 

2 
2

The new variables $ -0 and ( = n-no and 2
are substituted into the free-surface d 2h.
boundary conditions (3.2), which are linearized L- 2 h 0d3)2 - isi
under above assumptions. dx

As a result, we have

If the fluid domain is divided into intervals

g - (U3 - q') - g no of small Ax
2 

the solution of' above equations
ax22 in each interval can be represented in the

3a) form :
and i Ai i 

x
x2and (.b f A. ConB x + Bi sin ai x (3.6)

G dx3 )-t-33 G4 ?J- cosh a.(m
3
*,(.)

and h. = a ( 
(3.7)

wheru q . I _ 3cosh ai

wer a
x

- x -0 2
2 inwhere 8 is equal to the mean value of 0 in

an interval ix
2 ,

Furthermore, the boundary condition at the
The potential 4 in Laplace's equation (3.1) can bottom xj - -1
be replace

0 
by the perturbation potential *.

In order to produce an equation which can be
treated by the method of separation of the 30 or - is atisfied,
variables the quantity X is introduced accordirg 3 ax3

to the relations;
Now, we approximate the func-ion ,xs) by the

_ 22 It ,, 23 4 enpresnion

3X 2 3m m + a. cod a.$ 0 X' , s~a. 5i

and

o(m ) 3 1 _ ' + :3 #_3
)x

3  
3x 3x

3  
which is also valid in a small interval Ax

The constant a is added to the expression in
'Ihis transformation turns out to be an ordcr to elIminate the imaginary parts of the
tpproximation because the necessary condition roots q.. These roots need not to be considered

because their exponenLial contribution to the
free surface elevation 'orrespondo to nearly

- )~ (-) (1.) a constant il a small interval IAx.
ax2 3 3 -I The substitution of the expressiona (3A. (1.),

(3.'() and (1.8) into the free surface conditioni
(i.) leads to equations containing terms of

can partially be fulfilled f.i. for one three interindependent types. These terms are
position 

3 
- const Ant or for an averaged value the constants (the mtric tensor quartities,

about x
3
. The best results can be axpected if the velocity q ete. are avesged in an interval,

condition f3.4) ii prescribed at the free the cosine and sin terms.
surface x3 . 0. rom this a relation for O(x

)  
Comparing the coefficients of similar indepen-

can be derived. dent terms we obtain:
Before doing tbis, the partial differentiil 1
-.u.tios (3.) espressed in the form (,.,,,

33 ac c 0
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wher, qC is a corrected value for q in rela.- The dispersion relation (3.10) is reduced to:

tion to the change in the mean level of the
free surface. 2

0 g - s tanh a H - 0

2) a local dispersion relation for ai
If 0 1 one real root a is of significance

'3 i (3.10) 0°
2 t in the solution for t. So, starting upstream
q tanh ai  where f i. a free-surface elevation occurs

of the form:

2 g > i we find one real root from thisq 2(0) 
- c, A 0

r.clation.
The value of 0 being known, the solution can solution for a x +
be found in this step 9f the iteration process. we find the )=aecos

Starting upstream at x4 - 0 where Z and a sin a x) in the first apprcximation.
- are known the value of Z coin be computed From (3.9) follows a0 . 0 and the initial
dx 2 conditions give:

in the firnt interval by means of the + a c and a = 0
expression (3.9). This expression gives so c an 2
while the initial conditions give a. and b.
Then, the values of and 1C are calculated As a result, we get

dx
2

at the eid of the interval. They are the initial F = c cos a x (3.12)

values for the next interval and the calcula- Continuing the process we find that above
tion of C can be started again. This process result represents the solution in the first
is sequentially repeated until the end of the order approximation for the complete free

region in reached, surface. Subsequently, the Neuman problem is
As mentioned earlier, the value of 0 in an

interval is calculated from expression (3.4). solved for the new fluid domain bounded by a
Substitution of the approximated solution (3.5) free surface nl which is equal to above value C.

With respect tR the velocity field obtained
combined with (3.6) and (3.7) produces the this value is replaced by a value n* in
relationt agreement with the dynamical free surface

(Pb; + Qa (cos ail x. (psi - Qbi)sin a.ox" condition. The procedure for correcting the
1 1 free surface can be started again and this

where process is repeated until the free surface

Po23 1 aelevation does not change in a complete loop
+ _ 0t2nt + of the iteration.3 5 ax The difference between n0 and no at the end of

2 023 the calculation indicates the error as a result

i 0of the numerical approximation.

and If above procedure is applied to the example
401, + an (033 2 2 of the symmetrical bump the symmetry of the

ax 2 D i
a h  

i a G problem disappears and waves come into existence
downstream of the bump. The emoothi.lg effect

The value or 0 is calculated from the require- of the method on the course of the free surface
ment talt the rorm P2 + Qcal e fr, minimum suppresses the singularity which arises if the
In the cae when 0

23 
f 0 and G" constnt -imave waking part of the procedure is omitted.

which occurs at the firs p and - and Q can Naturally, the character of the solution is
be simplified to: completely different if no roots a. 0 0 are

found from relation (3.10). In thelexample of

P 2 d 22 the ftat bottom this is the case when
P-2tan .• , I. The solution of the problem is then

dx 20

33 2 ohtsined if the expression (3.8) is replaced
a tenh ai (O - *Go" ) by a polynomial approximation of the second

degree in x- -

and the minimm is arrived at so + sO 2 * a ? .... (
3 (3.1) ) (3.13)

((22 One constant is determine, "roa the dynamic free
surface condition and similarly to above

For demonstration, the example is chosen f procedur, the other two constants follow from

a uniform flow of vcl;ocity UO along a flat the initiml conditions in the considered

bottom, being at distance H below the free interval.
ourface.
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IV. The solution procedure concerning x 3 . and x 3 .x,1 resulting in
th Nemnnpole

the euman orblempolynomials of the third degree.

'She approximation (4.1) is used to produce a
Y 

3  
set of ordinary differential equations,

x t 2 following from the requirement that Laplace's
an X Xerat ion isor.ly satinfied on the curves

x Arrang ig this system, the result of
x

3
.o J

4 the collo'eation method is represented in a set

3 CU of n ordinary differential equations of the
x=- 0 form:

Fig. 4.1 d (G 2 d
2.(( 2i ' + = 0 (4.2)

A part of the procedure is represented by the dx' d

solution cf a Neumann problem in terms of
Laplace's equation subject to boundary whr + 3 i * ()
conditions of given normal derivatives (fig.4.1) whr x -x
Because of the two-dimenionl character of
the problem the 8oluti- can be obtained by a
direct numerical method of integration. Since
the solution of this problem, is a part of an
iteration process in order to solve the -2 -I 1 1
complete problem, the computer tine required 1I 2 ij,.: I 7,
.111 be reluced an much as possible. This in AJ Ij n '
achieved by adopting the following approach. 1'1 1

1. 1 n

~--. 3.3 combined with n-2 relations, actually result-
-- n ing from the requirement of the continuity

-~ ~ - _ 3 of the second derivat~ve with respect to x
3

(J-------- -x j+1 at the intercurves; a
3 

= X3 (jC,(I)n-I I.
-- ------ j - 3x.

i ~Next, the complete met of equations in, the Cm
- -unknownis nl is olbtzifed if the boundary

condition at the bottom and the free surface
Fig. 4,2 are added to the system.

A regular set of curves of constant x
3

, the Considering che system of equations (4.2) it
oan be rioted that the interdependency of thesame system of coorduiiates is used a in chapter variousa e .' ior 4 ; rodusrd by the first

J. is loesano III the dliisans Ltween tine bottom two terms. The elgen functions being determined
and the free surface., the syotem of equations our be transformedOr. theme curves x3 3 1(0n) (Fig .4.C)inoastedmnnterswh

2nt ayse containingdoiatersw h
the functions *i(x ) (p0,1I) are defined reopect to one dependent variable is each of

rereeti, tep teia (p0 an is theaiustions. Each equation can then he solvsd
derivative with respect to K3 (p-1). idvdal ymaso ilri lmn
The potential # at an arbitrary point in method, thin, operation being part of a process
asle..lomsin ij ) lying between the curves X3 of succrniie iteration. It turns out to be a
and x3n * + swndt et"veil quicker procedure of' solution, in comparisoti

inwse x iheefc otoiin thr deie to qtwo dimesional finite element method.

quanti tis * at their boundaries. It is V. Numerical results

expressed by In this paper some results of calculations

(J) 2X3 1 Q) 3 iare presroted for two different exasaplee. Firat,
(J '5 3 ~(1 +.)ji ithe nu~merical metho)d wast rheciod intthec case

I 
of runn trew 

(su 
a ltb ok.0 local disturbance at the free surface

represented by some de-iation with retipect to

3 ~ (. an originally undisturbed level. in introduced
to study its effect in downstreams directio~n.
The results are shown in rig. 5.1 indicating

The coefficients of the isterpolation polynomia.le thre difference between the simple harmonic
I andi is are clculatedl fromi the condition solution I 3.2 in the first order approxima-
t~ th *A&pproxisvmted potential and its tion and the son-linem:- solution B after three
Aerivative with respect to g

3 
corres~xind complete loops of the iterstion (Fig. 5,1).

exactlyv to the qJuantitieaas at. the boundaries

20



-A -0.02 B - -~- ' - -

-+'t . ... - -- +, ,,.

0j 0=

V 0.33-L I_ ii _. 0.2

i ig. 5.2
Fig. 5.1

The method turns out to be stable producing .
results characterised by an unchangable
difference between the free surface elevation

and its corrected c alue n during the last" - .

loop of the iteration. The accuracy of the --- - -

results expressed by the above mentioned --

difference is still not sufficient to evaluate o0.
the results on its quaititive aspects. Then,
the number of subdomains n-I in the solution 1.75
of the Neumann problem has to be increased.
The computations performed with n=3 involve
too large errors, which can be reduced as soon I Fig. 5.3
as the computer program is extended to cover
the case of a variable n.
Tue calculations were carried nut on an V!. Conclusions
IBM 3L0/65. The computation time require!
amounted to 12 seconds. The number of intervals A stable met.d was developed for predicting
in x

2 
or x direction war 50 and the Neumann the wave pattern downstream of an obstruction

problem was solved for IA3 using 50 elements in a running stream. In this respect the
on one curve u-- is constanT. calculations were only performed ror an
A special procedure has been incorporated to obstruction at the bottom, but the method
take account of the shift the woxve undergoes presented lays the foundation of the solution
during one loop of the iteration, for the problem to find the wave resistance
Effectively the free surface in an interval for obstructiont located at the free srface.
is iteratively determined from data blonging
to n cumparaible position in the period of the The most importwt contribution to the sold-
preceding wave. Since unilorm flow is imposed tion is produced by the addition of the second
at the vertical boundaries of the fluid domain correction of the free surface elevation to
the wavo is somewhat deformed In the neighbour- the iteration process. The first correction
hood of L ,: locations. Since the exanple intended to satisfy the dynamic free surface
serves for a qualititlvi atadlysiu of the method condition is not accurate enough to prevent,
To. attemps were iaide to ciimit.ite these effect:a. the penetration of aiegularitiei in the
The middle of the fluid region provides good solution. It is demonstratod for the example
results indicated by the conformity with a of is running stream with a symetrical bump
:itokes wave pattern. on the bottom where a singularity is created

in this way and no aves are found in donrstream
The method is lso applied to the problem direction. Oil the contrary, th second correction
a running stream wion in oaaumed to be jiocat . .n rurve, thA fuanction value and its

undisturbed upstream of a sio t bump or, the' derjvatives beig continuous up to and ici...
tu~tom, 'The results are illustrated fo" sul'- order two, wtich is sufficient to preserve the
critieal flow in Fig, ).2 and for supererit joal accuracy of this approximatLon durin the
flow in Fig. 5.3. The latter agree with iteretion. The stability of the sethod, however,
analytical results as far as the $1 niitn f is guaranteed if the first correction pr +cedes
the fr surface at the end lieation downstream the second te. The method was applied to some
is conceised. A amK!I 4hrinkige of the mosti examples mainly intended to investigate the
leve is 'borrved in% the cse o the suticritical qualititive aspects. It may be concluded that the
flow. file calculations were done for P, inter calculatins produce reliable results
vala, and I loops were necesary to find the. being of interest to cmpare with experimental
solution. Dfiubliig of the nerter of intervals results, To this purpose the accuracy has to be
did not afect the -eaults, but the same increased expec ially a tar as the solution of
remarks as for alie example cani Oe made it the Neumss problem I* C,idfrafid. Therfurs,
relati .o lo the accuiracV. the eomputer program must be adjusted to operate

with a variable nuaber of tubdomains. In addition
the objective in future is t0 chock the method
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on the problem of a cylinder partially
im.ersed in the fluid. It should be emphasized
that the considerations are presented in order
to extend to the three-dimensional case.
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NONLINEAR FREE-SURFACE EFFECTS-
THE DEPENDENCE ON FROUDE NUMBER

C. von Kercuats and Nile Salvesen
David W. Taylor Naval Ship Research and Development Center

F Betheeda, Maryland 20064

ABSTRACT flow past a fixed pressure distribution on a free Surface. the
numerical method that we use has heen described in Refer-

Nusineical solilsIouIs Of tIre nonlris-ar tproblem of twro- exce IlIlI. We used the method previously to investigate
dinrensional f-inite-depth piotential flow past a fined pressure the1 nonlinear , -surface effects of a submerged vortex at a
distribuion on a free surface are given. lice niinerical fixed Fronde number 121, a vuhmerged cylinder (3!, and
imertiod approsimais.s ihe enact piroblern by finite differences thre subtcritical shallow-water flow past ax obstruction 141.
thle nxrverical sOiriitions presen ted hcrc .re- for a rangef sif We have fo ad in the studies 1 2 -41 that certain nunlinear
values of the Fronde number based on the length character- features of the flow field which can he calculate,] accurately
izitug the free-surface pressure divtiiutin. Thre numrerical using perturbattioi methoids are also predicted accurately by
solutions ate ctompared ixs far ats possible with first-., seconud-, sour nun rical nmethod. For example, in numerorus enxpert-
and tlrird-order pertiebatron-t heory solutions andI it is ftiris mnrcni our mnethord ( see especially 1411 has acurately
that the second-order perturbation theory can give accurat, predi *ed rthe influence of the fre<,urface nonlineariltes ron
solutions of thns problemi for the iange cif Friutde tnnmbers the wave length of' free waves. Fuirthermiore, in finire-depth
iivostigated. I lie details itt the free-surface deforination wa'e r there is at lowering of the mean level tif the free
s:-aused by lte suface-pressure distribution arc- presen ted ill sin .ace in the don nsiearn wave field ischind an obstacle
graphs. these graphs illustrate bele efcts Of rthe nonirvneat- sce 15(1 . Ibis nonlinear effect depends only sin the wave
it c-s oft the piuohicr on the description osf the was c-making _sistance ruf Ire obstacle, It has been fiound in 141 that
action ruf tIIre surfact-pressure ilisirihuirion. this characteristic louwering rif the mean level cif the free

viirface is Irrediclid well by sut numerical me trod It is for
NOMENCLATURE these arid sinmilar reasons; that we have conic tio believe that

fist a 5eitai range of ptaineters. orir nurrencal method
C ftpg 21,1- wave-resistance coefficient preiticts rthe wave resistance and free-surface elevation% tin the

C iei-ler ltedphwv eitaiecw cen vicinity of at boidy that appear to be accurate tir within at
linir heoy inie-dpthwae tm~tncecoincent last 2 Our 3 percent sif the exact silutitsi. Accordingly.- tire

linear-theory irnite-deprlr wave-resistice ctot*ificie- t numnerical riretlios shoruld Ihe rused lii obtain as much iurfsr-
C 10 IP gIlit Ik re OI II i InIiatiosuis pocssible abouts horw waves are gexerated by
C~~~~~~~~~~~~ Ilippglresteclfcitobtacles Ii a twur-dimrensiounal iram and the effectiveness,

It water deptht ::I "prturbaltiOn technisises in sinning such problems. It is
vfj Frucnumertotted that tici inflorirarron cart yield riportant clues (n

* I) f~T Frirideirisribe Insw tr litnrle lie inure itrtrrtait Instl difficult three-
I. effective length (if press/ire itrtnitioti letI- r It Ii dtteui uptltit-wave probnlemt althoughr tire twit-diniuSiotrat

Ylitni (7) ritFigure I -i frbcniictv il ltiu paper nay also be if some

ft dirrierusori wave resuxtar~e tier runt xIdti taictical , uir la[ice,

Ii velocity sif ireitr dirtaricc or unii:ni - trernrI here are twor train I ronie rititrr assotiated wins the
velocity far iitntrearrr twcr-direistoial wave-resistance iribterir. (lie uif these

K gas atrural seleratrisi irruie nurmbe-rs is based sir tire sdepth ) irf Ilite st reami and
It itetired as IN VdfjT where It is thre itreri of tire uicotming

It nieth sius streari [t xlsiiem tot the wave-geonerating Obstracle and S is
V- lengthsI stetited Ini tigrire I arid in, I 'ultonrr 17; the acc:elerrtirr cit gravity. I Ie eflects onsirte flow field of

r ie varsationi sif this deirIt(ide uiber Wich were
p, irliirinrl sAlte oft ressure dIr ait rut pvi esarrird ti Reference J41. are tnot or prirary trite .r rIn
I',, xi lice-sirtac presosre drstrrtLuitsnrr delifrid In tsqlrtsrt iris traller. thoiugh they sti r16y air rrrrtrcrrtrtie here Oir

171 And sir Figure I ltunir inrrst niow is t, esiire tire rnnlirear free-surtace
ettects at ltre levtbl-Frsriiie niuirber 1F 1J/,/j it varied.

it fivee-uraeled, rn c lire lengith I It the charactenstic length rut zie wi.e-

A wave leert~ gicerratitg oiixtac. We ire interested in using tr results
fist the twtr-slirrntrnat ierssac prirblen i tspeculate

A5 s~ lunrar-trety infirrite-slith wave length Abovut tlie strili-wave prirbtc ii It tenriet) Irs 11141 rthe twor-

i tiass ste. ly if wittr slonettitrrra tiuacte that I. clorsest in t-one see tt a shvip
is lte free-%tiiace pressure thsttbxlitn wrirl clraracterssts

l stream tsninn lerrath I auit pressure armiplitade p, Fintrimne, tire wave-

ruHaing ettectsi titairrira hulls anti air- xiihionr veiiles sti
tnfudsioiir; be mod~selest by a tr murtace pirssre dtstribivn. t he

stulni it the I wrunitnensnl free-suirtAce pressure dfiti-
In thus prapwr wie presert t iunrr at s-loi .I-- tire Ilticn tirilerr Inray trssit i a rarty acxlate descnipiri

rtnrtrrvea i role iuf r wv-drrnsensrtni rinite-depthr posterntial sI the li-s-al Peesrurface disturbance hitvrsr tire very thin
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i establishted 'p alt interpolation iolyomial ii foirth where thle compttlex functtiolt I t is definied iii terms of thre
degree. tite interpolation polynomial is deterined he lte extponentiail integr1al J1
height slope. atid curvature ol thle free suirfaice at i* + I aoil
lte height and slope at i' + I + VI. Ible height, slope. maid
curvature of 71 at i* + I is determinevd appiroxiima~tely by ltqt = -4 /c do . 1 !5)
f~inite ditferences using t1i. - 1. ?, and 71, + 1. Simoilarly. -f i

the height and silope at i* + I + Q is determined from
si + Q attd tti. + + . Ilte first-aind Iiigter-nrder tree-surface elexa tiot are

Ivt Sleti0 lis now retpeated. pol I Of &'l Illt )

lvi) Each term of Equation (31 is recoittuted atit
11'(3)1, istot satisfied . i* to sotne sciedactiracy. lien aid
tile procedure retulrns to step tint. If' 43) is satisfied at i
to ttte specified iccuracy, thentitle proceditre cutinnes it) 00i1 VWg,4n ite ) 1 + .09 2I
thle next slen. 77( ,ii .. (8

imu) i' t I replaces i* hot is Called I* tie.. i* + I - i. where glllx ) are futtcttns ot t[le !ower-order ttliotis
If i* is near (lie end oif the field Wi = N - SI. the prioblemiic I o I~ lkiilioits " 1 ai jld 2. 2)
teriniates, If' i is tot near the endi iif [ili I eld. tu
procediire relti-rii to step IVit. I lie soluitionv I 141 aire hiouinted wnly if cacti function

fIl 5M is iiiiioscillitory for large tegative values of x. I i
tlit wave resistaince oft tile suirface pressure distribiloin refnires that (lte tiertiirhatioiis of tie iiikniiwn unlfrin-

ix giver tbp sOcail teliicilp are given tip

IR=- i~xl dx Il

Ihe initIcg ral In ilt91 is ove r ttie lenItgIt (IIf lie p1ressurI e d is tni-I
luion atid is evailiiated tos~rg IratWieeo itutadra tiires. thle 10) V I- 11
f'ree-suruace slope I dhtids I is coimputeut using lir'it-iirder 1I2

cetitral differeiice,.
where a, is the first-order Par-dnwnstrean waxe amplitude,

Perturbation Method This implies that the wave lenigth, according to the third-
order theory, is

It is Issumei thai~t thlt stirLac liressure idistibution is a
weak distitrber vii that tile pertuirbiatiois ibtit le uiiifoirmi inf 'n

X= = Ut 1v ~ 1211
[liiw are eserywhiere stmail. and that ithe streami i-ell las ii
lite fiilloiwiiig exniion ini ternti t 1 perturbiation
tpaaneteri I tie wave letigthivne1 lip o tiil te liinear attd seetiiiild

lW order thieiory is X, =h, -I 2nfgttJ
2

.

I lie liiieiri/ed and Itwoi higher-order wave resistanes
where &iil is uit le"). Furthermnore, it is asst tied haltilev for the lurtsisrt distrthiiioit lane tet obtained tip
free-siurlace elevatiTit ls)I has tle ex panision numterical integratiotiti

r~~~~nI~n its 11i1 .qt 1. 2.l 
+n 

3 I)C
R,- pt i - dx,,,,r n1X.nl. 1224)

and tiat thle iuni~ifit-siteatn velsiuty U) is ati utukitowni ot 2i
tile irolilt with; tile expanisioit

A serious deficiencey of fte ciiitiari ins btweent the
2) i u + u(" + ka, ( 121 ntmerical and lie seed.A aiii tirdiurder perturbatioin-

theory results that we wilt make is that the formter is ror
wtiere YINl atid u~"l are borthi or lOlt" 'Ii nite-depth I) and the latter in (tie infinite depth., Ijilor-

Innately, the nuinerteal method is restricted Vi' streams
SubsOtiioti if expatnsionis 4 01114,ll, and I.4 inti whticlt are iuatceil deer that the biottir effects are

lie enact tree-surface coniditions ill and Of inres the tree- completely negligible, Also, we did nut have the capability
surtace conditions ito calculate tinite-depill second- and thirit-irder perturbation

thieoiry sidlion. Suich theori remain ito he deneloped and
0)- u~) (")~ 'in y - II, 11-l, 2.3.1... tIA wiould be of considerable tutrinse interest. but see (sir

instance 141 lour a start on this probletn. However, it is anl

where I'l - troWtlu and lik5  with t - 2 -. are! elenitarp mlatter to comtttnie tle fiutite-deptti linear-theory

Paintons iif tile hiiwerniriler snlions 0i - 1 anid I?(" -It wane-resistance LCIefticient l usingi thle fnrinula ItI

Ire lii. Irliaions .1A Sand L 174 and where Li wi is k
t
a,*'

tile wane oniie Four ittinite deptht thle soc ittn are giveit k,' * , # t
tby lie conilitiion integral 1171 1i. 60i1ith ' - __________ (1)

2p (I -ylitch
t k.0DI

s~n)! f ibfNh~l~eI 1iir - 1 ,n I 2. j .. 114f where

* Suikupt. are tused It, mniiate that a quantity it w'inci within ther order of tbn Wtlrblttui thily as isenst by inia index.
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Figure 3 - tInfinjite Depth Litrear-Theory Wave-Resistao r Coefficient
versus Froade Number, for Varrioins Pressure D~istributions

it I, () co k, x dx theory given by formuala (23) describes the maw , .ituren of

J 0 0 the waoo-niakiirg actiont orfle prcssurc distribuli'o defii
bry 7). 1 lie main foature oif lte wave-trrakirrg is [lhe gineri-

r t "fhow" rid slerrt' waver by the front arnd rear
It poI I in k,,x dx portiu I Ito i Ite pire djiribution and th cauncelation or~~,e p1in roforccinient of Itese waves detwuurig (tit '1c Pihasing

bll-e (trotietit. I le objectivre htere is to investigate in what

arrd,, li. roni oniive ootof ho ottaionwy lire noirlincarity of this problem mo'tifie% thne linear-
and ,, s t., ral osiive ootof he euaton hrry dcripeitiiti of the wuemaking actijolt of the pressure

I- P tu irh k,, 1) - 0. dist iruvion.

Rautts and Diseussitn In lte modelling tif atr-2uihior veiricleni'I it is
nrecessairy to tine a presutif distribution wilth a fairly siretr

We first examine the linear-thetury wane resistance oif ~ ltina ned.nii ndnrbto ribr!
free-%urface prressure dirlhutloni of tile turin liven by (7 Ftture 3. (One cart iofer this fuct from tire wave, resisturice

and shorwn it Figure 1. Figure 3 shws tihe infisite-de~pit eorn-. for ntr-cthiiort oehicie% givot in Reference IFl

*linear-thory wave-reisnance coetficienit (l. - vernns Froude: Ir-51 h aerxnate ovngvnitRtrt
number IF forr the four pressure disitrbtions shown iNns. 1 19(1 exhribit twit nearty equalliy large 1eaks at roughly lte

truh4) "1lepesrnitiutosI-4alhv ame vaittet of tire Frtrude nunmber IF as tire iwo licali
throuh I. tte rrestate iintrbutiors I4 asihoan n itrr rFigure 3. tlovever, for all ti lte resutits gtivn 

characteristic lengthr 1. srid corrrsprord to ratios of It, R,2  this paper itrer tinal Figure 3). pre!-stire distributiorn Nor.')
1 , 1/4, undt It. reirectinely: I P, and q, are defined in hshr xi ean esuedsrbtosNn r
Eqation (7) and in Figure I). We norte that thCgaexitpak ntrustfIere at'a -annot be resolved accurately with the finite-dfference

infinite number rr cach cornverging at F - 0, Int only the mneste sizs udintathe effercslo itnlin e arte soat
two outermolst peaks at shown) at values of Froude trurmber itistehoisnt nualve fo th puroslie. rf ota
F which correspond to casten is wihcO the riiltrns lintear-

thleory wanelength A,. - Is aprorimately a certain rmtitipleFte4shw thgrp ftitieriery av
of L. We recal Il t Xat .- - 'stl/6 t rtat it.d. 2rFl. Fgr hw h rp ftelna-wr ae

reqnitaric coefficient CI versus the Frxiide number 1: (atid
Mhe troughs at which F " 0.28 and (.40 correspornd to the wane length depth ratio. , -~ID) for presaure dixribtition

I!j, 2.0 gird 1.0, mapetively. I'he peaks at whnith No. 2 anti for tinite deptti D. lIt th0s graph. the depth irf
IF - 0i. 1. it 0. 57 corresponrd lto [./A ,,- 3/1 artd 112, the water in cinistarit arid erinua' tr rnhail tire pirciniire
respectively. It will be seen hiat the linear waoe-eemiltsrce distrilvitior lenthi 1. '1 he isoirrt in Figure 4 are the
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Figure 4 - Wasve-Resistance Coefcient versus Froude Figuire 5 - Wave.Resislanee C'oefficienl versus Froude
Nmlselr ft=. Various Values of Era sure Co(efficient Number for Varius Values of Plressu|re C oeffic'ient
C'p, Compared to Fuite-l)epth Liuear Theory Cp, Colnpared to Finite-D~epth Linear Iheosy

nmneric'al predic lions of thme wase're'sistanc:e :oe fic'ientt (' at It is ot essential prac.tcad interest to kno~w if" highe'r-
varimnis saloes of'ilt' pressure 'os'fticiett ('. We. nolte frott order pertnrhlation theory for the twrdimernsionat wave-
te A1, /D ahsc'issa that for lined nahmes of l and D, resislanc'e problem acco'ratety predicts the nonlinear

inceasing timt' F roude: nu11tibr F: results in an inceel it.i . l the variations of (' with ('p, as shown in Fignres 4 and 5, The
waiveleitgllh-dcitlt ratio. A'1 n/1). Ihits at lie tigger speeds reults resented iln Figne Ii gist' some indication that
F >1().401, the waveleugtlh-tteptlt ratio be'omes' lrge secont- andJ third-order pertarhalionl theory nay predict the

IA1l ,/D > 2.0t so rtat the higher-spe'ed ca ses :orres pond wave resistance coefficient C' fairly accerately. In t*his
to shallow wlier wilth respectl to the wavelength, ligate thle ratios taf thle wave-iesitance 'oef'ficients ('C1 ,

Ve~tls the ptrssnre coe,.ffic.ient r'p at nariotts values of
We findl in ]iiere 4 thaI the nonlinear effectls are Frotide number, F are compared. The open symhols denote

sil'stan halia at nost or" the Frotide numl,,r. thle enception the numeric'al tinile'deth resultIn and thle sotlid and dash,_d
is in the- areas tear the' ptaks of the li-tear-theory resistanc'- curves demote the sec~ond- and third-order infinite-depth
coticiet urse . Befv ore discossingl these resolts farthter, iterturbation-theory re~sults. The value of the ratio A) I/D
:consider the similar graphs of wawe-resivtanc:e cofflic:iettt is less tttan 2 f'or aSl of the numerical results shown in
shown in Figure 5. The ntumerical resnlts is Figure ; Figure: It; hncne this is almost ettuinalent to infinite depth as
c'orreslmild tt a fiveil nale of the matio h )1/1 2.11 far as the desc:ription of the waves is c:oncerned. However.
lhmos. as the Froude imer 1: increases, thle lenoth-delh enaminatmonl of the nutmerical results in Figure 6 shows that
ratio LID dec:rease, as indicated by Ie second thlhstsa in the characteristic lenglth I. is tot lrge relatine to the depth .5;)
Figunre 5. In other words, the water gets shallowser relative I) for nonlinear bottom effects on the wane-makingl action--
to Ihte c.harac.teristc lenglth L tmf the Itres~sure distrihu ion as of the pressure distribution to be neligJible. '
the Froude number decreases. The physical situation is that
of an tuir-etuahiun vehicle, say. ruttning into increasinly on can estintate (ro'ughly)I the wave-reslastance
shllow water and decreasing its speed in sar.h a way Iltat cefficient for intinite depth, LID * 0, at fined values of"
the ratmo A't 1/D remains cotnstant, Froude uuntber F and pressure coefficient ('p by eatrupols-

hugi to L,/D =0 the finlte'depth itnmericul data given In
What Is ttotalhte in romp-mugl FIglures 4 and $ is tlu'lr F'igure Is. A hand-ahetched eatrapolatlon of the finite-depths

itialitatine similarity. An InterestingI findit is that for the values of C/C'1 = Is presented in F~igure 7 for F * 0.461 and
ratligs' of F: oncer whtirlh Ihte Iinear-thmeor (t curve has lsslit!ve 0.357 and it indl'aten that the enac:t Infinite-depth values of
sloe, the nottlittear free-surface effets, result in inrreaulttg wave-renliatance coef'fic~ent C" wIll he either close to the third'
values of wave-reslstatce¢ c.u¢flciettt ( wittt Increas es in the order perturbation theory vlues U, C! or atl lent between
press'.u. coef.xfient ('c. lfnac.tly the opposite efflec.t occ'uel the .second and third order valuesa o(. Plgtarsa6 and? s7eem
toe Ithe rangles of F: over witich the linear-theory (' cure to indicate that for F 0..S7, the thlrd-oeder theory fal=
htas negatlive slope. "rhis eftlect oh" the mtonllsealies indicates For tite larger values of C9. We concludn that perturbation
limit the glraph of ('versus F has essentially the sate form theory can be enpected to predict fitly well the wane

I the graph of (C1 versus F hut it is shif'ted to towee values resistanc'e of twra-dlmenslonal pressure distributions, at least
tif F for Inc.reasingl valttes of the pressure

° 
coeffic:ient ( 'n. for Frotide nutubem F >fO,.t. At high speeds IF > 0,55)

.• -
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4 A Distribution Length. L and Waler Depth. It
~ .40 for F =0.357 and 01.461

I& near anti beyond the second hump o1 tile C versus l corses

0.21 1 of Figures 4 anti 5. linear wave-resistance theory is expected
0 0.5 1.0 1.5 it, be fairly accurate in predicting the values 1sf C.

PRESSURE COEFFICIENT. C p In Figure 6., Ihe open symbols given for C = 0 have

I been obtained by the linear finite-depth t~heoryp Equtlion
A L/D - 3.32 F -0.302 (23). These values show that Ithe differences besween finite-

2.2 -0 L/D -2.761 depth linear theory and infinite-depth linear theory are no
O L/D -2.00 more than t 10 pe ,rcent for Ihe eases presented in Figure 6.

whereas the differene,~ between the finite-depth nonlinear
8 2.0 A numerical results and the infinite-depth perturbation-theory

-0 results are Much larger. For example. tfle F -0.302 and

C P . 1.00, the finite-deth numerical and tile infinite-depth
a 0 perturbatioln resu~lts differ by about a fActor of 2.0. We

1I.8 conclude from thlis that the finite-deplth effects on the wave
t, resistance for Iwo-dimensional flow past firee-sllrface pressure

distributions are highly nonlinear and that litnear theory
W 0. cannot be waed to estimate accurately the bottom effects

1. even for disturebances with moderate str.nglths. Similar

4W conclusions were reached in Reference 141 with regard to
1.4 ~the finite-depth effect: on the wuvetet~itth of free ruttning

One can detect a small amount of scatter (oe irregularity)

1.2 ~ 1of the numterical results thown in Figure 6. The tttestions
of2 acuray will be discussed later and nome results of
numerical experiments to answer some of these questions
will be Eivea.

~0 5 1.0 1.6 Let an now examine the free-surface elevation% in
PRESSURE COEFFICIENT. Figure t in order to more futly understand the wave-making

C actios of the pressure distribution. We compare in Figure 8i

Figue 6 Wae Reistnce rawPresurethe free-surface profiles obtained by the numerical method
Coefficient for Various Freoude Numbers three Froude ttumb~er cass alt with CP- 1.60. For the

numerical results shuwn inFilure Ki both LID and X,../D)
are sufficiently small (both consaiderably tess than 2) to that

i they can be cotmpared Is lnflle-depth lttear-theor" resutlts.*

*Fut linsaar theory, ltha difference In freesurfce enations betweetn flnlteath and tllta-stepth

ia less than I perenst wisent bath LID and X1. ee/D are ls than 2 I
2 97-
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Fi'lure 8 - Free-Surface Elevations Obtained by Numerical Method
and Linear Theory for Varirous Fronde Numbers and CFp I 1s0

Figure X how% the very interesting fact thui tic A general dnclusion seems to be that the predominate
difterence isiween the nonlinear and linear-theory wane nonlinear effect is the ptiase shift between tile waves
resistance muist %tein almost entirely tromn the phase shilt of generated by ditfferent portions of the disturbance. Further-
the rear portion of the local disturban, , relative to the front more, as the speed decreases and the wavelength becomes
portions. Note that the amplitude of the forward part of smaller relative I,, the disturbance lengthi, this phase shift
thXe local disturbance is predicted to he almost the marne by results in an increcsingly larger difference between the enact
thec nonliuc :ir and linear calculations. Thlus, at the ttigh aind the linear theory wane resistance. It seenms tilansble

speedi, 1: > 0t.55, where the pressure distribution rides that this conclnsiii ror the twir-ditnenional pressure case
lntircty on thfe forward tportion of the local disturbance, may carry over to tht tiree-diniensional ship casw, Namely,
very sntall differentces are faund betwren litnear arid nonlinear liat us tte %hip speed decreases one may enpect larger
results. nonlinearitles due it the nonlinear phasing between the

walves generated by the how and the sternt. This in In Agree
Free-surface elevations obtained by second- 'ord thi~d tarot with the welt-known fact that linear strip-wave-

order perturbution theory (which we do riot show beret Also revislaice theory agrees better with expaerimnrrtal results at
shorw the same nonlinepr tihase shift for the r5.wr poretion of' thigher ship speedy.
the local disturlbance. irie perturbation results jio siow

Ltthe frontt ption of tte local reeuttace elevations As previously diicoumed, the ncnlintar elTcts% are very
predicted by the second- and third-order theory is almostl ticeahie when L.ID > 2, even when the waves thetmselves
identical tor the inear-theory results, are close to being derep-wnter waves, i.e., XI../[) < 2,
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A particularly interesting case with strong nonlinear effects This curious phenomenon means that beyond a certain
is shown in Figure 9. Here L/D = 2.33 and F = 0.357. loading. it is economical in an absolute sense to actually
Free-surface elevations are shown for two pressur coffi- increase itle loading lurther (at least when sinning at Froude
cients. C. = 0.80 and 1.6O. Note that tle doubling of the number. F = 0.357 in water depth of D = L/2.33).
pressure coefficients from ( = 0.8 to ( = 1.6 results in
only a very slight increase at" the wave ieight land wave- We have alluded to the slight irregularity of some of
resistance coefficient C) although tie amplitude of the iocal the numerical results shown in Figure 6. We note in parti-
disturbance is almost exactly doubled. I has. we we that cular that the numerical resuits for lIn values of (p seem
the main effects of the nonlinearities of the problem are to to be displaced from the main trend of the numerical
change the phasing (increase the distance between) the results. This is due to tile fact that ill thc nuincial method
front and rear portions of the (cal disturbance. we use ait absolute tteasure of the local error in the free-

surface condition. This results in higher relative accuracy in
An interesting phenomenon connected with the non- satisfying tile free-surface condition for larger free-surface

linear variations of the free-surface profile with increases in disturbances. Some numerical results illustrating this effect
pressure coefficient (' is more thoroughly illustrated in are sthown in Figture t I. This figure show% the effect of the

? Figure I0. lere we slsow the variation of the wave- variation of tie finite-difference mesh size ott tte wave-
resistance coefficient (' and the actual wave resistance R resistance coefficient C for various values of (p at the
(made dimensionless by the hydostatic head pgI ) with values F = 0357 and LID = 2.0. Note the somewhat lower
pressure coefficient (p. Note that as (' increases towards accuracy achieved at lower values of ('p and larger vales of
.,. the actu'i wave resistance R increases to a maximum at the mesh size h/L if one assumes that the values of C at

Cp = 1.4 and de(rcuses again with a further increase in ('p. li/h = 24 represent accurate values. Most of the numerical
results given in this paper were obtained for values of
['/h = 20 or 22 although some of the results were obtained
at ./h = 24.

0,03

0.01 / We have found in the numerical investigations described
w e --- - . in this paper that the first- and second-order perturbation

.0 theory of Itl is probably adequate for predicting the wave
W 01 resistance coefficient C of two-dimensional surface pressure
4' \istributions oin infinite depth streams and for Froude

..On -- - nntber F > 0.3. We expect that a second-order perttrbalion
f.heory for finile-depth streams, similar to the infinite-depth

w - Cp- 1.60 1 perta-bation theory of fI also will predict accura!ely the
S.006 -- .w= wave-resistance coefficient C' for surface-pressure distributions.

2.5 .2.0 -1.5 .1.0 -0.5 0 We note in Figures 4 and 5 that the relative accuracy of the
HORIZONTAL DISTANCE, x/L hincar-theory wave-resistance coeffident Cl is very low at

the sloping parts and near the troughs of the C vesus 1:

Figure 9 - Free-Surface Elevations Obtained by Numerical graphs. However. the absolute magnitude of the difference

Method for F - 0.357. Cp 0.80 ard 1.60. and L/D = 2.33 between tile exact and linear-thery values of C is not large

Ac 0 C - 0,00 a c - 1.20

1.4 - W RE IST NC U

~AWAVE RESISTANCE U U
1 ,0 u

NMEOFHWAVEERESISTANCEN

PRESSIRE COEFFICIENT Cp SCALE OF PRESSURE. Lih

Figure tO - Nstndtmenatomat Wane Rentlaanee and Figur I I - Wane-Reniatans-e Cuel~ilentl seeus
Wave-Reabstanee oeffkclent sessurn Number of Mes hu tee , I enllt Scale
Prrs ar C'oeffient toe F - O.357 fu~r F - O t'. inst Ill) - 21OO

eWn recaopime that we arty hiu' o!ne .4a putni benyond ('|, . wth huw l= li dccit.-., in tie wane/ t~e t e hm cnoisIs~rt the ae
cmneelltlunl srtntnn~m al. intl nader the prensar diattnion. this dec rease a celat 1 iam h ) le.

049
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compared with say the maximum value Of ( a F = 0.57.

Thus, it seems that the tinear-heory wave-resistance
coefficient C, i% an adequate prediction of thc value of C in

most practicat circumstances. The improvement of the

prediction of the wave-resistance coefficient C given by

second-order theory then gives accurate estimates of C for

Froude numbrern F > 0.3. We enpect that simitar accuracy

for first- and second-order wave-resistance theory of three-

dimersional surface pressure distributions can be obtained.
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DISCUSSIONS
of three papers

PROGRESS IN THE CALCULATION OF NONLINEAR FREE-SURFACE PROBLEMS
BY SURFACE-SINGULARITY TECHNIQUES

John L. Hess

THE WAVE RESISTANCE FOR FLOW PROBLEMS WITH A FREE SURFACE
C. Korving and A.J. ermoana

NONLINEAR FREE-SURFACE EFFECTS - THE DEPENDENCE ON FROUDE NUMBER
C. von Kerozek and Nile Salvesen

Invited Discussion fying and removing the defects of the previous
solutions, not just finding new ways of doing

T. Francis Ogilvie the same old things. And we should be trying to
University of Michigan develop numerical methods for those problems

that cannot be solved at all by classical
analytical methods.

Before discussing the three papers at hand,
I wish to make a general comment about the sub- During this meeting, I have heard very few
ject of this meeting: Numerical Ship Hydrody- authors give any reasons for undertaking the
namics. studies that they are reporting. It would be

entirely proper if some of them were justified
I do not ":Ir.¥ that the subject exists. purely on the grounds that they would improve

Long before the first meeting of t 's series, I our basic scientific knowledge of fluid mecha-
asserted this publicly. Now it is obvious that nics. I would accept a statement that our
I have been overruled by consensus, but I still practical capabilities in ship hydrodynamics
believe what I said several years ago. would be improved even ten years from now

because of these studies. But, quite frankly,
There is such a subject as "ship hydro- I do not see an indication that most of these

dynamics," E"t a good ship hydrodynamicist has papers were prepared with these general goals
a tool kit with many tools, including numerical in mind.
analysis and the computer. It should, however,
include many other things, and everything is For example, we have heard much discuss3t.
useful only if the person has a good understand- about the significance--or lack thereof--of the
ing of the physical phenomena involved. Most Kelvin-Neumann problem. Dut the authors who
important of all is an appreciation of when to have addressed this problem have not generally
use which tool. discussed why they are bothering to study the

problem at all. It has been the discussers who
I have arrived at my present cge without have brought up the question. I myselTftried to

ever having written a computer, program. But I defend these authors earlier in this meeting.
am certainly not "against" numerical ship But why did these authors not investigate thor-
hydrodynamics. I feel that I appreciate the oughly for themselves whether this problem was
importance of numerical solutions as well as relevant to anything at all, especially before
anyone, if they are developed and used sensibly, beginning the horrendous task of trying to
I established my position mary years ago. For solve it? Or. if they did investigate this
example, many of you know the work of Frank matter, why did they not tell us about it?
(1967), to which reference has been made here
several times. When Werner Frank developed his So now I cr. to the three papers that I am
now well-known procedure, I was his supervisor. supposed to disLss. The three deal with prac-
I had assigned the task to him, after doing a tically the same problem, presenting three df-
fair part of the numerical analysis myself. We ferent approaches. Now, I am quite aware that
had visions then of eventually doing the full nonlinear effects may be very significant in
3-D ship-motion problem in a similar way. But many practical problems of ship hydrodynamics.
we aborted that effort when we realized that we In steady-motlon problems, such effects are
could combine his 2-D numerical solutions with likely to be most important near the Junction of
appropriate analytical techniques to obtain the free surface and the leading edge of the
rather good solutions of real-world 3-0 problems, ship (or other body). However, all of the
even those involving ships in waves with forward authors have avoided having such a junction in
speed, We made the best use of numerical and their problems, and none of them suggest how or
analytical tools. even whether their methods can be extended to

cover such important matters.
Those hybrid solutions were very successful

for certain important purposes, but they had Perhaps the difficulties will be less when
many defects too. And so we should be studying these methods are auplied to 3-0 problems. Or
new and better ways of solving those problems, will they? Is it worth all of this work on 2-0
We should be directing our efforts toward identi- problems unless we have anticipated how we shall
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be able to handle real problems? It is encourag- after, each advocating his own approach as bst.
Ing that these authors do treat the full non- I congratulate Chris and Nils for their long
linear free-surface conditions, and I do not mean cooperation on this problem.
to imply that this is easy. But where will it
lead? Salvesen's early work on this subject was

the direct inspiration for me to investigate
Leaving aside for the moment the discussion the asymptotic low-speed problem. My elementary

of perturbation theory by von Kerczek and analysis has now been developed by Baba and
Salvesen, I think that It is fair to say that Hara into an elegant theory that for the first
the major difficulty in all of these papers lies time really appear; to explain some important
in finding the location of the free surface. A low-speed phenomena of surface ships. This can
different method is used in each paper, and each all be traced back to Salvesen's observation
seems to be more-or-less successful. This is that steady-motion free-surface problems appear
art, of course, not science. Hess has conclud- to become more and more nonlinear as speed be-
ed that a global correction must be made to the comes smaller and smaller. Many years ago, I
free-surface location in each iteration, but found this to be a very disturbing observaticn,
the authors seem to have managed to use proce- but I finally rationalized it on the grounds
dures that adjust the location stepwlse in the that the generated waves become shorter and
downstream direction, Perhaps Hess' claim is too shorter as speed decreases, and so gradients
strong, but it may still be the best way to pro- and higher derivatives of the field variables
ceed. could become larger and larger, even though

wave amplitude itself becomes negligible. Such
There is one fundamental difference in ap- behavior could occur only in a surface layer,

proach between Hess and the others. There are of course, and so we were led to the low-speed
two free-surface conditions, of course, and singular perturbation that Baba and Hara have
the unknown location of the free surface must developed.
be determined as part of the solution. Hess
satisfies the dynamic free-surface condition Now von Kerczek and Salvesen again observe
first on an assumed location of the surface, that the linear theory is best If the speed is
then computes the velocity components and uses quite high (F > 0.55) and their higher-order
the kinematic condition to correct the surface perturbation theory is fairly good for moderate
location. The other authors use the two bound- speed (F > 0.3). But their explanation appears
ary conditions in the opposite order. There not to be quite equivalent to what I concluded
are heuristic arguments on both sides, but I nine years ago. They claim that tic phase of
cannot see any definitive argumEt in favor or the generated waves Is sensitive to "nonli near
either approach. effects." This strikes me as being quite close

to the approach that has been developed r'-ent-
It is remarkable in what a cavalier way ly at the University of Tokyo by Professo, 'nui

these authors can treat the radiation condition, and Kajitani, who consider that the ship-
For those of us who are accustomed to perform- generated waves propagate on a nonuniform stream
1ng analytical studies of similar problems, we the streaming flow around the body, satisfying
expect to have to impose explicit radiation the rigid-wall free-surface condition. The
conditions, but this seems to be a trivial mat- phase velocity of waves propagating on such a
ter In a purely numerical analysis. Presumably, nonuniform stream may vary remarkably. There
this situation is characteristic only of a 2-D Is no body In the problem of von Kerc, ek and
problem, and radiation conditions may cause much Salvesen, but there is a correspondi-j rigid-
difficulty in the corresponding 3-0 problems. wall solution. I wonder whether the observed

phase shifts could be obtained from a linear
I am troubled by Hess' device for smooth- analysis involving perturbations about the

ing the incident flow. He requires that both rigid-wall solution. I also wonder whether the
components of the perturbation velocity be interpretation of the phase sensitivity Is in
zero on an upstream segment of the undisturbed fact just another way of looking at the surface-

free surface. This kind of overspecification layer phenomenon that I analyzed qualitatively
would lead to disaster In an analytical solution: many years ago, or is It really something
It would require that the perturbation velocity different?
be identically zero everywhere, But there is
certainly no disaster here, just snoe question-
able results. Presumably, both components are Discussion
very small on the upstream "flat." and approxi- y5-yils Svesen
mating them numerically as zero is simply a good
approximation that causes no fundamental ditfi- It is difficult in most cases to determine
culty, the accuracy of numerical nonlinear solutions

of body-wave problems. First of all, there
Finally, I wish to make a couple of comments exist very few published nonlinear solutions and

about the perturbation analysis in the paper by very often the published data are for conditions
von Kerczek and Salvesen. slightly different from those modeled in our

own coiputer methods. For example, von Kerczek
First of all, It is commendable that two and I were forced to make comparison% between

Investi getors should carry along an impartial nonlinear numerical results for finite-depth flow
parallel development of two quite different and perturbation results for infnTfe--de-'flow.
approaches. We are all too accustomed to see- The reasons for this are that 'a hlgher-or er
ing each person going off In his own direction, perturbation theory for finite depth has not
pursuing a particular approach and, forever been developed and that our numierical method was
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not suitable for very large depths. We assumed Author's Rep1
in our earlier work that the bottom effects by A.J. Hermans and C. Korving
could be considered small when the depth was to discussion by T. Francis Ogilvie
equal to one-half of the wavelength since the
differences between finite-depth and infinite- The remark of Ogilvie about the radiation
depth linear-theory results cre no more than condition suggests that in performing analytical
one-half a percent at this depth. studies for similar problems a different radia-

tion condition has to be imposed.
However, our recent results (to be published

in the Journal of Ship Research in 1978) show In our numerical analysis we used the fol-
that our assumption is incorrect for the non- lowing radiation condition:
linear case. Figure 1 shows, for free waves in a) The flow is undisturbed upstream.
finite-depth (h/v1 = 0.486) and infinite-depth, b) A continyl y requirement for the sur-
the proportional change in the wavelength face elevation (C 2)).
(A-xl)/0 as a function of the dimensionless The downstream condition is just a condition to
wave height H/xI. Here x, is the first-order close the region in an appropriate way. lhe
wavelength. It is seen that according to linear region is closed at a oosition where the mean
theory (H/A1 = 0) the difference between the surface elevation equals zero. In each iteration
finite-depth and infinite-depth wavelength is step this leads to a different position. This
about one-half a percent, whereas for steep disadvantage can be handled easily in the numeri-
waves (H/s\ = 0.10), the fifth-order perturba- cal scheme. The advantage is the very simple
tion theory shows a five-percent difference boundary condition imposed on the nonnal velocity.
between finite-depth and infinite-depth wave- This closure condition has nothing to do with
length. The nonlinear numerical results agree the radiation condition. By the way. in non-
well with the fifth-order finite-depth results. linear theory it is an approximation. In linear

theory it is fulfilled exactly. Therefore our
radiation condition is a) and b). The question
arises what "radiation" condition is used in
theoretical studies. The analytical studies
are on problems with a linearized free-surface
condition. In the two-dimensional case use can
be made of function theory to construct the

"T.-, solution of a vortex in a moving ideal fluid
Z with a linear free-surface condition. Ogilvie

* dsuggests that in that case some sophiticated
radiation condition has to he formulated tn ob-
tain a unique solution, with a physical meanng.

0 -o However, the condition that Is used is the re-
Iquirement that the upstream potential is undis-

J N turbed. See for instance the book of Kochin,
FINT. Kibel and Rose on Theoretical Hydrodynamics,

4 N. page 479. We may say that our continuity re-
it ,quirement implies that the free-surface eleva-

tjo? is an analytic function. It turns out that-0o. C 
2  

is a condition that is sufficient to lead

to a unique numerical procedure. I hope that
the discusser agrees that the radiation condi-

.0.08 \ * tion in similar analytical studies is the sameNUMRIAL INFINITENU
IE

IC AL  
NFINET trivial matter as in pure numerical analysis.

FINIT Soon we will solve 3-0 problem numerically andI EXPERIMINT i am sure that again we will use the same radia--010 - *DEEP WATER, hIXu 2.0 tion condition as the one in analytical studies,

THIHO-ORDIN THEORY

-I-TH0KDOERTHEORY \-0.12 \\ Author's Repl0 O. 014 O.K O.K 0,10 0.12 byoh ii . ess
DIMENSIONLESS WAVE HEIGHT, HI/X to discussion by T. Francis Ogil'!Ie

Figure I First, I would like to thank Prof. Ogilvie for
his thoughtful comments and to remind him that
similar comments of his at a meeting several
years ago initiated the work that has led to my
present paper. I do not pretend to have ens-
wers for all the questions he raises, but IWe wanted to bring these results to your have a few thoughts that seem applicable.

attention since the wavelength is often used
in evaluating the accuracy of numerical results The "tool kit" metaphor Is a good one.
and since the effect of the bottom on the non- Hcwever, it should be kept in mind that the
linear chanIe In wavelength has not generally subject of this conference (only the second
been recogn zed. such conference) is in its infancy and that

the calculational tools we are presently devel-
oping are accordingly very primitive ones.
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These simple tools probaby will not be the The phase shifts do occur at first order. The
ones that are used to solve the problems of reason we believe this is that when the pertur-
real interest, but rather they will be used bation theovy is applied to the free-stream
to construct more powerful tools that will be solution, the second-order problem, in which
applied to these problems. the phase shift does occur, accounts mainly

for the effects of the local distortion of the
In accordance with the above it seems to be free surface in the first-order solution.

quite appropriate at this stage of development
to consider two-dimensional problems, as long
as the solution techniques have direct three-
dimensional analogies. The failure of a two-
dimensional approach would clearly preclude any
three-dimensional effort, while its success
would furnish a good deal of guidance for the
attsck on the three-dimensional problem. The
history of numerical analysis shows few if any
solutions of three-dimensional problems that
were not carried out initially in two dimen-
sions. For the same reasons, it seems legiti-
mate to attempt a solution for submerged bodies
before addressing the additional complications
of the surface-piercing case.

As regards the significance of the Kelvin-
Neumann problem, I am not competent to discuss
the issue. However, as long as the problem has
not been oroved to lack significance, work on
its solution appears valid, if for no other
reason than to determine its significance
"empirically". There is after all some doubt
as to the significance of the Navier-Stokes
equations.

Prof. Ogilvie has put forward several tech-
nical points. I can report the results of our
numerical experiments but cannot draw any far-
reaching conclusions with any degree of certain-
ty. First, we have never obtained convergence
with any sort oF local iterative algorithm,
including ones that use the two boundary condi-
tions in the opposite order. Second, in a case
run after the conference, the normal-velocity
condition on the upstream "flat" was eliminated
with a resultant divergence of the procedure.
Elimination of the tangential-velocity boundary
condition has not been attempted as yet.
Finally, I certainly do not minimize the
possibility that a radiation condition will
have to be applied on some vertical downstream
surface. I consider the inclusion of a radia-
tion condition to be one of the better possi-
bilities for obtaining convergence in cases
having large wave heights.

Author's Reply
Ey-. von Kerzek
to discussion by T. Francis Ogilvie

We thank Prof. Ogilvie for his kind
coeents. We do not fully understand what
Prof. Ogilvie means by the "rigid-wall snl-
tion" in his first question to us. If he
means the uniform free-stream flow under a
planar free surface, then the answer to his
question seams to be no! The phase shifts do
occur at second order when perturbing about the
free stream. However, If Prof. Ogilvie means
the flow under a rigid free surface whose shape
is that of the static free surface under a
stationary pressure distribution, then it does
sea to us the answer to his question is yest
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FINITE-FLEMENT AND FINITE-DIFFERENCE SOLUTIONS OF
NONLINEAR FREE SURFACE WAVE PROBLEMS'

S. M. Yen, K. 0. Lee and T. J. Akal
Coordinated Science Laboratory, University of Illinois

Urbana, Illinois 61801

Abstract of the radiation condition by guessing and cor-
recting the free surface for steady, two-

In this paper two time-dependent numerical dimensional flow. Their dovnstreat. closure
schems for solving steady and unsteady poten- condition is simply an extrapolation of the
tial flows for nonlinear free surface problems streamlines, but it may be useful in evaluat-
are presented. In one scheme, the finite ing the nonlinear effects. Steady stare solu-
element method is used to make the field calcu- tions can also be attained by using a transient
latrion of the velocity potential and the finite approach. The works by Chan and Hirt [3) and
difference method is used for the ttee evolu- Haussling and Van Eseltine L4,51 showed that a
tion. The feasibility of this scheme has been local steady state solution is obtained rela-
demonstrated by numerical golutions obtained tively soon after a sudden start. It seems
for the two-dimensional problems of the pres- that one of the most general methods for free
sure distribution and the submerged body. In surface probLems is MAC [6-10 or its modified
the other scheme, a finite difference method ,erston SU,2AC [11-13], which is an Eulerian
that couples an explicit, single stage, method with Lagrangian u" ling of the free
second order time integration scheme with the surface geometry. However, aestions still re-
solution of the Laplace equation for the velo- main concerning overall offic uncy and applica-
city potential is used. The feasibility of tions to problems with complex geometry.
this scheme has been demonstrated by numerical Lagrangisn methods [14-181 look good for simu-
solutions obtained for a two-dimensicnal lating free surface flows in confined regions,
pressure distribution problem and a three- but are more complex for problems of flow past
dimensional accelerating strut problem, obstacles. Furthermore, the Lagrangian mean

would be distorted so severely s to produce
1. Introduction serious questions of accuracy.

Free surface wave problems are characterized Several investigators [19-26] have succeed-
by complexities in flow geometry, flow features ed in applying the finite element method to
and boundary conditions. The flow has an un- several free surface problems. However, there
known free surface end it is propegative and are many unsolved problems concerning acturacy
transient. The boundary condition at the free and covvergence of the finite elment solu-
surface is of a mixed, parabolic type and it tione, especially for nonlinear free surface
contains highly nonlinear terms. In the problms with far-field radiation conditions.
steady state, there also exists a radiation Chan and Mai [25] and sit and Yeung [26] used
boundary condition, since the waves, once the known radiation condition at a suitable
generated, propagate dowstream. These com- distance and atched It to their interior
plexities have lee to several computational numerical solution at the truncation boundary
difficulties: accuratel) accommodating the free by u.Ing an sigenfunction expansion.
surface geometry, satisfying the boundary con-
dition uniformly over the free surface, and Further application of methods developed to
treating the radiation boundary condition, find accurate solutions of aore compies prob-
Computational methods have been developed to Ioea depends on the success of future efforts
deal with some of these difficulties and have to alleviate the computational difficulties
been used to solve several free surface prob- associated with each of these methods. We
low. These methods have advantages as wel shall describe in thiv ,aper our research
as problms in their Implmentations. Some of effort in the development of computational
these advantages and probsms furnish possibly methods for nonlinear free surface problms.
useful guidance for further development of
computational echase. The focal point of our study is the non-

linear problm for a disturbance in uniform or
Van Krcsek and galvesen [1.2] adopted a accelerated motion on or near a free surface.

marching technique to eliminate the necessity Our objactive is to develop numerical nethode
for solving steady and unsteady potentLal flows

for free surface problems.
eaeer5 s upported by NSF under Grantg80--S _0Oo
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We have developed a time-dependent finite # - x on cut-off boundaries.
element scheme [27] to deal with the geometri-
tel complexity and the free surface boundary 0't - 0 on solid boundary.
condition of the nonlinear free surface prob- an
lems. In this scheme, the finite element
method is used to make the field calculation
and the finite difference method is used forthe imeevoutin. e hae ued hismetodlere p is the applied presaure on the free
the time evolution. W1e have used this method surface. When the solid body contains a sharp
to solve two problems: a pressure distribution trailing edge, the Kutta condition is also to
mving with a constant speed and a moving sub- be satisfied there. That is
merged elliptical cylinder or a hydrofoil.

We have also developed an explicit time- 0 at the trailing edge. (5)

dependent finite difference scheme [28]. The computational domain is bounded by the
Explicit schemes nay be nore favorable for free surface and three cut-off boundaries
solving large scale problems on "superom- approximat-ng boundaries at infinity.
puters" which have more stringent implements-
tion requirements. We have used this method For the accelerating strut problem, we use
to solve two problems: a pressure dist:ibution the elliptic cylindrical coordinate system
movIng with a constant speed and an elliptic (8,8,y) to discretixe the computational field.
cylindrical, surface-piercing strut accelerat- The constant A and constant 0 level curves are
ing from rest. Our solutions serve to demon- respectively confocal ellipses and hyperbolas
strate the feasibility of using the method to with foci (-c,O) snd (c,O). Here. c is the
solve two-dimensional as well as three- semifocal distance
dimensional problems.

II.__Formulation of the problem c - (a
2 

- b)=

II Fonsoderm olat ofthe Proe where a and b are the semi-major and semi-vinoWe consider the Potential flow produced by axes of the base ellipse respectively. The
a disturbance moving forward on or near a free base ellipse is represented by b- nJ(sab)c .
surface. We areume that there are no secondary
motions such as pitch. roll. heave, sway, or The metric or scale factor h assoclated with
surge snd Lhat there are no ambient waves. the transformation from the Cartesian to the
The flow is governed by the potential equation, elliptic cylindrical system may be expressed
free surface boundary conditions and conditions by
at other boundaries. The free surface is h2 _ c2(ainh28 + stn29).
characterized by two distinct conditions,
kinematic and dynamic couditions. The problem considered is defined as follows:

We shall sumarize below the basic equations # 644 8h2#yy 0 in f.
and the boundary conditions. The coordinate 2
system (x,y,o' is attached to the disturbance # " 1y-( 44 +TI 0)/h

2  
on y - - 2

with negative y oriented towaid the Accelera-
tion of the gravity. The flow variables are #t cUt cosh 6 cos 0- (6)
the potential function 4. the velocity Fr

2

V(V .V ,V ), and the pressure p. All the 2 2
vorab.es ln the basic equations end boundary (04)

conditions are nondimensionalised with respect where (7#)2 - 42y4 2 4 2 )/h2
to U. L, and P which are the reference values w 0
of velocity, ldngth snd pressure respectively. - ellrosh A coo G on a
We introduce two flow paraonters:

The cut-off bounda;, ts 6., At the bottom
t and () boundary y - yt, it a ao'.med that 4 is

equivalent to the vteniatl functiem for a two-
P 0 dimensional flow por. an elliptic cylinder.
" L (2) After a slight msd: 0catloo to obtain compat-ibility with the Ncuedery condition at 6.A

The free surface height to defined at e get

y - (X,s;t). (3) U(oh A ,)(co o) cosh 6-b slt h

as rush A-h slob V1
A two-dimensional probins of a mowing dis-

turbance can be defined as follows: o4 y - yi.

* 44 - 0 i n . ll, finite Kl owt rethos yy Il 1Z i

t - y -1x. In this method. the finite lenat vethod

t 22 . ls - C ) to used for the field calculation of the
x Y Fr 2 

r
2 velocity potential viile the time evolution isupdated by using the finite differece method.

We shall describe here the finite elment
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formulation ad the hybrid approach that we. where the right hand side is obtained from the
use to solve the free surface problem. boundary conditions. That is, Eq. (12) is the

discretied form of Eq. (9).
There are twmo basic a-eps in formulating a

given problem using the finite element method: When the finite element method is applied to
I. Discretize the computational f'eld into lergcr and more complex problems, it becomes

elements. increasingly more difficult to construct the
2. Select a method to implement the govern- system matrix equation and to develop a method

ing equations and the. boundary condi- to solve it. Also, the implementation may
tioas on the discretized field, require excessive data handling that usually

leads to additional computational errors. We
For the solution rf the free surface prub- have developed an iterative scheme [27] called

lemo presented in this paper, we use an the sector method that is more efficient to
iterative scheme to solve the matri;. equs- implement, In our method, a sector is defined
.ins resulting from the finite element formu- by a codination of elements surrounding a node
lation and a mesh system which is generated or nodes as shown in Fig. 1. Its boundaries
nusmtrically in an optimas way. we shall dr.note the finite cut-off zone of influence of
describe here th iterative finite element the interior node or nodes since the effect of
method, the rethoJ we use to generate the any noa'e appears only in elements wVere that
mesh system, .rs. their significances. point is involved. That is, the field variable

at an interior node is affected only by the
In the variational finite element method, field var.Able at other nooes in that sector

the form of the unknown solution in assumed in through the finite element algorithm. The
terms of known (trial) functions with unknown sector stiffness matrix is constructed by the
adjustable parameters. The sasumed trial element stiffness matrices of member elements
functions are defined in each element with in that sector. Similar to Eq. (11), it is
continuity requirements across the boundar'es. N
'he fin-te element solution is to obtain the
combination of trial functions that extremize [")] [k 8 E kC] (13)
a given functional for each of the elements e-l
in the computational domain. The solution of
the Laplace equation over an element is where N is the number of elements in that sec-
approximated so that the approximate solution coi. The matrix equation in a sector is
minimizes the functional to re

-e[ ] _ ,(vo)
2

dV (7) [K] i(14)

in that element, thus satisfying the Laplace Instead of constructing the system stiff-
equation, For the boundary eln t, bot ness matrix and rolving the reaulting matrix
the non-Dirichle boundary conditon and the equation, the solution precedure is to con-
governing equation should be satisfied. struct the sector stiffness ritrl.x for each

If the approximate solution in an element is sector and to iterate by sweeping all the
sectors. Any itotative acheme such as the

Ce (8) successive overrelaxation method can Le
0 [f(xyz)]i ( incorporated.

the necesary coudition for Eq. (7) to have a Th_, sector method provides a way .o avolV
stationary value is the tedious data handling in constructing the

.,0 system stiffness matrix and facilitates the
101 (9) treaLment of boundary conditions. Since it is

used with an itecative scheme. the values at
which yields non-Dirichlet boundary points are updated

separately from the field computation after
l(-Jf0I) - ] (10) each iterative step.

whre the matrix [KaJ is the element stiffness The accuracy of the finite element method
matrix. can be increased by using smaller elements

and/or higher-order polynomials. But the
The element stiffness matrix is a submtrix degree of freedom in diarretization is limited

of the system stiffuesc matrix. Hence, the by considerations of economy and computer
system stiffness matrix can be constructed by capacity. For a given degree of freedom, it

is essential to choose a proper mesh system
N and a finite element algorithm to obtain the

ki,,], maximum possible accuracy. The choice of sa
e- a Y I l (U optimum mash system should be based upon a set

of guidelines that are applicable to any field
of computation. We have made a comprehensiveshre N@ is the total number of elements in parametric study of the effict of mesh systes

the domin, he system matrix equation to be on the computational errors. This study has
solved become led to the formulation of a set of guidelines

that may be followed in designfng an optimum
[K]{ J - {S (12) finite element mash system. To meet these
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guidelines, the mesh structure should be algorithms. However, when the triangular mesh
regular and of simple pattern, the shape of is used, the der,vatives have comparably larger
the basic element should also be regular and as errors. In this case, the spatiA). derivatives
equilateral as possible and the distribution of are obtained from polynomial approximations
size of elements should be consistent with the after the iterative solutions converge at each
flow variables to insure maxiimm uniformity iL time-step.
the erior distribution.

The successive overrelaxation method is used
We have developed two methods [27,29] that to solve the Laplace equation iteratively with

can be used to numerically generate mesh the specified values of * on the given
systems that meet -he guidelines listed above, boundary 1). The updating of 1 and P* is carried
The methods are based on the numerical trans- out by the predictor-corrector method after the
formation obtained by sol,.ing the Laplace iterative solutions converge within a required
equation to produce an orthogonal grid system limit. The predictor-corrector method has less
in the physical plane. The node distribution stringent coeitions for stability and con-
of this system satisfies the geometric poten- verges even in nonlinear problems; huwever, it
tial to ensure maxima uniformity, and the does require two solut-oni for each time-step.
structure of mesh is orthogol and regular.
The bolndary geomet y is accooodated accurate- The computational domain always includes the
ly and the implementation of boundary condi- updated free surfqce boundary in the finite
tions is simple duc to the orthogonality. element formulations and computation of the
Horeover, all the data for the finite element stiffness matrices for the boundary .Imments is
algorithm are computer-generated, thus reducing therefor necessary at each time-step. When
the data handling for the input to the finite the elevacin of the free surface is large,
element program. The mesh generating schemes, several rows of sleignts near the free surface
therefore, provide a way to -onstruct a mesh are reacranged periodically to maintain maximui
system which minimizes errors associated with uniformity in element sizes. For example,
the finite element mehod. We believe that it Fig. 2 shows the case when four rows of elements
is important to use such en optimum mesh system are rearranged to accommodate the elevation of
in the finite elem'ot solution of the free the free surface. It would be beat to find an
surface problems because of their complexities, optimum mash system at each time-step, but It

would be cumbersome to change the whole mesh
The finite elemant algorithms developed are since new stiffness matrices or all the

used to solve the Laplace equation. The compu- elements would then have to be recalculated.
rational domain is divided into triangular Since the Eulerian approach t used, no Inter-
elements for simplicity, but quadrilateral polations are necessary for the field variable
elements can also be unrd. The time advance- at new interior points. The mesh rearrangement
ment of the free stirface I urdary conditions does not lead to any difficulties since no
is carried out through the finite difference transformation is included in the formulations.
method. A predictor-corrector method is used Once the coordinates of new nodal points are
for the timu updating. Let the free surface assigned, the stiffness matrices for the changed
boundary conditions be expressed by elements are recomputed, but the finite element

algorithm is not changed.

,- F(xy;t) The computational domain is expanded down-

and (15) stream periodically as ths disturbance on the
free surface is propagated close to the down-

" 
G(xy;t). stream boundary. Therefore, the undisturbed

condition is always applied on the cut-off
The Euler method predicts the values at a downstream boundary, This can save unnecessary
particular x position at the new time-step by computations in the undisturbed regions. The

numerical scheme used is tested for the flow

n ' n + at Fn generated by a pressure distribution moving
across the free surface snd is applied to two

and (16) free surface problems due to an obstacle in a
uniform stream.

-=* + At G,
n+l n IV. Finite Differece Mrhod

where #* denotes # on the free surface, the
subscript n refers to the time level, and 4t Our finite difference method is to couple
is the time increment. The values at the new an explicit, single stage, second order time
time-step are obtained from the corrector @tep integration scheme with the solution of the
by Laplace equation for the potential tunction.

In this method, the free surface conditions
I in + "(F + FV ) are integrated to provide a Dirichiet condition
n+Il n n CL the Pucface for the Laplace equation, the

end (i7) Laplea" equation is solved, and the solution is
used togrther wit. rho free surface conditions

9* - 9* + '~G + C ). to determine the dertvatlves needed for another
n+1 n+l time integration.

Itn computing F and G, the spatial deriv- The time integration soctum in expressed by
etives can be computed from the finite element
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1
n+l I n 6t(t)n+(At

2
/ 2)(tt n (18) Titt #yt'*xits-tx t-o.t,

and - 1).t on y -1 (22)

2
S tnxt (u)t-nx/Fr

2
- pFr24xx

+ ad (4*),,+(af/2) (#* )44t(f* ) I .y( yyU ytfn -# y - # on y - 'n (23)

(19) Z

The subscript n denotes values at time t w tn, 4y " 44yy~yy-4 4 y on y - 7i (24)

4"denotes 0 at ymi

at - t n+ tozt t ( )t-11z/Fr2.U F2

and - yy-44#z on y -7 (25)

A' - ln+l " ln2

Equation (18) is a second-order Taylor series t "x(u)tt+z( )ttw -1/Fr 2+(u )
expansion in t. Equation (19) is an expandion + w (wtPt/Fr2_
in terms of two variables because 4* is to be + t r xt
computed not only at a new time but also at a 4 -44 on y- (26)
new position - y - 1). The attractive features y yt z z.t

of the scheme given by Eqs. (18) and (19) are The sequence of computations for determining
that only one solution of the Laplace equation thn derivatives in Xqs. (18) and (19) are
is required at each time-stop (predictor- summarized below.
corrector schemes require more than one and
Implicit schemes retuire additional solutions 1. All first and se:ond derivatives of Tin
of two simultaneous systems of equations for with respect to the space variab.es by

and *+l) and that implementation is numerical differentiation.

straightforward. Also. since separate rather 2. All first and second derivatives of 4*
than indtrdepeandent computations are made at with respect to the space vs:i'jblea from
nodes on the surface, the method is well- the solution of the Laplace eqution.
suited to creating large problems on parallel th stn of t'n Lr l e42an .
process machines which are currently available %tn snd (%tn from Eq@ V20) and (21).

among modern, large-scale "supercomputers". 4. (#* )nl (t* ) , and (4*t)r from Eqs.

The Dirichlet condition at the new surface (23)-(25).

provided by the application of Eqd. (18) and 5. (ntdn and (#)n from the 'tee surface

(19) and the other boundary conditions for the conditions.
problem are used to solve the Laplace equation. 6. ('1tt)n from Eq. (9) and ($I!,), from
Since there are a variety of conditions that
asy be encountered, no single method of solv- Eq. (26).

ing the Laplace equation is suggested here. V Nuerical Soluitimn
We simply point out that the method should be u l
chosen on th basis of accuracy, efficiency, Finite element Solutions
and suitability to the problem considered as
well as to the computer used to solve the Presure Distributions Problem. The prob-
problem. lem of pressure distribution Is shown sche-

The final step of the method is to compute matically in Fig. 3. We consider the distribu-
the derivatives appsarins on the right hand tion
sides of Eqs. (18) and (19). In order to do
this, jo make use of a sec of auxiliary
equations which are obtained by differentiating .L 0 - 2 0 A
the free surface conditions. For example, the o2 L (27)autiiar equations for a thre-dimensional p ((x) - (27)

problem in Cartesian coordinates are as elsewhere
follows:

where P is the maximum preeeure in the &ur-
5t 57 55 5face distribution. It is initially at rest

-#slrx ,n y - (20) and starts to moes with the uuiform speed U
in the negative direction on the s-axis.
The span of the applied pressure is chosen as

- y, y-xzx~ lxa'1 ls~ the length unit. The computational domain is
bordered by the free ourfece al three cut-off

-1las on y - T (21) boundarims The grid system extemde initially

a distance of 6 smite on the x-exi, with 2 of
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these units on the upstraam side of the pres- implementing the boundary condition at the
sure distribution, i.e., xu-

2 
and xd 6. The solid surface.

depth of the domain yI is chosen as unity. The coordinate system is fixed with respect

The downstream boundary is expanded periodic- to the solid body with its origin at the
ally to contain the entire region of disturb- center of the body. Two different shapes are
ante within the computational domain. The chosen for the solid body: an elliptic cylinder
domain is initially divided into regular and a symmetric hydrofoil. The length scale
triangular elements with Ax - Ay - 0.05. in the nondimensionalization is the body

length. The body is located at one unit

Equations (4) are solved by the finite beneath the undisturbed free surfact and has
element method with the finite-difference time- a thickness of 0.2 units. The problems are
updating scheme for the pressure distribution illustrated in Figs. 8 and 9.
of Eq. (27). The linearized boundary condition
is also used to show the differences between For the hydrofoil problem, the implementa-
the linear and nonlinesr cases. Tv- time-step tion of the Kutta condition is not simple in
used is At - 0.002 for the nonlinear case and the finite element method, the first-order
At - 0.005 for the linear case. In order to approximation
make comparisons with the results of Hauseling
and Van Eseltine [5] , the Fronde number is 4 - Constant for all et

chosen as (4n)
4
i and the parameter a is 0.01. is used with e representing the elements

Comparison is also made with the analytic
steady state solution derived from Lamb [30] which include the trailing edge. This approxi-
in order to determine the transient develop- mation works well when the element si7es near
ment of the flow. the trailing edge are relatively small.

The evolution of the wave height is display- The mesh generating scheme we have develop-
ed in Fig. 4 for the linear case and in Fig. 5 ed is used to obtain the initial finite
for the nonlinear case. In Fig. 6, the non- element mesh system. As time increases, the
linear result at t - 1.0 is compared with the boundary elements near the free surface follow
corresponding linear calculation as well as the free surface geometry and the mesh system
other solutions. These results show that the is rearranged when the surface elevation be-
local steady a e solution can be achieved by comes large. The initial mesh systems are
the proposed -dependent approach and shown in Fig. 10 for the ellipti: .ylinder and
indicate that the numerical scheme developed in Fig. 11 for the hydrofoil.
yields reasonable numerical solutions for the
free surface problem. The numerical test The development of the wave height with
given here is only for small heights, but the respect to time is displayed in Fig. 12 for
numerical scheme proposed can be applied the elliptic cylinder problem and in Fig. 13
easily to cames of larger heights by restruc- for the hydrofoil problem. The results tend
turing the finite element mesh system. to approach local steady state solutions.

When analytical or experimental results are Finite Difference Solutions
not available for comparison with numerical
solutions, energy conservation serves as a Pressure Distribution. The problem was
useful check for evaluating the numerical solved on a domain bounded by the free surface,
results. For this problem, so - -6, yt - -2, and xd - 10, A uniformly

spaced grid with Ax - Ay - A - 0.0625 was used
A- 6 (28) except for the spacing between nodes at the

surface and those at y - -A. The spacing

in which E is the total energy and W is the between such nodes was Ay - (A + 1). Succes-
work. The energy and work are computed by sive over-relaxation (SOR) was used to solve

work Th enrgyandworkarecomute bythe Laplace equation in its finite diffarenre
numerical integration, and the rate of energy toni f

change is computed by the second-order finite form.

difference scheme Haussling and Van Nseltlne [4,5] used an

n n-I + -2 implicit scheme to solve this problem. Their

t - (3 - 4
n  

+ e)/2&t (29) solutions oscillate about and slowly approach
the steady state, and their early linear end

and is compared with the rate of work. The nonlinear solutions ,re similar, Our (non-
result is shown in Fig. 7. It can be seen linear) solutions at t - 0, 1, and 2 are shown
that the numerical values of the rate of work with the linear, analytic, steady-state solo-
and the resistance approach asymptotically tion in Fig. 14. We can see similar oscilla-
the analytically predicted steady-state value. tions of the wave amplitude about the steady-
The condition of the conservation of energy is state solution and the wave trough position
preserved throughout the computation, about x - 0. The profiles shown are also in

good agreement with those ir, [4,5]. An over-

Obstacle in a Mvin Stream. The finite all comparison between the linear results in
elment method is now applied to the free [4] and our results Is shown by the variation
surface problem of a submerged body. Such a of the drag coefficient
problem has the additional difficulty in
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must be made if an inltial value problem is

used to seek steady state -olutions. Other-

Cd - - Frf pT11dx wise, phenomena such as the wavebreaking as in

Fr 0 this ease may occur. Another important indica-

tion is that numerical solutions fr three-

with time in Fig. 15. The major difference dimensional problems other than very simple

between these results is in the camping rate. ones tie feasible with current computer

ArtLf., ai damping was introduced in [4] to technology.

maintain stability in the upstream wave

height because the upstream boundary was VI, Conclusions

placed relatively close to the pressure dis-

tribution. In our case, the upstream boundary We have developed two time-dependent

was farther away and such mec.suras were unneces- numerical schemes to solve free surface prob-
sary. Our results indicate that the explicit lees. In one scheme, we use the finite element

method yields accurate solutions, method to make the field calculation in order

to deal with the complex flow geometry and

We have compared our finite difference and boundary conditions of the free surface prob-

finite element solutions and have found these lem. The feasibility of this scheme has been

two solutions differ after t m 1.4. The dif- demonstrated by numerical solutions obtained

ference is il: istrAted in Fig. 16 which shows for the two-dimensional problems of the pres-

the compariso' of resulcs on the drag co- sure distribution and the submerged body. In

efficient. The agreement of the wave height the other scheme, we use an explicit finite

at t - 1.0 ts shown in Fig. 17. difference method which is simpler to implement

and, therefore, can be applied to more complex
An Accelerating Strt. The problem was and large scale problems. Its feasibility has

solved on an elliptic cylindrical coordinate been demonstrated by numerical solutions ob-

system. The parameters ?f his problem are: tamned for a two-dimensional pressure dis-
a - 0.5, b - 0.05, and Fr = 0.025. The outer tribution problem and a three-dimensional

boundary of the domain used is an ellipse accelerating strut problem.

with axes
It would be of interest to study further

a. - c cosh 6 application and extension of our methods to

more complex problems. For example, a hybrid

method that combines the finite element and

and bm - t sinh 
6  

finite difference grid syst-ms can be devised
where c

2 
- a2 _ b

2  
for complex flow geometry to increase the
computational accuracy as well as efficiency.

and . - r + ln[ (a+) /c . We illustrate in Fig. 21 a hybrid system that
has two regions. We propose to use the finite

difference method in the outer region and the
The other boundaries were the free surface, finite element method in the inner region that

the symmetry axi_, the surface of the strut, h ial element The inner

and y - -4rl/25. At the boundary y . -4TT/25, has triangles as basic elements. The inner

the flow is assumed to be completely horizontal region has a square outer boudary that aetch-

as it would be at infinite depth. The two- em the inner boundary of the outer region.

dimen uiial flow past an elliptic cylinder is Su.:h a scheme can be applied to problems such
therefore used as a condition at this boundary.

The initial conditions for the problem the The application of any time-dependent
conditions at rest. The initial mccelarat ionThaplctoofnyim-endtcn n aapproach to find the steady state solution of

used is g/lO. The grid used to solve this free surface problems is possible only it we
problem was uniform with spacing A - n/50 in ar, able to find ways to increase the computa-all three directions of the elliptic cylindric- tional efficiency and to control the accumula-

l coordinate system. As in the previous prob- tion of the diffusive error. These two diffi-
lea, the spacing between nodes at the surface cult tasks will challenge us in our attempt to

and those at y * -4 was y * ( . solve numerically complex free surface

Our solutions for the strut problem show 
problems.

the wave formation at the ends of the strut at
t - 0.05 in Figs. 18 and 19. Shortly after, Re,

at t - 0.058, waveabreakLng occurred near the 1. Von Kercaek, C. and Salvesen, N., 'Numeri-

dosmstream end of the strut. Profiles along cal Solutions of Two-Diensional Mon-
the strut before and Just after savebreaking linear Wave Problems," Poie nals o the

ar shown in Fig. 20. The profile at Tenth ONK Svmoaium on vce,
t - 0.5878 is similar to that of the breaking Cambr Mes., Jn 1974, p. 649.

Stokes wave [311. The wavebreaking is caused Cambridge, Mass., June 19R! 9 . m

by combination of the short wavelengths 2. Salvsen, N. nd von Kerek, C.,a
associated with low speeds and the relatively "Comparison of Numerical ark Perturbation

larSe ameplituas associated with the high Solutions of Tso-limensional NonliceAr

initial acceleration. Water-Wave Problems," J. Ship Rea..

The solutions for the strut problem exhibit vol. 20 (1976), pp. 160-170.

expected behavior and, more importantly, show
that a careful choice of initial conditions
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Fig. 3. Schematic of the Two-dimensional
Pressure Distribution Problem.
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Fig. 1. Finite Element Sectors: (a) Six'tri- t'2.0O__ 0
angular elements, one interfor nods, (b) Ten -002
triangular elements, two interior nodes, (c)
Six triangular elements, seven interior nodes, Fig. 4. Tim Evolution of Waive Height Computed
(4) four quadrilateral elements, one interior with Linear Free Surface Conditione.
nods Fr (4")" and a 0.01.
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Nonlinear Free Surface Conritions, Fr =(4y) , - 0.0)---Re soe
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Fig. 5. Time Evolution of Wave Height Com-
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Fig. 8. Schematic of Two-dimensional Problem
- \. ~ of a Submerged Elliptic Cylinder.
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Fig. 6. Comparison of Wava Height, a - .01 057-

and Fir-(4r)_11 V2,, -
a Ionlnasr aolution at L - 1.0. = L.

b - Linear solution at t . 1.0.
c- Linear solution At t -0.96 by Rausaling

and Van Sestine.
d - Analytic linear steady state solution. Fig. 9. Schema tic of the Hydrofoil Probles.
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Fig. 20. Sequence of Wave Profiles at the
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Wavebreaking.
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Fig. 21. A Grid System for implementation of
a Hybrid Method. Inner Region for Finite
Fleamnt Method. Outer Region for Finite
Difference Method.
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TRANSIENT FREE-SURFACE HYDRODYNAMICS*

M. J. Fritts and J. P. Boris
Naval Research Laboratory

Washington, D.C. 20375

Abstract II. The Control-Volume Approach

The control volume approach is used to oh- For a Lagrangian formulation of inviscid,
tain a finite-difference scheme for a Lagran- incompresoible flow, the basic equations are
gian forazlatio. of inviscid incompressible d P
flow using an irregular triangular mesh. The - - - g

method permits grid reconnections and allows
local vertex addition and deletion. Algorithms and
are presented which onserve divergence, vor-
ticity, mass, momentum and energy even during V . V 0 )
grid restructuring. Examples are taken from
simulations of shear flow and flow overshydro- together with the conservation of mass, rmomen-
foil in which the restructuring algorithms are tum and energy. There are, of course, many
crucial. Although the structure of the code is possible ways to design finite-difference
highly scalar, techniques are outlined for pro- schemes for these equations. However, it is in
ducing efficient code even for the new vector general not poscible to determine which ap-
computers. proach will be successful.

5  
For the case of

triangular grids, and in particular reconnect-
I. Introduction log grids, there does not exist a literature of

proven techniques. Therefore the method chosen
The hydrodynamics code SPLISH is designed for SPLISH was the control-volume approach, in

for Lagrangian simulations of transient free- which the finite-difference equations are for-
surface phenomena. The present version of the islated to satisfy the conservation laws macro-
code was developed for inviscid, incompressible scopically, over a computational cell. In this
flows in two dimensions. The method uses a way the conservation of physical quantities is
triangular finite-difference grid in which tri- explicitly satisfied by the scheme at the out-
angle sides are aligned along free-surfeces, set, and rcrections for non-conservation are
interfaces, boundaries and the perimeters of eliminated. .
submerged bodies. The grid internal to these
surfaces is left free to reconnect, adjusting The definition of the control volume will
to the time-dependent flow.

1'2  
In addition, of course depend on the location at which phy-

vertices can be added or subtracted as they sical variables are applied on the grid. it is
accusalate or become sparse in convergent and natural to specify positions and pressures at
divergent regions of flow. The added flexi- vertices, since the Lagrangian surfaces coin-
bility gained through such grid restructuring tide with surfaces on which pressure is de-
permits the application of Lagrangian tech- fined as a boundary condition, In our formu-
niques to large classes of problem which were lation velocities and densities are triangle-
formerly considered solveable only with the aid centered, yielding a staggered mesh, Pressure
of diffusive Eulerian rezone methods.?'

4  
For gradients are therefore piecewise tiaear with-

example, tha simulation of shear flows about in each triangle and discontinuous at triangle
obstacles are possible with only local changes sides, as are the triangle velocities and
in the grid. This paper will present the for- densities. Therefore all the variables in
mulation and the motivation of several such Eq. (1) are triangle-centered and it is easy
grid restructuring techniques, the algorithm to advance the triangle velocities either
used in implementing them end examples of thai: implicitly or explicitly.
use in SPLISH. Because the lack of global or-
dering in a reconnecting grid is a drawback to The vertex-centered control volumes, cv,
its implementation, a discussion of techniques are used to define the new pressures chrough
to produce more efficient codes is included. Eq. (2), expressed as an integral invariant:
Examples will be given of calculations per-
formed on NRL's TI ASC pipolins computer. V• dV o- (

tv

This research was supported by the Offi:e of
Naval Research.
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There is another constraint Implicit in
3 Eq. (I). Taking the curl of both sides, we

have

iffL . (4)dt

For homogeneous systems this implies that V x V
is an invariant for every control volume since

V2  X VP s O. Wth a properly defined VP, the
finite difference formulation also yields V X
VP - 0, so that the vorticity cannot be altered
by the pressure gradients alone. However, this
invariant does not ensure the conservation of
vorticity over a complete tisestep by itself.
The velocities are triangle-centered, and ad-
vancIng the vertex positions means altering the
size and shape of the control voluaes while
leaving the velocities unchanged. In other
words, the integrated region is changed but not
the Integrand. Therefore the updating of ver-
tex Pui. 1cii .-1ctates an accompanying change
in triangle velocities to keep the vorticity

Figure 1. Definition of a control volume about conserved. This is shown explicitly in FigureF~gue 1 fnlton f a ~itot olue aout 3. The rotation and stretching of the triangle
an interior vertex, Vl. The area of triangle J ha neccsitated a rotation and diminishing of
is apportioned equally to the control volumes he tria e veloi u ath di ine
abut V and V .  

the triangle velocity such that the V -dt line
V 2 aintegral contributLions within the triangle for

each of the three vertex control volumes re-
That is, the pressures at the vertices are mains constant.
iterated until the resultant triangle veloci-
ties reflect a divergence-free condition for
each control volume. An obvious construction 3
for a control volume for this application in ()
shown in Figure 1. %be vertex-centered control

volume is defined by lines extending from the
triangle centroids to the triangle side mid-
points. This permits a unique, uniform and
complete tessalation of the entire computation- .
&1 region. The control volume for each vertex
contains exactly one-third of the area of each
of the adjacent triangles. Because pressures -
are defined as boundary conditions, the control V, V2
volumes are altered near boundaries as shown in
Figure 2. In this way the pressures at var-
tices near the boundaries enforce a divergence-
free condition over the additional area as well.

V5
(b)

V,

V2

rigure . Conservation of vorticity while ad-
vancing vertex positions. The triangle veIn-

Figure 0. Alteration of a c ;rol volume near city is altebrd such that the V'dL line Int-
a boundary. The portion of triangle j nor- sret ce triution within the rotated eand

emily assigned to the vertex V It ditded stretched tringlA remin the s, for each

between vertices V,, and V vertex.
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Thus 'ar we have shown only that a logi- shown in Figure 4(b). Although the area of

cal extension if the control volume approach is each triangle remains constant and each con-

applicable to a eneral triangular mesh. It tiol volume divergence-free) the convergence of

can lead to finite-difference formulations the iteration would slow and truncation errors

which macroscopica
U
ly conserve approprinte phy- build rapidly as the triangle sides lengthened.

sical quantities, rgardless of how irregular The very appearance of the grid reflects the

the mesh becomes The real utility of this non-physical situation in which pressures far

approach can be seer, however, wen we allow removed from their co-triangular points on the

the mesh the freedom to reconnect, interface directly influence their behavior,

whereas those in the immediate vicinity have

111. Reconnectios13 little effect.

Despite the assurance that both the curl Clearly allming the mesh to reconnect

and divergence can be conserved, soluions can solve this dilemma. After reconnection the

through auh Lagrangiam algorithms can still finite-differences will again only involve

yield grossly erroneous results. Figure '(a) neighboring vLrtices. The most obvious cri-

illustrates a sample calculation of shear flow. tenion for reconnection is based on this pre-

Triangles below the center of the fluid are mise. Any interior mesh line Is associated

moving to the left with velocity - U, and with a triangle on either side. The line can

those above are moving to the right witf. velo- therefore be viewed as one of two possible

city U. The vertices lying directly on the diagonals of the quadrilateral formed by these

shear interface are stationery, while those two triangles. One reconnection prescription

e'f.ovc and below move with the triangle veloci- is to select the shorter of the two diagonals,

ties. The shear layer is in an unstable equi- provided the resulting triangles are not too

librium and should persist until round-off unequal in size. This last caveat can be

errors accumulate enough to perturb the layer, quantified in a number of ,qays, o. course. For

Howevex, even in the absence of round-off in example, this algorithm would remove the line

the positions the achem will quickly fall from vertex I to vertex 3 and subtract a line

since the tri ngles on either side of the from vertex 2 to vertex 4 only in Figure 5(a).

boundary will tecome treiched. Very soon In Figure 5(b) the new line would lie outpide

pressure gradier.:s will be calculated wbich the quadrilateral and in Figure 5(c) the post

involve vertices far removed from each other as reconnection triangles would be vastly differ-
ent in size. Thus reconnection should not be

(a ) performed,

,3

4b 2..............

- Pigure 1j. The "nearest neighbor" reconnection
U algorithm. Lines are reconnected to choose the

shortest diagonal of a quadrilateral (a).

Lines are not reconnected for "inverted" quad-

•-.- rilaterals even if the exterior diagonal is
shorter (b). Nor is the reconnection performed
if the resultant triangles are too dissimilar
in size (c).

Despite the simplicity and physical moti-
figure 4. An emample of stretched grids in La- vation of such an algorithm, it is nor obvious
gra4ian simuletio s. The initial grid has tri - that it is the preferred one. The expression

angle valocIt'as to the right in the upper half for a general iangular mesh Poinson equation

of the fluid and to the left in the lower half
of the fluid (a) Periodic boundlary conditions y 1
are specified on the sides of the region. The TKI ij ;x(rc-ri)
grid very quickly distorts in the vicinity of 1 r4

the shear layer (b). + 9i+l ix(rirc) 
+ 

yc ix(r,+l-r 1

x _ cv( Vlcv- 0
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term is negative only when 0+ + V- > 180°O

t o ) s i n c e

2sinG+BinO-

Therefore the matrix represented by Eq. (5) is+ -1 8°oec
diagonally dominant if 6 + 0 f 1800 for each
I. This provides another uniquely defined
reconnection algorithm, since the sum of both
such pairs of angles in the quacrilateral is
just %.'

° . 
Whenever 0+ + 0- > 183, the line

is reconnected to the opposite diagonal. In

1+ other words, we have a reconnection algorithm
which automatically ensures the dinginal domi-
nance of the Poisson Equation for an irregular
triangular mesh. This algorithm also auto-

I-, Imaitclly ensures that a diagonal outside the
(b) -quadrilateral is never chosen.

Whichever reconnection algorithm is choseq
during a reconnection the smallest physically
definable cell is the quadrilateral, and not
the triangtes. it is reasonable then to en-
sure that quadrilateral properties are un-
changed during a reconnection. In other words,
the quadrilateral becomes a control volume over
which certain variables must be conserved. The
reconnection is further complicated by its
alteration of the vertex control volumes of

j+ 1 each of its vertices, as shown in Figure 7.

3

Figure 6. The reconnection Algorithm to pre-
serve diagonal dominance of the Poisson Equa-
tion. The triangle and %ertex labelling user
in the Polsson Equation is show in el. Fig- 4 2 4
ore (b) iodicates the angles 0

+ 
and 0 used in

the reconnection test for the line from vrrtex
c to vertex l.

The vertex c is the central vertex as shown
in Figure 6(a). Me is a sum over all tri-
angles ad acet to ci the labelling for the
i + ith triangle is as shows in the figure.
A Is the ares of the i + th triangle. Acv Figure '. The alteration of control volumes
islhe arcs of the control volume abouz vertex by a reconnection. Portions of the control
c and kV • V) v is the finite difference form volumes about vertex I and vertex 2 are shown
of Eq. ( 0. Toe coefficient a of the P. term before and after the ieconnection,
is c ,

It ,-r Nevertheless, it would ha desirable that the

a - A (6 ~ conervati on laws enforced through vertex1 i+J control volumes remain in force during the

and is always negative. The coeffiielnt of the reconnection. For exampls, to keep the vorti-

qt term has contributions fron just two tri- city and divergence conserved the portions t

angles A1 . and At 4 , and to the integrals f V " VdV end J f x V - dA
(7 4CV a surface

t . . AI within the old and new triangles mat be the
14*es before and after the reconnection. Since

i-I Yc I I-I there are four vertices with two equations fot
each and only four triangle veloctity componantsto ha chanSged, It would ease that both inte-

This coeffictent reduces to grajl cannot rasin unaltered. In fact, the
eight squations aor not independent. Thoro

, jcot 0+ cot o+ exists a utique solution for every inter!or
v tax which atisfie s both constraints. It

where 0" and 0" are shown in Figure ;(b). is gives by

Since 0
+ 
and 0" are both within the range of O0

to 181
0 

(in positive area triangles ,then this

.22



Therefore strict mass conservation cab also be
VT - enforced despite the destruction and creation

of triangles by constraining the new densities
where through Eq. (13). By Eqs.(ll) and (13) VQ and

Mi are both separately conserved, and therefore
V V Q

V V so is the quadrilateral momntum and kinetic
V V energy. The pressures at. 4efired at vertices

V BY 0 Rwhose positions do not change during reconnec-T " V T tion, and the potential energy can b altered

FX VLxl only by the different definitions of VPip.
( / (V Since we are free to choose both new densities

Ly/ and have only one equation, Eq. (13), to satis-
fy, we also control the change in potenial
energy through Eq. (4), which provides the
second density constraint. This specifies that

R2D -
2
A, R-C 2A\ the amount of vorticity generated within the
- quadrilateral is the same before and after the

-A R'D 2A R-C reconnection.

RA 2A RB 2A B Reconnections then offer a very attractive
Balternative to global rezoning. The control

2A R.A 
2

% R'B) volume approach leads to algorithms which con-

(10) serve vorticity end divergence in the control
volume about each vertex despite the reconnec-

where the vector definitions of A, B C, I, tions. The algorithms also conserve mass, en-
and i are given in Figure , V and VL are the ergy ind momentum on the basis of triangular
triangle velocities before reconnection and and quadrilateral control volumes and further
VB, V. and A., A. are the triangle velocities exhibit time reversibilty. Finally, the pre-
and areas after the reconnection. scription for tht occurrence of reconnections

can be chosen to preserve orderitg by nearest
neighbors or to preserve the difnconal domi-

- nance of Poisson's equation over the irregular
D C grid.

L R R SHEAR FLOW WITH NO PENTURBATIONS

AB A

Figure 8. Te labelling for triangles and

alde vectors used in the reversible algorithm

to determine new triangla velocities.

This solution includes a valuable bonus.
Not only is it unique, but it is reversible.,.. . *, ..
Re-reconnecting a line yields the original

triangle valocities as well as the original
vertex control volume configurations. This is
a desirable feature sinces it irrors yet
another implicit property of the basic equa-
tions, tit reversibility.

As stated above, Eq. (lo also preserves
rho quadrilateral velocity, That is

V - A +R AL - Ap +- "VB (I Figure . A test of the reconnection algorithm

R .in SPLISH. The grid at various time is pre-
whore sented for a simulation of an unperturbed

shear layer. The *rid at t - 0 coiresponds to
A- AN + A a A + A1. (Q) that in Filgure 4(a). However, hers the grid

reconnects as it stretches, as shown between
t - .036 see and t - .03 see. In this sim-mh was of the quadrilateral is just the sum lation 6t - .94 sac, P - 5 cm/sec and the

of the triangle clssaes, or length of 'he syete is 2 cm. At t - 2.) see

1 1O + , A %P + A89. (lI) each vortex in the upper layer has passed each
vertex in the lower layer ten times. Any

errosa in easigment of trisngle velocities
wou d have perturbed the unstable equilibrium
of the layer.
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MARKERS 5.?IS________________

Figure 10. The grid and marker partitles at two times in a siimlation of a perturbed shear layer.
Here it - .Ml sec, lUl.. 5 cm/sec and the length of tt~e system is 1 cin. At t - .300 sec. the pertur-
bed layer has grown to a mature Kelvin-Helmholtz billow. Only reconnections were used in restruc-
turing the grid. A, t - -329 sec the billow is shearing. Two grid anomsalies are circled.

These routtines have been tested on the to a denser grid before and after the hydro-
problem of shear layer instabi lity. Figure 9 foil and a spare grid along the hydrofoil
illustrate& a simujlation in which the initial itself,
shaar layer was not perturbed. The grid has
not changed although each vertex in the upper ~ LIS
half of the fluid has traversed the entire SP I __________________

grid tetn times. Figure 10 shows the grid and
a marker particle display for the case of an
initial perturbation which has grown to a
Kelvin-Ilelmholts billow (top row), and after
the mature biliow begins to shear. The cal-
culation agrees well with the predicted growth
rates. only the reconnection algorithms were
used in restructuring the grid, and the grid
at t - .329seecexhibits two irregularities. Two
of the vertices have becomes too close, forming
thin along& ,I triangles, and a third vertex
bas become -closed within a triangle. Other
grid res--cturing in clearly needed. These
additionai techniques will be discusaed in the
following section.

IV. Vortex Additioni and Deleton

The fluid flew near a soeratrix is ano- .

ther area in wh~ch traditional numerical La-
5rantgimn treatments fail. Figure 11 illu- Figure 11. The grid for a hydrofoil near a
strata@ a sample grid for a aubstergod hydro- free surface. The flow is jpitially directed
foil near a free surface. The flow it, directei to the right with velocity U.
to the right Initially with velocity U. Clear-
ly of the flow develops vertices will tend to These problem do not derive from an ill-
accumulate at the i.rward stagnation point. At chosen initial grid but ss Inherent in U.-
the so time the vertices on the hydrofoil grangian treatments. By thoosing the mid-line
will move withs the flow alonit the hydrofoil of the hydrofoil between an initial row of ver-
and accuausate (by pairs) in its wake. After a ticee, a situation develops in which vertices
very sbort tim the griddtng wilt deteriorate of the sams triangle flow toward opposite eides
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I
of the obstacle, leading to a nonsenaical cal- 3 J
culation of fluid pressure gradients between

vertices separated by an obstacle, Fixing the

vertices on the hydrofoil surface and allowingreconectio... Is neither physically desirable

non effective. A tangled grid results from 2

inverted triangles forming over the hydrofoil. I

The advantage of the present treattnnt using a
control volume formlation is that while these

problems are difficult, they are sttli soluble. Figure 12. Triangle configurationo Immediately

before and after the removal of a vertex. Ver-

The problem of representing flow near tax 4 is enclosed within triangle I either as

separatrices could be resolved if it were pos- 
a result of normal reconnections or by forciob

atble to add and subtract vertices from tha reconnections as it approaches vertex 2.

calculstion as needed without altering the phy-

sically conserved properties of the flow. F,,r- This claim requires elaboration. The re-

tsuately, uch schemes Ore possible, and may be moal of a vertex implies the alteration of

derived in the sam spirit as the reconnectiOU four vertex control volumes, one of which is

algorithm by using a control volume approach. removed, and such a drastic change does not

For example, the simplest way to add a vertex seem consistent with a mere change in resolu-

to the fluid is at the centroid of a triangle. tion. Figure 12 illustrates the triangles be-

Lines are drawn from the new vertex to each 
fore and after vertex removal. Before the ver-

of the existing vertices, leaving three new tex is deleted the relevant contribution to the

triangles in place of the old one. If all vorticity integrals about each vertex are

triangle varimblet are chosen to be identical 
) _ 3

with the original variables of the old triangle 
"  

2 + Vk

the behavior of the three triangles clearly

does not alter the fluid motion since it is - r) (r.r4 )

identical to that of the initial triangle
.  

If V. .i- 2 C 2

the vertex pressure is chosen as the average of

the three vertex pressures, we have likewise (r, + 4

left unaffected the pressure gradierts through- V • di V + V g3

out the area occupied by he old triangle. In

other words, the three new triangles behave 2r2-r1 ) (j

exactly as the former one, and are indietin- .dl- 2 + 2

guishable from it since the vertex remains 
en-

closed within its forner boundaries. However, - (.r)

we know that the reconnection algorithm will + -(15

eventuall]i alter one of the triangle sides if a 
2

vertex in the vicinity of the old 
triangle was

really needei. Otherwise the new vertex will After vertex 4 is eliminated, its vorticity

continue to behave as if it were not there, must be apportioned to vertices 1 through 3 in

But the reconnection is also conservative as some manner;

shown above, and once a reconnection occurs we (r -"

have successfully introduced a vertex while V" di- + = 1 
+

maintaining strict conservation of flow 
pro- -

The converse is a s.o true. If a vertex

becomes enclosed in a triangle, the behavior _ _ )

of that triaugle is not altered if the vertex 2v. d'- "V _ _ " _

is removed and the new larger triangle given

the velocity and

A4V4 - A1 V1  
+ V2 + A 3  
(14)+1a

where triangle 4 encompasses the three tri- Eliminating I' t2 and between Eq. (15) and

angles 1, 2, and 3. Since the mass of the re- (16), we have

sultant triangle can be defined in a similar

manner, the momentum of the larger triangle "(T4 +k ' 4r ) V" (r.-r2) i

has not bean altered. Therefore for both addi-

tion and subtraction of vertices, the larger i • i.r) +) ( 'V" 4 (=YI-Y) 1-2,

triangle aets as a control volume in exactly + 12 2

the saw sense as the quadrilateral for the vk" 1  t

recormections. What has been lost is the in- (17)

formation about the behavior of the pressure

gradients and ,elocity gradients within the -V Aj, + A + V

triangle. This information has been averaged Sbstitutin i k into

out and replaced by a linear vartatitn across Eq. (17) yields, after ems algebra,

the triangle. All we have suffered is a loss
in resolution, exactly what wu $et out to do in

removing the vertex.
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directions, and resolution of the leading por-

- A JA, tion of the hydrofoil is being lost. A point
may be added along the body as in 13(b). The
result may be viewed as the addition of a point

Ak94/A, within a triangle, but one in which only two of
the three sweller triangles survive.

A i,~i/ALl (b)

where + 
+ 
P - F since A + A + Ak*A

Therefore, conserving momentum exactly over the
large triangle yields exactly the conservation
of vorticity within the affected vertex control
volumes. The vorticity carried by the expunged

vertex is apportioned by area to the neighbor-
ing vertices. If the deleted vertex lies close tc)
to one of the remaining vertices, that vertex
will carry most of the reassigned vorticity.
Therefore the total vorticity is accounted for
in a reasonable and natural manner, and momen-
tum is still conserved. Since a similar argu-
ment holds for the divergence equations, con-
servation of flow variables is demonstrated,
and a loss in resolution is the only effect. Figure 1I. The deletion ,f a boundary vertex.

For the case of an added vertex, the ver- The flow is converging at the trailing edge of

tex control volume integrals are trivially left a submerged body (a), resulting in a clustering

unchanged, and the added vertex initially car- of vertices and the formation of long thin

ries no iorticity. Vorticity can accumulate triangles. 7- '"' a vertex is removed by draw-

about the added vertex only through reconnec- ing A new line to fon the enclosing triangle.

tions with triangles having dissimilar o. Thet In (c) a new vet is added within the elon-

is, vorticity is generated only by density gated triangle to preserve resolution of the

gradients, as expected. fl.ow at the trailing edge. Subsequent recon-
necrio 'ill remove the thin ti,.-gIel.

Therefore, vertices can be added and sub-
tracted rithin triangles while conserving flow idre l(a) illustrates the reverse aitu-

properties exactly. In both cases the useful- stion at the rear of the hydrofoil. Ther-
new line is dran to enclose the unw~anted vet-

ness of this result derives from the reconnec-

tion algorithm. Used in tandem with addition Lex in a triangle. In Figure lh(b) the vertex

and deletion within triangles it provides a 'i_ ved from the body, leaving the way

general algorithm for altering the grid without clear to add a verL- in the fluid, if needed

disturbing the fluid flow. It has already been to preserve resolution, , in Figure 14(c).

shown that reconnection used after addition t
a vertex at the triangle centroid liberato . the use of the control volume approach has

vertex in . conservative manner and permits it there, nade possible the dynmic aittion

to behave no longer as the centroid of the tri- and subtraction of vertices exactly wi.,. de-

angle. The process can also be reversed. The sired and in a fashion which locally and glo-

reconnection algorithu can be use' - isolate bally conserves the properties of the fluid

any vertex within a larger triangle. Once this flow. The combined use of local resolution

is accomplished the vertex can be averaged nut. alteration and reconnectiun algorithms permits
Lsgrangian calculations of extremely compli-

(5~ ((b 4 ~V. Efficiency

It is obvious that for a code such as
SPLISH any global ordering of the grid would
soon be invalidat"d by reconnections and by
the addition end deletion ot vertices. Since

standard fast Poisson solvers rely on such an

Figure 13. The addition of a vertex at a boun- iw' ,licit ordering among vertices, it is appro-

dary, The vertices on the bounday are moving priate to conclude this papec wu1,1 sow remarks

along opposite sides of a submerged body (a), an its efficiency.

and resolution Is lost for the leading edge of
the body. In (b) a new vertex is added on k,, The new generation of vector computers

boundary. The ol4 triangle is delated and ., )vides a good starting point for such a dis-

new triangles are added. cussion. The increased speed of these compu-
tars is stiained in large part by their ability

The utility of this technique is not limi
-  

to perform quickly a given operation on large

ted to interior mah points. Figure 13(s) numbers of membera of an array, which are pre-

illustrates a triangle at the leadink edge of a ferably stored contiguonrlv in memory. Calcu-

submerged body. The flow is forcing the tri- iations on a vector copter are therefore

angle vertices on the boundary in opposite performed operation by operation for all array
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members Instead of performing r? n whole se- vertex. These "alias" arrays can be ordered
quence of operations in turn for each member of consecutively in core in exactly the ordering
an array. The ordering of the vertices be- necessary for efficient vectorized code. There-
comes all important, and a highly disordered fore, although a 'od deal of extra scalar com-
code such as SPIASH is almost totally unsuit- putation is performed, the increase in speed
able for efficient operation. However, des- obtainable for the vectorized code more than
pite such obvious problems, the entire SPLISH compensates for the extra time. The use of
code has been optimized for the NRL TI ASC "alias" arrays has yielded decreases in compu-
vector computer. tation time of roughly a factor of three.

Typical timings for the Poisson solver are now
Our first example is the reconnection 6.8 milliseconds per iteration for 121 vertices

algorithm itself. The heart of the reconnec- or about 6) mlcroseconds per iteration per
tion algorithm is based on the quadrilateral vertex.
about the line. However, every reconnection
that is performed redefines the quadrilaterals Although such increases in speed are en-
for each of the four lines which make up the couraging, they are not the final solution.
original quadrilateral. This situation is Large calculations will require faster solvers.
highly scalar, in that a tingle reconnection The most promising approach is through the use
may invalidate the possible reconnection of of direct solvers, rather than iterarive ones.
four neighboring lines. Therefore it is im- Although the matrix representing Eq. (5) does
possible to allow reconnections to proceed in not exhibit the ordering of rectangular meshes,
parallel, and the complete calculation for one it is nontheless sparse. Furthermore, if the
must be performed before the next is initiated, vertices are preord2red by position, the non-

zero members will lie along rather diffuse
However, even iii this situation some in- bands. Recently, there hss been an increase in

crease in speed may be gained through effi- interest in fast solvers for such banded wq-
cienc coding. Clearly s good deal of the time trices and several techniques look particularly
in the reconnection algorithm is spent in test- encouraging,"' The outlook is very good.
ing each line for a possible reconnection. In Not only is a large class of problems now
general, very few of the Ii nes reconnect for a amenable to Lagrangian calculations, jut also
given timestep. The flow is following local at a computational cost per zone competitive
streamlines. Therefore the test can be vector- with other techniques.
ized provided its output is a list o' lines
which may want to be reconnected. Each of References
these ffew) lines is then passed through the
scalar reconnect routines, in which they are 1. J. P. Boris, M. J. Fritts and K. L. Hain,
retested and the reconnection performed if it "Free Surface Hydrodynamics Using a La-
is still desirable. An iteration -rough grangian Triangular Mes." Proceedings
this procedure may b desired, but in most of the First International Conference on
cases is not necessary since most reconnections Ship Hydrodynamics, Oct. 23, 1975.
occur remote from each other. In no realistic
case tested were more than three iterations 2. W. P. Crowley, "Flag; A Free Lagrange
required to reach the final grid. Method," Proceedings of the Second Inter-

national Conference on Numerical Methods
The savings in computer time, of course, in Fluid Dnamics, Lecture Notes in

depends on the number of lines reconnected. t'hysics Springer-Verlag, New York, 1971.
For roughly one percent of the lines reconnec-
ting per timatep (an average case), the vet- 5. R.K.-C. Chan, "A Generalized Arbitrary
torixed test followed by scalar reconnect is Lagrangian-Eulerian (Cale) Method for
ten times faster. The same is true of all the Incompressible Flows with Sharp Inter-
grid restructurins algorithms. Large saving faces," SAI-73-575-LJ, November 1973,
in time can accrue through vectorizing the
tets which must be performed on every line or 4. C. W. Hrt, "An Arbitrary Lagrangian-
triangle. lbs grid alterations must remain Eularian Computing Technique," Proceedings
scolar, but are relatively few in number, of the Second International Conference on

Numerical Methods in Fluid Dynamics,
The second example is the solution of Lecture Notes in Physics, Springer-Verlag,

Poisson's Equation. In SPLISH the presaures New York, 1971.
are adjusted at each vertex Iteratively to
enforce a divergence-free condition for each 5. P. J. Roache, Computational Fluid Dynamictj
vertex control volume. As shown by Eq. (5), Hermosa Publishers, Albuquerque, New
coefficiente of each term are expressed in Mexico, 1972, p. 25.
terms of the positions of co-triangular ver-
tices. Since there is no global ordering, such 6. M. J. Fritts, "A Numerical Study of Free-
a calculation accesses storage almost randomly. Surface Waves, "SAI-76-528-WA. March 1976.
That is, the coda is highly scalar, and its
efficiency on a vector machine is correapon- 7. M. J. Fritts, "Lagrangiar Simulations of
dingly poor. the Kelvin-Holmholtx Inetability,"SAI-76-

632-WA, September, 1976.

Newertheless, it is also possible to ob-
tain vectorixed code in this situation. The . N.J. Fritto and J. P. Boris, "Solution of
solution is to precomputs arrays which duptl- Translent Problems An Free-Surface Hydro-
cats the position data for each neighboring dynamics," MIL Memorandum Report 3446,
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Feb. 1977.

9. D). S. Kershaw, Private Coaunicstion.

D5. N. K. Winsor, NEL Memorandum Report 3481,
June 1977, to be published in Nuclear
Science and Engineering.



DISCUSSION$
of two papers

FINITE-ELEMENT AND FINITE-DIFFEFENCE SOLUTIONS
OF NONLINEAR FREE-SURFACE WAVE PROBLEMS

S.M. Yen, KD. Lee end T.J Aka!

TRANSIENT FREE-SURFACE HYDRODYNAMICS
M.J. Fritts and J.P. ors

Invited Discussion direction is nonstable. Figure 10 shows the
development of the nonstable situation. For

Aad J. Hermans certain combinations of density and fluid
Technische Hogeschool Delft velocity there exists a stable situation. An

interesting check of whether the described pic-
ture is a physical one or just a numerical

The authors should be congratulated for failure could be to run the program for a stable
their contribution of numerical tools to be used situation. I hope that this kind of information
in ship hydrodynamics. Both papers present can be given in orJer to furnish more confidence
methods to be used to solve the complete non- in the method.
linear free-surface problem in two-dimensional
problems, while the paper of Yen et al. presents The paper of Yen et al. brings up some ques-
some results in three dimensions as well. Up tions as well. In our paper earlier this morn-
to now these problems are considered as too com- Ing we presented a numerical technique that may
licated for solving with purely analytical tools. be modified to solve the same class of problems
Papers of for instance Ogilvie, Dagan and myself as treated here, but in stationary situation.
show that the linearized Kelvin-Neuman problem In shallow-water problems it turns out that the
leads to erroneous solutions at low Froude num- mean surface elevation in front of the distur-
ber, at least in certain two-dimensional problems. bance is different from the mean elevation
For three-dimensional problems the same errors behind the disturbance. This difference in mean
are expected locally. Therefore it is suggested level in the steady-state problem is due to a
that one take into account the non-linearity in phenomenon described by Brooke Benjamin and
the free-surface condition, drawn to our attention by a paper presented at

the IUTAM meeting in Delft by Salvesen and von
With the aid of the very fast new-generation Kerczek in 1975. It turns out that if one starts

pipeline computer, and perhaps in the future at rest and gives the disturbance a constant
with more sophisticated parallel processors, velocity suddenly, hydraulic jumps move forward
large computations may be carried out at rather and backwards with different heights. These
low costs. The disadvantage, however, of the jumps have to be found if one describes the
use of highly specialized numerical procedures initial-value problem properly in the snallow-
may be that a gap will grow between numerical water case. Especially in the supercritical
specialists and the physicist who likes to ob- case this effect is important. In the deep-water
tain a description of a particular physical case this effect is of no importance; therefore
phenomenon in ship hydrodynamics. the results look reasonably good. However, I

doubt whether in the shallow-water case the
There are some well-known examples where correct physical solution will come out of the

computational results look similar to physical numerical treatment. At last I would like to
ones, although it Is impossible for the mathe- remark that the authors in their paper do not
matical model to have such a solution. However, pay much attention to the Kutta condition. It
errors in the numerical procedure make the re- may be of interest to present more details
sults look that way. For instance, solutions of about the vortex that is left behind and Its
models without viscosity may look like solutions influence on the free-surface elevation.
of equations with viscosity terms, because of
the use of certain difference schemes. There-
fore a sufficient amount of testing has to be Discussion
carried out before the programs can be used b-y wa--ngune Bat
generally, of paper by S.M. Yen, K.D. Lee and T.J. Akat

I would like to start my discussion with Professor Yen and his associates should be
the lest paper where many details are presented congratulated for thair successful attack on an
concerning a Lagrangian method. The shear-flow exact nonlinear free-surface flow problem. I
problem, treated as an example for the reconnec- have only a few specific comments on their paper.
tion procedure, brings forth some questions. (1) It seems to me that in treating a hydrofoil
The nonviscous interaction between two parallel problem, the boundary crindition V-O at the trail-
streams of fluid with equal density and opposite ing edge is not convenient for the numerical
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solution of potential-flow theory. From my own Equal attention should of course be given to the
experience in treating a hydrofoil problem (Bai, sources of ereor that are common to the solution
1178), it was convenient to use the 'numerical of any fluid-mechanics problem, such as that due
Kutta condition' following Hess (1972), namely to artificial viscosity.
that the tangential velocities on the upper and
tower surfaces at the trailing edge have the We used the "water table" to study quali-
same magnitude. tatively the features of high-speed compressible
(2) When the Kutta condition is used, the domain flow in the earlier days; therefore, we can
of the potential flow is no longer a simply- appreciate the comments on the hydraulic jump
connected region but a doubly-connected regon. and other features in the shallow-water free-
Therefore, there should be a cut connecting the surface flow. lhe observation that these flow
hydrofoil surface and the outer boundary (i.e., features may lead to difficultires in solving
the bottom, the free su face, or the point at numericaliy the initial-value free-surface
infinity), problem in shallow water serves as a caution to
(3) The mechanism of vortex generation used here people in their attempt to solve such a problem
for a tire-dependent potential-flow problem is and suggests a new area of study in the numer:
not proper. For this Initial-value problem, the cal solution of free-surface problems.
authors make no provision for the trailing vor-
tices which necessarily lie within a finite do- The discussion of the treatment of the Kutta
main downstream of the hydrofoil. condition for the hydrofoil problem is given in
(4) In this paper the authors propose a hybrid the reply to Dr. Bai.
method that combines the finite-element method
and the finite-difference method. However, I
do not see any advantage of this hybrid method Author's Re l
since it is known that the finite-element method by S.M. Yen, K.D. Lee and T.J. Akai
and finite-difference method both reduce to the to discussion by Kwang June Bal
same final matrix equation if a proper choice
of the trial function is made. Our attempt is to develop numerical methods

to solve the nonlinear free-surface wave prob-
Bai, K.J., "A localized finite-element lems in general. The first step of our effort
method for two-dimensional steady poten- is to devise computational schemes to deal with
tiel flows with a free surface," (Sub- the nonlinear free-surface boundary condition,
mitted to J. Ship Research), 1978 the radiation condition and the free-surface
Hess, J.L., "Calculation of potential flow geometry. The seconl step is to study the
about arbitrary three-dimensional lifting feasibility of these schemes by applying them
bodies," Douglas Aircraft Company, Long to problems of increasing complexities. In this
Beach, California, Rep. No. M4C J5679-01, study, methods used to treat some of the other
Oct., 1972, 160 pages. boundary conditions encountered may have to be

simplified in order to facilitate numerical
experiments that are necessary to study system-

Author's Rep y atically the accuracy of computations. The
67-.U-'Yen, K.D. Lee and T.J. Akal third step is to refine our basic computational
to Ciscusslon by Aad J. Hermans schemes as suggested by these numerical experi-

ments. The final step 4s to find the detailed
,he supercomputers would undoubtedly be use- solutions of nonlinear problems of interest by

ful to us in applying the existing numerical applying the revised methods. It is in this
methods (the validity of which has been estab- step that we intend to mke further refinements
lished) to more complex, large-scale problems of the treatment of bousdary conditions, if
such as those encountered in ship hydrodynamics necessary, that are pcculiar to these problems.
and in developing more accurate computational In our feasibility study, we applied our methods
schemes for solution of these problems. Further- to the nonlinear problems of pressure distribu-
more, the computation power of such computers tion, submerged bodies and a surface-piercing
will enable us to treat these problems in con- body. For the hydrofoil problem, we chose a
siderably more detail; therefore, we expect that thin, symmetrical hydrofoil and neglected the
the numerical solutions obtained from the super- circulation generated by the free surface. In
computers will exhibit more accurately the the future, when we attempt to find the detailed
physical phenomenon to be simulated. The super- numerical solutlon of the lifting-body prob-
computers do present a problem to the users in lems, w will ii~e more accurate implementation
that they should understand the machines' archi- of the Kitta condition and consider the potential
tecture (either pipeline or parallel design) in Jump. (Tue comments made by Dr. Bai on the treat-
order to obtain the maximum possible compute- ment of the Kutta condition are pertinent, and
tional efficiency in the implementation of a the method he suggested to implement this condi-
numerical scheme. tion is of interest and would indeed be useful.)

Free-surface wave problems introduce com- In our proposed hybrid scheme, our intention
putational difficulties In accomnodating the is to accommodate more accurately the complex
free-surface geometry, in satisfying the bound- flow geometry (e.g., the free surface in the 1-
ary condition at the free surface, and in treat- direction as shown in Fig. 21) by using the
ing the radiation condition. Methods devised finite-element method in the near field and to
to deal with these difficulties will introduce facilitate the treatment of the hyperbolic fee-
errors. The focus of our effort in developing ture of the radiation condition at the free sur-
numerical methods to solve these problems is to face by using the f!nite-difference method in
minimize equally the error from each source. the far field (in the X-Z plane).
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Author's Reply
b-1TR7.ri tts and J.P. Boris
to discussion by Aad 1. Hermans

We would like to thank Dr. Hermans for his
remarks. His suggestion that the program be
used to study a stable shear layer is well taken.
We have conducted these tests and the detailed
results may be found in our reference 7. Speci-
fically we used several cenmbinatlons of density
gradients and shear layer depths at a given
wavelength to test whether the unstable growth
was indeed restricted to the spectral band which
is theoretically predicted. For all of our cal-
culations, the layers were stabilized In agree-
ment with theory. Similarly, whenever the
density gradients or layer depths were insuffi-
cient to achieve stabilization numerically,
the theoretical limits were in agreement.

Although these calculations were performed
primarily to test the program and had insuffi-
cient resolution for highly accurate results,
we feel they carry more than the usual weight
associated with routine testing of code. The
tests also indicated the presence of symnetri-
cal waves on the stabilized layers which were
experimentally observed but not theoretically
predicted. Furthermore the long-time solutions
indicated that the shear layer between the
Kelvin-Helmholtz billows remained stable even
during the coalascence of the billows into a
turbulent layer. lhd; provided a plausible ex-
planation for the previously uizexplained phenom-
eunrn of the appearance of density gradients in
the micro-layers of late-time turbulent regions
formed by shear layers.



ADVANCES IN THE CALCULATION OF STEEP SURFACE WAVES
AND PLUNGING BREAKERS

Michael S. Longuet-Higgins
Dept. of Applied Msthematics and Theoretical Physics

Unlvrlty of Cambridge end Institute of Oceanogrsphlc Sciences
Wormley, Suny, England

Abstract potential at the free surface
only. At each time-step an integral

This paper describes some new and equation is solved for the normal com-

accurate methods for the calculation of ponent of velocity ao/an . The method

the form- of steep gravity waves, and of is free of analytical approximations.
the time-history of unsteady, breaking It was found possible to follow the

waves, development of the free surface well
beyond the point of overturning.

For steady waves, one method has
been to use the small-amplitude expan- In more recent work Cokelet has
sion due to Stokes, but introducing a followed the flow to the point where
new expansion parameter which (unlike the tip of the breaker touches the
the first Fourier coefficient) forward face of the wave. The momentum

increases monotonically over the perm- in the jet has been found numerically
issible range. With the aid of Pada to increase almost linearly with the
approximants, satisfactory convergence time after overturning.
can be obtained with the use of about
10 terms. These calculations have A recent calculation of the dynam-
been facilitated by the recent discov- ical stability of steep waves has shown
ery of u new set of quadratic relations that as well as subharmunic instabilit-
between the coefficients in Stokes's ies of the Benjamin-Feir type there

opansion. also occur local instabilities, on
waves whose steepness exceeds about 93

The author and M.J.H. Fox have percent of the maximum. These instab-
developed a different approach for ilities, and their corresponding growth
waves of nearly limiting height, where rates, were calculated by a normal-mode
the wave crest is still rounded. They analysis. A quite independent check
have shown that the flow near the crest has now been carried out using the
tende to a certain asymptotic form, tia-stepping method described earlier.
whose length-scale t is proportional This has accurately confirmed the ini-
to the (non-zero) radius of curvature tial rates of growth and displayed the
at the crest. This asymptotic form is later stages of development of each
the same for steady waves of any type, type of instability. The local
whether in deep or in shallow water, instabilities develop rapidly into
Using this as an "iruier solution", and plunging breakers. The subharmonic
matching it to an "outer solution" rep- instabilities grow more slowly at first,
resenting the rest of the wave (wave- but at a later stage local instabilities
length L ), they have shown how to des- develop at the wave crests.
cribs a steep wave by an expression

involving two terma onll for suffic-
iently small values of XL . The I. Introd~gtAo
expression derived for the phase
velocity confirms very accurately the Most theories of surface waves are
previous calculations by Padi sums, and valid only when the surface slope is
shows in particular that the phase- sufficiently small, the particle accel-
speed in not a monotonic function of erations are small compared to 9 , and
the wave heightt the highest wave is not the particle speeds are much lees then
the fastest, the phase speed 0 . But observations

of waves under the action of wind, or
For unsteady breakers, a new and near the caustic of a ship-wave pattern,

accurate method was proposed by the commonly show the wave form as quite
author and developed in collaboration steep and sharp-crested, sometimes
with E.D. Cokelet. This sei-Lagrang- breaking by turnirn over onto the for-
tan method uses the values of the coor- ward face of the wave. Laboratory
dinates X, and of the velocity- observations of plu1ging breakers alsoj 332



-how the particle velocity in the for- of the higher waves is actually less,
wards jet may exoed 12 times the and their speed also.
phase-velocity for low waves of the
same length (). 1.0 ------ -

Here we shall review recent cal- L LOW-WAVE SERIES (L-N 1975)
culations under three heads (a) steep ..... STEEP-WAVE ASYMPOTE
symmetric waves (b) the deformation of

the wave which lead to breaking and
(c) the flow in whitecaps after break-
ing. We also describe a new calcula- '

tion of the normal-mode instabilities 1-0

of steep gravity waves, which indicates
that there are two different types.
First, there are subharmonic instabili-
ties of the Benjamin-Feir type. These >

tend to modulate the wave envelope, so I
that the difference between high and I
low waves constantly increases. Second- 1.090
ly there is a local type of instability,
concentrated near the wave crest, which
leads directly to plunging. The rates
of growth of these instabilities have 042 0.43 0-44 0443
bee.1 accurately checked by the indepen- WAVP AMITU09 t)
dent time-stepping metlhod described
under (b). Figure 1. The phase velocity C of steep

gravity waves in deep-water, relative
This paper is about waves without to the speed c, of waves of infinit-

ships. Nevertheless there is reason to esimal slope. Circles represent cal-
suppose that numerical techniques culatons by use of small-amplitude
similar to those for pure gravity waves series, carried to high order. The
may be extended to problems involving broken line represents the asymptotic
solid bodies, and with analogous results. expression, (3.2).

These results ale similar to those
II. Steady symmetric waves fourd for solitary waves (). The

nuaerical computations have been exten-
It vas Schwartz (2) who discovered ded systematically to waves in water of

that for steep gravity *aves, not finite depthi by Cokelet (5) who has
necessarity the highest, Stokes's given tables of important wave propert-
series must fail. This is because the ies at different values of 0-h and h.
parameter used by Stokes, which is
effectively the amplitude O. of the Numerical calculations have been
first Fourier harmonic, does not facilitated by the discovery of a new
increase uniformily with the wave height set of identities betueen the coeff-
Dju tl constant wavenumber I . In fact icients in the expansior of the suri'ace
O., reaches a maximum at about ojt . 0.1j00 elevation *y as a function of the vel-
whereas the highest wave corresponds to city potential P at the free surface.
o-kO.443 (see 2Figure 8). For the Thus in deep water, If9qA= I and
Same value of 0, , therefore, there can 4

sometimes be two possible waves of the
same length, with differing heights 20._

and if we write
Schwartz (1) overcame this obstacle

by -,in as expansion parameter not Cj +/
but o.C, each value of which defines a I/C
unique wave. Convergence was acceler-
ated by use of Pads sums. ,- -H5 /c l-+,,,

Soon afterwards (.) it was estab- .
fished that not only each coefficient then we have
4Lt, but also the phase-speed C attains
a maximum for waves lees than the high- -£ + -
et, in fact when oL.-O,43 6 (see Fig- -2 3 y I

uro i). The physical reason is connec-
ted with the fact that the highest waves a. kCo + \ C, +" OL +
are so sharp-crested that their 

surface

profile intersects that of the waves
that arc slightly lower. So the prof- a I%0, + A + I
ile of the higher waves lies below that

of the lower waves over most of their IO3 - , . a., + -. $ - mwavelength. Hence the potential energy '"
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Figure 2 from Longuet-Higgins and Fox (21. Asymptotic form of the profile
of a steep, progressive gravity wave.

Her., X is an eigenvalue, equal to - H C To calculate the complete wave
The above relations are quadratic in profile (10) we define a small parameter
o. ,o1 ..- ird A . So they are both F by
simper a more efficiet then those ,,
previously used (2). C = -16 2

The above relations were discover- so that for steep waves C is small.
ed accidentally by comparing two columns The fluid is then divided into three
in the output of a computer program (6). zones of dimensions 0(0L), WeL) and
But a formal proof has now been prey- 0(L) respecively (see Figure 3). In
ided (8). the inner zone I the flow is given by

the asymptotic solution of reference
(2). In the outer zone III the flow is

-II, Asymptotic methods given essentially by Michell's limiting
solution for the highest wave, pertur-

For steep waves, the above methods bed to order C 3 so as to accom-odate
requiri summation of series to high the rounded crest. Xateh:ng of the
order N .where N may exceed 80. A
different approach (2, 10) reduces the
expreesion of c and other integral
quantities to only two terms.

It was noticed (2) that for very
steep waves the forms of the wave
profiles at the crest are self-similar,
being scaled Oy the length

where 9/ denotes the particle speed at
the wave crest, seen by an observer Figure 3. Zones of validity for cal-
moving with the phase-speed C. , For culeting the aLmost-highest wave.
liniting waves the crest is a stagna-
tion point at which -k vanishes. In inner and outer solutions is accompl-
general I is proportional to the red- ished in zone II. e quote the follow-
iie of curvature at the crest. The lng results (a1). To order G* , the
limiting form of the crest, at distances wave amplitude ti- and phase speed C
comparable to I , has been calculated are given by
by Longuet-liggins and FoA (see Figure
2). Because the profile crosses its 0 44343 - 0.T9
asymptotes, the maximum slope slightly o
exceeds 30. a suspected by Saeki and + Q 0 eWa (2. I't 3
Murakami (11) The actual value is
30-370 (as* (2)). C .I3

6 --
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As 6 - 0 * the cosine gives an oscill- To proceed to the next time-step

ation in C , damped by the factor t. we need to know both components of the
The values are in excellent agreement velocity on C -- t dt) . We can obtain
with those found previously by the summ- the tangential component & / . immedi-
-tion of high-order series (see Figure 1). ately, by differentiating b(t- 4 dt-)

along the new surface. However we still
lack the normal component of velocity

IV Unsteady surface waves on C (t

Now because of the space-periodic-
For calculating unsteady motions ity we can transform Cinto a closed

and breaking waves a fully nonlinear contour C1 (Figure 5) simply by writing
method was proposed by the present
author (12) and developed in collabora- . (x t(X ))f
tion with E.D. CokeleL. Though applied -

first to w&ves in deep water (T) ( The domain of the fluid goes into the
(1U) it h as also been extended to finite interior of C, and the points at infini-
depth by Fenton and Mills (16). te depth go into the origin 01. We

The moti~n is assumed to be irro- then have to solve, in effect, the well-
tational end periodic in space (see known Dirichlet problem, namely to findtatona an prioic n sac (se ' I/,, Y on a contour C' o given
Figure 4) though not generally periodic on on a c o
in time. All calculations are carried
cut with the surface values of the space

coordinates (x, y) anO of the velocity F (. 0
potential 5 . For the rates of change

these quantities one has everywhere inside C /

- ~-plane

where /')it denotes differentiation r
following the motion. The last equat-
ion follows from the time-dependent
Bernoulli equation and the fact that 0

/ (VN• Hence
given the surface va ues of 3k, 3 , 0
and a at some instant t on the our-

f c4 one can calculate c, 'Y and
at tim t - on the displaced

2urface C (t-4t).

Figure 5. The surface C In the trans-
formed plane.

C This problem can be solved as

follows. Let Rew denote the polar
/ coordinates of a running point P on

- - -- - the boudary, relative to a fixed point
_ , also on C j. Then it follows

/07 //from Green's theorem that

L -____

where in the right-hn integral we take
the principle value. Since 0 Is known

everywhere op C ' . the right-hand is
given, and the equation is then a linear

Figure 4. The free surface is the (:.j) equation for "'L./jn with given kernal
plane.
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, .Solution cf thi equation gives of initial conditions. We quote three

us on '(t'+l) , and the examples.

time--stepping can proceed.
In (,U) the authors assumed an

Numerical solution of the integral initially regular progressive wa'e train
equation has been carried out by of finite amplitude and applied to it
Longuet-Higgins and Cokelet (12) repla- P, surface distribution of pressure such
cing the boundery by a finite number as to raise the energy of the waves
of integration points. Typically smoothly to a level greater *han the
for one wavelength. Details of the maximum possible (E--..) for a steady
method, which are vital for its accur- wave train. The pressure was theA re-
acy and success, are given in their leased, so that the waves were free.
paper. The method was tasted for accur- They thin became unsymmetric and over-
acy on a free symmetric wave of finite turned forwards (see Figure 6).
amplitude for which the foim and phase-
velocity were calculated independently It will be noticed that the compu-
by the method ' Section II, and good tation points, which are also marked
agreement was obtained, particles, have a welcome tendency to

collect near points of marimum curva-
The method is evidently quite flex- ture, where they are most needed for

ible and can be applied with a variety computational accuracy.

C)

Id)

Figure 6 (from Longuet-Hliggns end Cokelot (j)). Overturniz of a free wave,(d) to (g),
when raised to an e%ery level L a Jfb by a smoothly applied pressure
at the ar ac . (a) to(c'.
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In a second example Cokelet (L) which lies between the two vertical
begun with a free wave of exactly tangents to the surface has been oll-

: incioidal form but moderate or large Owed numerically as a function of theamplitude. Thus it is not a steady time (see. Figure 8). Once started, it
w tve. Vttbout aplying any pressure at appears to increase almost linearly withthe free surface, he follows the devel- the time, until the tip of the Jet meetsopeent of the wave in time, shnwing the forward face of the wave.
that it, too, curls over forwards (see
Figure 7). This occurs though the A third example of the application
total energy E of the wave may be less of this method is given in the nextthan /: a.The momentum of the Jet, section.

defined as that part of the breaker

E/E.s = 1-67

0.61.

0.2

-0.2 -- 2
-0.6

21n

Figure 7. (from Cokelet (14)) Overturning of a froe wave, initially a pure sine-wave
of finite amplitude.

0.2: 613

"~ 0 EIE ..n 613-

! 5W3

0.'

O.OS 313-

213

0. 1 - - --
0. 2. 4. 1.

Figure 8. (from Cokolet (,4)) Growth of the momentum in the Jet as a functin
of ti.. a,

337



V. The instabilities of steep
gravity waves.

In order to understand the proc- is then unaltered, this perturbation is

esses leading to wave breaking, the independent of time; its frequency is
author (§, 2) has recently investigated zero, for all a . However, as 0, inc-
systematically the stability of regular reases from zero, each of the super-

finite-amplitude gravity waves with res- harmonics ka ' ,4 2 ... tend& generally
pect to arbitrary small perturbations. to decrease in frequency, in this ref-

In a frame of reference moving with t1e erence frame. The frequency (72 of the

phase-speed of the unperturbed wave, the lowest superharmouic tends towards r -a
unperturbed motion is steady. So for at precisely the steepness o- ..
the perturbed motion we may write for which the phase-speed C is a maxi-

mum, indicating the onset of a looal

- " nI+ instability at this critical amplitude.

where 1, 4- are the velocity potential
and the streamfunction taken as indep- NORMAL MODE PERTURBATIONS
endent variables; A , '( represent the
unperturbed, finite-amplitude wave cal- OF DEEP-WATER WAVES

culated by Stokes's method or otherwise, _ _ _ _ _ _ _

and , V? are small, time-dependent
perturbaeions. The free surface is -3

given by V? ' g, where F also is
small, and ail squares and products of -- --,-.-

'? and r are neglected. 4

An arbitrary perturbation may be
resolved into normal modes of the form5 .__--_____-2

ZW 3 6

e I

where 7 denotes the corresponding eig-
enfrequency. If C is real, then the
modes are neutrally stable. If on the
other hand c is complex, with a non-
zero imag. ,,ry part, then the modes will

grow or deciy in time. 00 01 02 0 04 0-4434

WAVE AMPLITUDE (ak)
In (6) and (2) the normal mod,, A

were computed by resolving X, 'f .,
and each into a Fourier series in .

The calculations showed that for suffC - Figure 9. (from Longust-Higgins (2))
inetly small values of the ateepness C.A' Frequencies of normal-mode perturb&-

of the unperturbed all normal-mode tioni, as a function of the dimension-
perturbations are '',ral, and resemble less amplitude t.k of the unperturbed
travelling waves v-,n frequency r * In I wave. The ratio M corresponds to the
where n is the wavenumbar of the pert- wavenumber when A is small.
urbatlon. Thus ^w I corresponds to a
perturbation that shifts the unperturbed

we%. through a cona .Lai phase. Since
the phase-speed of the perturbed wave
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Still more intqresting are the It has a maximuim rate of growth when

aubharmonic instabilities i~g A q:)Q h -32 and then dies out at aboutI
whose frequencies PE. er) are shown in ,~f p = 3 -L,. Then at about ckka L' A
Figure 10. As &Rl increases, the noutr- a new instability arises. resulting from

&modles n = 1* 11m coalesce in pairs a coalescence with the mode A - I . It

to form subbarinonic instabilities of can be shown (2) that this in to be
the Benjamin-Feir type. Their rates expected at about the value of cv.A which
of growth Tevqr) are shown in Figure 10. makes C a maximum. The new instabil-

ity is localleed -!,ar the crests of the
Consx.der for example the subbarmo- original wave. It has a much greater

nic mode ?AwK(,i2), that is t aAsk ) rate of growth (I.* Figure 11) and is
whose basic length is twice tohatyof*(i1k:;* expected to be tae forerunner of a
unperturbed wave. From F~gure l0,this plunging breaker.
first becomes unstable at o.h

0. -toE .. f

ee o' 5 04 04 "4 40 t 4 04 .3
WAVE $7I0"ePIIs (.6)WAESIH14(k

Figure -) (from Longuet-Higgina.(8) Figure 11 (from Longuet-Higgins, (~)
The frequencies of normal modes of The ratej of growth of normal modes of
oscillation (subbarmonics) having a oscillati on (subbarmonics) having a
horisontal periodicity of M wave- horizontal periodicity of f" wave-
lengths, when nNv $ . 7Te real part lengths, when m~ - . The imaginary
of the frequency is shown as a func- part of the frequno.y is shown as a
tion of the steepness ok of the function of the steepness (J?~ of the
unperturbed wave, unperturbed wave.



To check these conclusions, obtai- Figure 12 show the results for the

ned by a normal-mode analysis, and to fastest-growing subharmonic instability,

extend them in time until the pertur- when 06 w O 32 On the left are
bation* themselves became nonlinear, the showrn two wavelengths of the perturbed

author and E.C. Cokelet (15) have used wave, with time increasing down the

the time-stepping method described in page. The wave is progressing to the

Section IV to fo l the development of right, in general. In the right-hand
the normal iode(1 . The motion column is shown, at the top the initial

satisfies the condiions of the analysis, perturbation imposed on the wave, with

being periodic in space (not time) but vertical scale exaggerated x 20. At

repeating itself every two wavelengths subsequent times the perturbation is

(see Figure 11). The perturbation, defined as the difference between the

being odd, in of opposite sign on adjac- perturbed wave as shown on the left, and

ont waves.

Figure 12. Time-stepped calculation of the growing perturbation ': j, 2/2)
when oJR .Q.3 . On the left is the calculated profile, as it
develops through one half-cycle or the perturbation (time increases
downwards). On the right is shown the perturbation magnified
vertically times 20.
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the unperturbed wave advanced to the more flattened, and vice versa.
right with the phase speed. Figure 12
encompasses one half-cycle of the pertur- Figure 13 shows the results of carr-

bation, during which the perturbation ying the computation of the unstable mode
can be seen to have grown and to have ('/- /1) for a further half-cycle. By
reversed in sign, relative to the unper- this time the steeper crest has developed
turbed wave. Thus the wave crest which a sharp curvature.
was initially more peaked has become

Figure 13. (continuation of Figure 12). Further development
of the growing perturbation (*I/;Z 3/2])' when t.i. .
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The rate of growth of the perturb- of low waves. The interval between

Stion was calculated as follows. Let successive profiles is only 0-02 of the

.00) and d (]) denote the perturb- basic wave period. so that the final

tions at tifses L- 0 and 'A/ a, (a overtux'ning takes place very rapidly.
half-period) respectively. Then the
apparent rate of growth j'was taken
asn

where Jdenotes the r.m.s. value of
.1 I~ tis a the calculated

lde of It/ wca 1.51 giving -02.O.2 0.2
(see Table 1 ) compared to the *alue

-Op0; At obtained by the normal-
mode analysis.

As a check, the correlation coe-
fficient C~ Q, between 9.x
and JN4 -t A i w'an also calcula ted, and
maximised with reopect to A, . The max-.
mass correlation coefficient ~

was in this case 0'039 (see Tabld 1)'. 2.7 2as a., 3.0 3.1 2.t 3.3

The corresponding decaying perturb-
ation was also tested. The rate of
decay was found to be -0 - -0 c.

Theycorrelation. coefficient C( wcs
only slightly lees than for the 1 creas- Figure 14. Close-up of the overturning
ing soda, crest corre.pn"41ng to Figure 13

- Cl.m O-) in a reference frame moy-

Figure 14 shows a close-up of the Ing with speed C5 . The time between

wave profile of Figure 13 during the fin- successive profiles Is 1/50 of the

al stag3 of overturning, as seen in a wave period.

frame of reference moving with the speedC.

T~able 1. Comparison of calculated rates of growth of perturbationa.

Normnal-mode calculation Time-stepping with integral equation

1/2 '2072 15.17 .0000 90 -999 *Ooci

0'10 3/2 '2153 11.41 .0000 90 -996 -'0001

0.0 1/2 '2098 14'57 '0003 90 T .996 *0001

0'0 *.3/2 .2406 J3.o6 '0000 90 -988 'C1

(1/2, 1/2)* '2150 14.61 '0132 90 * 990 '0138
0.25 (1/2, 3/2)_ '2150 A4.61 -'0132 90 ~T '985 -'0,125

(1/2, 3/2)+ -1931 16.27 *0234 90 o99 .254

0'2 (1/2, 3/2) .1931 16.27 -0234 90 .800 -'0175

1/2 '1804 37.41 '0000 90 1T '993 -'0009

0.8 (3/2 '1309 24.00 '0000 120 ',T '875 -'0040

0.40 1/2 '184o 17.07 '0000 g0 -85 *a o.o65

o041 (1/2, 3/2)' 0000 o064 120 0.5 .96 -o65



A cruci al tetuf the reIua-mode Figure 15 shows the development of the
analysi wa crried ot othmoemode n= V2. After one half-cycle the
at the besi c amplitude o.01 .S. Acc- perturbation returns closely to its
ording to Figures 9 and 10, the mode at original value, with a change of sign

this amplitude should have become neut- but without appreciable magnification
rally stable, that is, the rate of (see Table 1). The magnification of
cowth should be zero. At c...t# 0.3? the mode n37at thin value of .IR is

there are actually two branches, vhich also small.
for convenience way be designated nV

(th upe rnhJnt%-/~ oe)

Figure ~ ~ ~ _ _ __eopeto tenurl oeA 11a ;
Onth ef t hetmestpedwveprfle n txrih

is th etrainelre vrial yafcu 0
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Finally Figure 16 shows the grewing growu very rapidly, at about 10 times the

m~de at 0_~ a 0,41 . Thet original pert- rate of the fastest-growing subbaxuonic

urbation is clearly very local, being instability.
concentrated at the wave crests, it

Figure 16. Development of the unstable mode I'- "~~.)t 0a?- I.
On the left is the time-stopped wave profile;z *the right is

the0 perturbation enlarged vertically by a factor 5.
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NUMERICAL SOLUTIONS OF TRANSIENT NONLINEAR FREE-SURFACE
MOTION OUTSIDE OR INSIDE MOVING BODIES

Odd M. Faitinsen
Division of Ship Hydrodynamics

Norwegan Institute of Technology
rodholm, Norway

Abstract 0 Fourier transform of velocity
potential

A numerical method is derived for Y0  Fourier transform of forced
study of two-d~mension-l nonlinear vertical velocity
transient problems of a body oscillating a radius of circular cylinder
in a free surface. At each timestep the ( small quantity defined by
velocity potential is represented by a equation (40)
distribution of sources and dipoles over A3  amplitude of forced heave motion
the wetted body surface and the free F Hydrodynamic vertical. force on
surface. Properties of fluid particles cylinder minus linear restoring
on the free surface are used to step the force (- pg2ay0 (t))solution forward in time. A formula to
calculate the exact force on the body is 1. Introduction
presented. A solution to a linear tran-
slent problem is derived. The solution Nonlinear free surface problems are
agrees well with the nonlinear transient of importance in many ocean engineering
solution. The sloshing pL~blem is brief- contexts. An example is sloshing of
ly discussed, fluid in a ship tank. Other examples

are the influence of steep surface waves
Nomenclature on marine structures and the slow drift

oscillations of a moored structure or a
(x,y) )rdinates, (see figure 1) low-waterplane area large-volume struc-
O(x,y,t) velocity potential ture in irregular waves. Linear theory
t time variable is commonly used in predicting wave-
r(x,t) free surface elevation induced motions and loads on a ship. But
g acceleration of gravity nonlinear effects cannot be ignored in
to(t) forced vertical velocity of the extreme weather conditions or for

cylinder extreme shipforms (for example ships
n unit normal vector to the sur- with large bowflare).

face (positive into the fluid)
n3  y-component of A Nonlinear fy:ee surface problems are
S wetted body surface (mean difficult to solve. The mathematical

wetted surface in linear theory) difficulty of the problem arises essen-
S. vertical control surfaces at tially from the ne-d to satisfy the

x - ± - condition of constant pressure at a free
SF  free surface surface which not only is unknown, but
SB horizontal control surface far whose form is highly time dependent.

down in the fluid Finite element methods and finite diffe-
b(t) is so defined that when IxI>b(t) rence methods have been applied with

the flow can be approximated by good results to some nonlinear fren sur-
a dipole at the centre of the face problems. Bt in this paper we
body apply a Green's functioin L.-idary -inte-
volume enclosed by S, SF, S. gral-equation technique which is thought
and SB to require less computer storage and

A defined by equation (9) computer time than finite difference and
(tj,nj) coordinates of endpoints of the finite element methods. This kind of

segments (see figure 1) method has gained good reputation in
(i Yi) coordinates of midpoints of the predicting two dimensional added mass

- segments (see figure 1) and damping coefficients (Frank (1)) ind
p mass density of the fluid linear wave-induced motions and loads on
A33  added mass coefficient in heave large offshore structures (Faltinsen and
533 damping coefficient in heave Michelsen (2)). Ogilvie (3) suggested

Fourier transform variable using the boundary-Integral-equation tech-
0 circular frequency of forced nique to solve a nonlinear tree surtace

oscillation problem arising in wave resistance

34?
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analysis. A similar technique was through the center of gravity' of the
applied by Longuet-Higgens and Cokelet cylinder. The y-axis is symmetry line
(4) to study the deformation of ste.p for the cross-section. The x-axis is in
surface waves. Faltinsen (5) applied the undisturbed water plane.
and modified Ogilvie's ideas to study
sloshing of fluid in a rectangular We assume the fluid to be incom--
tank forced to oscillate harmonically pressible and the flow irrotational so
in sway mode. that there exists a velocity potential

*that satisfies the Laplace equation
In this paper the boundary-integral-

equation technique is applied to a non- 
2  

a
linear two dimensional free surface pro- x- Oy- 0 (i)
blem with a body oscillating harmonically
with forced vertical velocity in the free in the fluid domain. The pressure is
surface. The amplitude of oscillation set equal to a constant atmospheric
is finite. We neglect viscosity and pressure on the fr~e surface. Neglecting
assume incompressible fluid and irrota- surface tension, we can write the dyna-
tional flow. The exact nonlinear free mic free surface condition as
surface conditions are satisfied. The
problem is solved as an initial-value 2t a (y
problem. When the problem has been g9 + )+ ( - 0
solved for one time-instant, the free

surface conditions are used to find the on y = (x,t) (2)
free surface position and the velocity
potential on the free surface for the Here g is the acceleration of gravity,
next time-instant. At each time instant y - (xt), the free surface shape, and
the velocity potential is represented by 1 -3 the time variable.
a distribution of sources and dipoles
over the wetted body surface and the The kinematic free surface condition
free surface. Unknowns at each timestep can be written as
are the velocity potential on the wetted
body surface and thQ normal derivative
of the velocity potential on the free - + - 0
surface. Those are found by solving an y
integral equation. The numerical calcu-
lations are significantly reduced by on y - t(x,t) (3)
representing the flow far away from the
body by a dipole with singularity in the We wet the initialvalue condition
centre of th body.

0 - 0 on the free surface C-0 (4)
A formula to calculate the exact

force on the body is presented. In the For a linear system this implies
formula it is onJly .ecessary to know the
velocity potential on the positions of
the free surface and the wetted body -(x,0,0) - 0 (5)
surface.

In order to gain some confidence in Other initialvalue conditions would havethInorer teorain l so e dficin, been possible. We write the velocity of
the nonlinear theoretical predictions, the cylinder as k0 (t)3, where I is thethe corresponding linear transient pro- unit vector along the positive y-axis,

blem is solved. The solution was found teor conditio onithe w-tted
by Fourier transform technique. The The boundary condition on the wetted
nonlinear theory agrees well with the body surface can be written as
linear theory for small amplitud*s ofoscillation. -n - 10 (t) A M 0tn3 (6)

The solution to the interior problem,
i.e, the sloshing problem is only dia- where A is unit normal vector to the
cussed briefly in this pape, since it body and 3/an is the derivative along
will be published eetel3 (Faitinen this normal vector, We assume A to be
(5)). positive into the fluid.

2. Theoretical Formulation 3. Solution Procedure

Consider an infinitely long horizon- By applying Green's second identity
tel rigid cylinder of arbitrary cross- to the velocity potential # and
section that is forced vertically in a
free surface. Let the water be infinite logVI- TTT-F-j-TY
in e"tort and be of infinite depth.
Initially the water is calm. The origin we can write
of the coordinat system is in the plane
of the undisturbed water surface. The : Pn - P n)ds 0 7)
y-axis is positive upwards and goes n

34.
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where

S'r S + S + SB + SF + S1  Further we can write

Here S is the wetted body surface, S. 
J(x 1,yl) = (-x1,y) (13)

vertical control surface at x -= -
vB horizontal control s urface far down The problem will be solved by a time

in the fluid S there surface adw step integration procedure. For each
Srurh ialc timestep equatirn (8) will be solved

ylindrical surface of smalwith /an as te unknown along the free
radius r I and with axis through (xj,yl)  

suriace, as te unknown along the

which is a point in the fluid domain.

The contribution from SB and S are both wetted body bourdary and with (x ,y

zero. as points on the body surface and tWzr.Note that for the steady7 statefresfa. free surface.
case the contribution fren S. is not
zero, In th numerical evaluation of

We can now write equation (8) the free surface SF and the
wetted body surface S are divided into a

num'ber of segments, and 0 and a$/an are
l'Yl set constant over each segment. An

=f xy l!x i 2 example of the subdivision of one part
a{ (Xy) of the surface is shown in Figure 1

SF+S where the x - y - coordinates of the
endpoint" and midpoints of the segments

-log/(x-x 1 ) 2+ (Y-y-) .-(XY )ds(x,y) are denoted by (j, r>j) and (xj yj),

(8)

The contribution from the free sur-
face integral can be rewritten. For L
Ixl>b(t) where b(t) is a large number
dependent on time, we can write

(x, y). A -F 9
r+ y (9)

FOORE I
where A is at present unknown. EXA.EOF SUO n OF D=

SRFAE ANO FREE SURAE
We can write

r In fia. 1 only segments{,x~) ? )o .-. ) . ( - re spectively.
f{@(x2 y)T._.j-y)lo_'(x.x 1 )

2 
+ y on a small portion of the free surface

b are shown. In general, it is necessary

_ .J,!,Llog/x7x) '+(y-yl) )dxl to have segments over a much larger part
anbx,y) 1 y=0 of the free surface. But by using (10)-

(13) it is unnecessary to cover the com-
A -- plete free surface. Dup to the symmetry

bdxEIxly I ) of the problem, the segeants for x > 0

(10) can be rei'lected about the j-sxis to repre-
sent the body and the free surface for

In a similar w- 4e can write the x < 0.

contribution from Integration from Using the subdivision in figure 1 as
to -b in equati ka) as an example together with the symmetry

properties of the fluid motion we can
J(xj,Yl)- rewrite the integral equation resulting

b1 from equation (81 as a linear algebraic

I -7log/(x-x.)+y!1 dx (11) equation with *(xj~yj) (j-1,8) and
- x '-n(xj,yj) (j-9,22) as the unkn,,wn. i.e.

It is possible to show analytically that

1 n -Xl+: x 1I - -A(
+A (x +A , Y(,y

2____ 1,9an (K99* '+..1 ,12an 22' 22

'n - + X1 7 +Y1  - B1

• -qnlyl)- arctg(b-x 'j)) (12)
A 22,1O(XY)

' +

A22 2 2 n(V2 2,Y 2 2 )-S 2 2  (14)
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Here either over segment no j A or the seg-

i=1,22 ment A which is th imagl of Aj about
Aijj 1:8 2wK+ the y-axis. The expression for

Dny) I o"*l'R +(~ -) I d x1)j(j18

a follows directly from the body boundary
-nxy [IojjT,)r ']j_) ds (x,y) condition.

A
-j The exDressions for the velocity

potential * on the free surface and the
A ,i,22)= free surface position are obtained by

A ijJ -9,22 the following timestepping procedure.
Looking on a fluid particle on the free

f f Idsurface we can write (see equation (2))

A.

Dt ay (15)
-J [log/(x-i) 

2 
+(y-7)'] ds(x,y)+F

where K=J when i=j ard K=O when i+j.

Furthet F is zero except when j=22. hen Further, from equation (3),

F=- x 2* tY ,i(6
2: 2" ( ' ( 'i+ 'i )/A =. (16)

Dt ay

Further and

= -(x y )C DxF = (17)j Iln j' j jD--
=  
a

22 where x is the x-coordinate of the
+ E Ox ,y)C_. (1-1,22) fluid prticle.

j=9

where Knowing the velocity potential at
the free surface and the coordinates
of particles on the free surface at

i-l,22 some time instants, equations (15), (16)CiJij l,8 and (17) provide means to find the
change with time of these variables.

- f [log/(x'Ri) +(' i)T]ds(x'Y) In the numerical calculation proce-
A) dure the free surface particles will not

always correspond to midpoints on the
f I (y free surface elements. When the fluid
A )iq((x-7Rl j- V Ids(x'Y) characteristic is known at the midpoints,

the fluid characteristic at the fluid
particles will be determined by inter-

i*,22. polation, and vice verse when the fluid
C 1i (j-9:22) characteristic of the fluid particles

are known. The time stepping procedure
is performed by the Runge-Kutta method.

- - 2rK - It is possible that a less tile-consum-
ing method could also have been used
with satisfactory results.

./(- - 4. Force Calculation

After the fluid motion h%s been
determined, 'he Bernoulli equation may

- " xnxy{ -l .I . - be used to obtain the force on the bodyl
however, we will follow another proce-

j dure, which will be derived below.
Salvesen (6) has used m similar proce-
dert, but. one importsnt torn i missing in

Analytical expressions for the int"- his expromemop.
grals Pbove can be derived (se
Faltinsen (5)). The integration is The hydrotnduced force f on the body
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can be written

F - -Ifpi'dS + ffpgyidS (18) - f fIlVfI2dS
S S 2 S

where the total pressure p (excluding
atmospheric pressure) is Again Gauss' theorem can be used to show

p-P1-pgyl=-2 - ThVO1l Pg (19) that
at 2 - fi -LtVdS - hIffVjV#pjdT

S+S+San V
Applying Gauss' theorem we can write S+6+Sf

-j'plndS- - pfIf{V- + kVIV¢{'}dT We can now write
S V at

-ffpndS-pa If OndS+ffpgy.dS

+ffp'dS +fpyd
SF S S+SF  SFSF  SF

+pff(V .D - IVI'A)dSP iI_ t8 +kjV 11} dS (20) S n

s5tS.

Hence, the hydrodynamic force is
where V is the volume enciosed by S,S
S and SB . Since p = 0 on S the secgnd d
Integral on the right hand alde is equal P =p;-- If OAdS+ If pgyndS
to zero. We can write; --S+SF  S+SF

d
dfffV~dT - fffV.- TV V + Oilt - IVJ';)dS (24)

S 

n

-;J1 V44dS (21)S+SF an The second term in (24) was not included
in the formula derived by Salvesen (6).

Substituting (21) into (20) gives In a transient problem we can neg-
lect the contribution from S.. The

d 1 hydroinduced force during the transient
"ffPl

n
idS - "PE fffV~dT phase can therefor be written as

S V

- -If V.-tdS (22) 't0 If dS+ff pgydq (25)

S+SF n- --S+SF S+SF

A special case of this formula is
fffVj0VtjdT ffPgyndS used in wave impact problems, for
V SF instance to calculate the wave induced

loads on horizontal truss members in the- a + SIV, 1)AdS splash zoeor tocalculate hydrodynamic
forces on bowflare sections. In those

cases the bcundary condition '0 - 0 is
used on the undisturbed free surface.

Applying Gauss' theorem we can write Equation (25) can then be written

d ddatfffVOdT If OndS (23) 3- (A3(-)i0(t)

-If Rd
S + ffpgyndS (26)

S

We can write where A33 (-) is the infinite frequency
added mass coefficient in heave as a

-IfplndS -pd If 4adS-p If VjaSd function of submergence. The last term
6 ats+s S +SF is the hydrostatic pressure force as a

function of submergence.

- fffVjV.I'd1 $1fpgyndS 5. Linear Theury
V SF In order to gain some confidence in

the nonlinear theoretical prediction, a
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solution to the corresponding linear wave componentm. This implies
transient problem has been derived.
Ursell (7) and Maskell and Ursell (8) 0 ; AL4, 0
have studied transient free motion of a ar g r 0
two dimensional body in aTree surface, (35)
while we are interested in the transient
f.or motion. accordinq as w > 0

The formulation of the linear problem The solution to the 0-problem may
is very similar to the formulation of now be obtained. The solution is by no
the nonlinear problem given in Chapter means trivial, but is routine calcula-
2. We assume no motion when t < 0. The tion in strip theory calculation of ship
velocity potential 0 satisfies the motion, (see for instance Ursell (9)
Laplace equation (1). The linearized Frank (1)).
free surface condition can be written as

2. It is the force that we want to
=t.gfy - 0 cn y - 0 outside determine here. The Fourier transform

t the body (27) of the force, can be written as

The body boundary condition is given by ( ) = eiWtf (t)dt (36)
(6) but evaluated on the mean body sur- F3  3
face position. The initial value con- 0
ditions are given by (4) and (5). We --iwpfO(x,y;w)n 3dS-pfO(x,y,0)n 3dS
want to find the forcecomponent S S

f3(t)- -fpn 3dS -p;an 3dS (28) When w > 0 we can write
S S

Note that the dynamic effect due to 3( 0( 33  33

change in hydrostatic force is neglected.
This can be written as -pgBy0 (t) where B -PfO(x'y,0)n3dS (37)

is beam at the water line.

where A3 (w) and B (w) are added mass
We take the Fourier transform with and damplng coeffiients in heave,

respect to tine of the equations. The respectively. When w < 0 we note that
Fourier transform of the velocity poten-
tial and the velocity can be written as F3 (-w) - _F31w (38)

§(x,yJw)=fe it*(x,y;t)dt (29) where the bar denotes complex conjugate.
0

iw When F (w) is obtained, f (t) can in
Y 0(w)-ieWt9 0 (t)dt (30) principle ge obtained by Fourier inver-

0 sion.

where i is the complex unit. Special Case

The integration is only from 0 to -Consider a circular cross-section
because the variables are zero for t with axis in mean free surface. The

The inversion formula is of the form radiueisa. The forced velocity i
wrtte

O(xy,t). -10 I t(x,yiw)dw (31) O(t) - cost (39)

By using the initialvalue conditions To circumvent mathematical diffi-
(4) and (5) and similar conditions when culties we write
t * - we can write the following
equations io(t) e-'tcoellt (40)

- 0 (32) where a is a small quantity which

later will approach zero. We can write

30 (see (30))
g. -0 on y - 0 (33)1 1 -}- (41)

- ¥o, n, on mean position Since n(0) - I and O(x,OO) xP )

of the body (34) we can Orite

To define the #-problem completely an
additional condition in necessary. But -Pf#(x'yO)n3ds-A33 (42)

from equation (31) we nott that * can be
written as a sum of an infinite number
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This implies that Thf -2si (residue at

P3 (w)- - w . 1 + 1_-- } 0 C
+

for the contribution fro, :he --- r
.(-A 3 3 (0)- B3 3 (w)W +A 3 3 () (43) circular arc vanishes. e. chom une

contour of integration a-)ng zie -ay

when w > 0. arg(w) - -arctg(k).

Using (38) we can write the force on We can now write
the body as

f (t-2Re(T f e 'F_ w)o

f (t) = Mei 3()dw C

3 1 3 + (Qsin Q)t A 33l-ob. (Q) ,)

+1 7 iwt (4
0 3 (44) where a has been set equal z_. anc

Re means the real r-rt.
The integrals in (44) converge.
According to Ursell (9) The last two terms rei sent the

steady-state solution, i., --! solution
i when t - -. To calculate - transient

A33(w)- B3 3 (i term we need to evaluate

2Lp 2 I 4g - when w (45) F 3iw)= - - 2 (1A3 (47)
= -2( 31rWFa

)  
wTid_ +A3

This implies F (w) - O(w
" 

) when w * Here A1 is the analytic c inuation of
which ensures hat the integrals con- A 334+-iB along the ray ary )= -arctg()
verge. Un the other hand they are w 33
cumbersome to calculate due to slow A can be calculated in th' way presen-
convergence and singularities close to td by Maskell(10). A computer program
the real axis. To circumvent this based on his procedure has beern ,re-
problem we introduce a path C

+ 
in the pared. Numerical results for A are

complex plane (see figure 2). The shown in figure 3.
contour of integration is deformed into
a contour C

+ 
which goes from 0 to

Im (ww)

3

/ 2 p+a
/ pfa

FIGURE 2
DEFORMATION OF THE CONI'OLR / ',
OF INTEGRATION '

which lies entirely in the fourth ,
quadrant, which pasees below the pole L20
w - 0-io, and which also satisfies the.. ... --

condition that no other rol b lies bot-
:*on the real axis and C . The gap at"
b ,btween C

+ 
end the real w-axis Is FiGURE I

closed at - by a large circular arc. CALCULATION OF F'OC C)EFFICIENT
Then by Cauchy's theorem ALONG THE ARRAY 4 _', 1-051)

3I

_ __ -m m m m m m = mm~m ' -1



The asymptotic solution when w 0 used on the total wetted cylinder sur-
is face. In the case of

A I (W 1q) Q 0.5, 0.8, 1.0
g

P, the same length was used initially on
UnKayiay 3 2 n2..the surface elements on the free sur-

8 (l K-w, ~-r 2  
n2+. face. Number of free surface elements

- yf }(48) were 60 totall,. This implies that
1 - lffa(ln Ka - wi) b . 7,73 whet' 1. In the case of

It

Here Ka and y =0,57725385. When Lie*tasotter
P92 0 A,. N,~oir theory A. t0eo1

A1  4 05Transient part of force
(Linear transient theory)

TT 1 (9 FORCED HEAVE
P- MOTION A, sin fit

The transient torm a- bc easily cal- in 20 30. &a r.t
culat.ed when A1 is obtained. There are
no singularities of the integrand close FIUR
to C+ and the integrand dec&ys exponent- HYDODUYNAMIC FORCE ON CRCUAR
ially for large arguments alon~g the CYLINDER
inteqrationpath. (EXTWOED LItNEAR RESTORNG FORCE)

6. Nmercal esutQ/ 1.5, 40 equal sut-face elements

Results by the nonlinear and the werl used. The results are presented
linear transient solution methods are as hydrodynamic vertical force F on the
presented in figures 4 to 7. The ngu

-5Noniear theory -to0 (Lnoor tranrsient theory)
Transient part of force FORCED HEAVE MOTION
tLinrio trarlz.rit ter)A, sin nt

FORCED HEAVE MOTION 11" .0 Tn'

FOURE A HYDRODYNAMIC FORCE ON4
HDOYAIFOCONCIRCULAR CYLINDIER 00ICLRCYLINDER

(XLDDLINEAR RESTORING FORCE) 1EXCLLJOED LINEAR RESTORING

forced oscillation frequencies are cylinder nondimensionalized by pg
21 

aA3
D/ !! or 0.5, 0.8, 1.0 and 1.5, respec- as a function of nt. in the hydrA-

tively. The results are for a circular dyetoig fore isexcluded the nnr
croos-section of radius a& with axis in ratrn foc1 ga 0 t. Tennlinear solution method egress well with

the linear slt ion method. We rt
Aatf.o tha the transienrt rn~i uf thet i,'e I"

ill) ~ ~ Liear tvaesmet theory appreciable for small t-a~ie except
Nonlinarthory.i. 01 when n/ 1.5. But the transient-

-05Wo~oer traporth eory) force part dies rapidly out and steady-
tI.twa tarretttrvl state oscillation is iiaarly tc.ch*4

FOCEO HEAVE within the first oscillati1, peoriod.
MOTION A, srn rit

.~. ,The numerical results by the non-
tO 20 10 nt linear method will depeaml ox, the ririrser

and the length of the #un race srol-n
HYDRODYNAMIC FORCE ONf COCjAAR CYLINDER The length of the elements must r't
IE5CUN3E LWEAR WF5TMM FOCE exam"~ a certain fraction of the wave

lengths. The number of surface eileront-i

the mean free surface. The forced heave will be a function of *Ime, j. to be
motion is A3sinflt weethe nonlina more precise, b is a functi''n of timer.
results are for A where oF.rutoor imatance, the solution p'nocedr'

surac elmet 0f 1 fortee becomes invalid when a surface wave ham
-~Afeqailength weereached b. In reality the solution pro-
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cedure becomes invalid even before that One should note that
time.' This h.s been studied to some ) aJ
extent by varying b. The initial at - (-b_102
langth of the iree surfacetelements are a
kee equal toN a. Result for defines the time the energy in an Airy
Q/ I. U A and 0.5 are presented in A wave of circular frequency 0 takes to

figures 8 and 9. The amplitude ratio ; rpgt rat .(l)
is 0.1. Based on these results a seems to be lover thane i

FORCC HEVE 10T104: A.mmThe nonlinearity has been studied by

A,) 1.0vaE~i A for given a/ 1. Results for

a. 1. and a--0.1, 0.2 and 0.25
b.3D *...., 3'f.I

TQb 773 are presented in figure 11. Results for

bQ 5 A :.,9

I 2 3 ' 5I -A

FOURE aFORCED HEAVE

REULTTS L , ~ MTM: A sinnt

HYDRODYNAMIC FORCE ON
FORCED HEAVE MOTIONA sint CCLAAR CYLINDER

F L b-773 .0.5 -IsEXCLUDJED LINEAR RESTORINIG
b-&49 AORCES)

-05 b-3,24 0.3, M. and 0.6 are presented ina

*.figure 12, Number of free surface ele-
ments are 40. Their initial lengtha are
0.3a. To my knowledge there exist

o3 t 2,0 31) neither analytical methods nor modeltest
results to compare with in the transient

FIGUR~E 2phase. For steady-stpte conditions .
SELUECE 04 b ~M. Lec (11) has prs..ented nonlinear ana-

THE RESUL.TS

P* FORCED HEAVE
MOTION A~sinnt

figure 10 haw been prepared. It shows

1)325'a a.~

when. "' .&LR is defined as the Ata

FIOLPE 12
* 9 tt J..w,. IYDRODYNAUI POF ON CIC~IAR CYLINDER

E.KCt"DE LWEAR RESTORINO FOt6S)

I lytical results for forced vertical
n If ID oscillation of a cylinder in a free our-

face. He assumes small amplitude of
n~.05 ouicilletion., What small amplitude of

oscillation eans is a question of
experience, but it is quottionable if

D~.'INAE OF b 0.4 and 0.6 can be denoted small
0$ ,D~i~MN1CI 04 b alplitude of oscillation. C.N.Le

solves the problem by perturbation
technique to second order in forced

't_ oacillaticn amplitude. His results in-

wsien the "nIuti. - fails foL gitven b. forced oscillations In addition to a
timeindependent vertical force. C.N.Le~uThr ilaJ'eys .-, somse ambiguity I- results do not show a significant in-volved in daemnn 0)ALR'fluonce of nonlinosrity. This is logi-

_____



cilly inherent In assuming the linear nonlinearity in the free surface condi-
first order harmonic term to be domi- tion is much more significant than the
nating. Our results indicate a more nonlinearity in the body boundary condi-
significant influence of nonlinearity. tion.
This is especially true when A /a =
0.6. 1zhough the possibility Af nume- b) The velocity potential is repre-
rical exrors exist, the results for sented as a distribution of sources over
A3/a - 0.6 can to some extent be ratio- the body surface and the free surface.
nally explained. The initial phase of In the exterior problem both sources and
small Ot-values correspond to high dipoles were used. In principle both
suddenly exposed forced vertical velo- approaches are right.
city and resulting high fluid accelera-
tions. As in wave impact problems a c) In the sloshing problem the free
good approximation to the vertical surface position and the velocity poten-
hydrodynamic force (excluding the hydro- tial on the free surface are obtained by
static force) would be following "points" on the free surface

with constant horizontal coordinate. In
F- d (A 33 (tW (50) the exterior problem we are following

F t- 33 ( )Y0  fluid particles.

where A (") is the infinite frequency d) In the sloshing problem it is
added mAs in heave as a function of necessary to introduce an artificial
submergence measured relative to initial damping term of the Rayligh viscosity
calm free surface. Equation (50) has type in the nonlinear free surface con-
been compared with the results by the dition, i.e. we add a term 4 to the
complete nonlinear transient method. The left hand side of the dynamic free sur-
results are presented in figure 13 and face condition (2). The damping is
agrees quite well up to nt , 0.5 where small, but essential because there is no
the result by the complete nonlinear damping in a potential flow inside a
theory starts t . decline. This decline tank. By examining the analytical solu-

tion of the linear transient sloshing
problem, we will note that transient
terms will not die out if damping Is not

to present. In reality (i.e. modelteats) a
steady-state oscillation is clearly seen.

A ' =Damping is therefore introduced and re-
ao presents a substitute for viscous losses

65s ., Aglmatd o primarily in the boundary laer close to
.e• lets noninear.nethn the tank wall.

e) In the sloshing problem it is
- necessar to solve the problem over a
fit substantial number of oscillation peri-

FIOUE 13 ads to achieve steady-state oscillation.
HYDRODYNAMIC FORCE ON CIRCULAR CYLINOER In the exterior problem steady-state
IEXCLULED LINEAR RESTORING FORCES) oscillations will nearly be achieved

within the first oscillation period.
canr t be easily explained, but it
should be noted that the results for An example of the calculations is
smaller amplitude ratios have a similar bhown in figure 14 for a rectangular
behaviour, tank that is forced to oscillate harmo-

nically in sway. The tank breadth is
7, Interior Problem

The interior problem, i.e. the
sloshing problem, has also been studied.
No details will be given here since a FREE SURFACE ELEVATION

separate paper has been devoted to this AT x.-0,5
subject (kaltinsen (6)). In the sloe- T. 2 %.5%
hing problem we are studying forced 03J
harlsonic away-oscillation of a rectan- 02,
gular tank. But the method is thought to 01
be applicable for the case of forced ir- 0
regular oscillation of a combination of
modes and to a wide closs ot tanks with
two-dimensionsl flow. In general the Q2(
approach is the same as in the exterior -03' NON-LINEAR NUMERICAL METHOO
problem presented above. There are GA1 L5N4AR ANALYTICAL SOLUTION
differences. These sre:

a) The body boundary condition is F3URE 14
linearled. In many cases this is no
limitation. In resonance condition the
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NUMERICAL SIMULATION OF SHIP MOTION BY EULERIAN
HYDRODYNAMIC TECHNIQUES*

G. 1. Bourianoff and B. R. Penumll
Austin Research Associates, Inc.

Austin, Texas

This work was sponsored by the Office of Maritime Technology of the U.S. Maritime Administration.

Abstract boundary location. A sabstential fraction of

the code is devoted to accomplishing this task

A ship motion simulation technique is de- accurately.

scribed which utilizes Eulerian hydrodynamic

techniques to solve for the free surface flow The main features of the existing code arei

field in the vicinity of the ship. The ship (1) norlinear treatment of ship-wave inter-

constitutes one of the boundaries on the flow action; (2) arbitrary two dimensional geometry;

field. The ship motion is calculated by saum- (3) calculating ship motion in irregular or

sing the hydrodynamic forces and couple on the regular wavest and (4) arbitrary mooring forces

ship and solving Newton's equation. This on the ship.

technique has been applied to modeling the

motion of a moored ship in rendom beam seas The code has been validated against model

in two dimensions and three degrees of freedom, results for a spring moored vessel exposed to

The computed results agree very well with the irregular beam seas. The computed sway agrees

model test results, very well with the measured quantities.

I. Introduction The computer code as currently implemented

runs approximately four times slower than real

The operation of large ships in shallow time on a CID 6600 computer system.

coastal waters has created a need for predic-

tive methods to analyze the fluid flow fields Chapter II discusses the Mathentical Formu-

and ship motion encountered in this environment lation of the problem. Chapter Ill presents

Existing techniques do not in general handle the numerical techniques which we have

this problem very well. The goometry encoun- employed. Chapter IV presents the simulation

tared is complicated enough that analytic results while Chapter V gives conclusions.

methods can solve only very simplified models.

Existing numericl techniques generally soles 11. mathematical Formulalion

the problem in the frequency domain using

linearised boundary conditions and simplified The equations satisfied by the fluid in the

bottom geometries. The Inertial Marker absence of thw ship are the incompressible

Particle (IMPi method described here is an viscoj1 flow equations shown in equations

essentially new approach to the problem ut pro- (2.01 and (2.2).

dicting ship motion.

div V 0(.1

The method involves solving thu ruler hydro- 3V -V -

dynamic equation coupled with the rigid b dy at

equation of motion for the ship. The ship con- where
ltlrutee one of the boundaries ot the fluid

flow region and is treated an a reactive V - fluid velucity v(ctor.

boundary which in free to move in response to

forces exerted on it and obeys the appropriate

equations of motion. Y - artificial sinas4tic viscosity.

The boundaries will not in general coincide V - d.1 vector d'ferentiei operator.

with the grid lines and it in necessary to rhJs is copled with the equations of ship

interpolate the relevant conditioas to the motion which are

3M*



dVsI1. Solution Techniques

dt ±=f Pdn + megJ (2.3)

The solution method to be presented utilizes
the salient features of modified SUWUAC [11

I f px (p ) (2.4) method with respect to the computation of flowV field and free surface and the ABNAC [2) method

with respect to the treatment of curved wallwhere
and moving boundaries. The computation is per-
formed over a finite difference mesh encompass-ms - mass of the ship

S ing the region of interest. For fluid dynamic

V velocity of the center of mass of the calculations it is customary to use a set of
s ship staggered meshes one for each of the primitive

variables (velocities and pressure). The
n o staggered mesh scheme is the result of consid-o - surface area in the direction of Vv s arable experimentation (31 and appears to be

the most successful scheme for fluid dynamicI = moment of inertia about an axis per-cacltos tlowalsaildrv-
n~ dclrt tepaeo calculations. It allows all spatial deriva-! pendicular to the plane of i

tives to be approximated by centered finite
differences. A typical cell from a mesh is
shown in Figure 3-1 alonq with the points of

P vector from metacenter to the marker definition of the field variables. Pressure
ps defined at the center of cell and thevelocities are defined at the centers of the

Saicell faces. A typical cell (i,j) extends from
II=angular velocity about the axis of In x- xto(+16,ady-j on s iix to (i+l)ix, and y = ily to

The motion of the particles is subject to (j + l1)y.

the fact that the particles are constrained to
lie on the aurZace of a rigid body. If (x, y) v(i,j)
marks the position of a representative inertial
marker particle, then (J+l)6y

x -X +V t -il p 6t (2.5)
new old Xs e y u(i-l,j)

'  
- u(ij)

p(i,j)
y ' YoId V 6t + f p 6t (2.6)
new ld x yj j6y'

where

i6x (i+l)6i

P p are the components of the vector
P y from the metacenter to the IMP under

consideration.
Figure 3-1. Typical Mesh Cell with Points ofV ,V are the components of the trensla- Definition of Field Variables

i tional velocity of the body.

la is the rotational velocity of the Overall calculation for oe time step may be
body. divided into three phases all of which are

e kreferenced to the Rulerian grid just described.The kinematical boundary condition at the

ship-fluid interface is that the fluid velocity PHASE It Since we are dealing with arbi-equal th~e body velocity. trary curved wall and free surface boundaries,

the actual boundary seldum exactly coincides
On a etationary curved wi rigid boundary, with mesh cells. As a result, we need to

the requirement is thst normal fluid velocity approximate the true boundary by a boundary of
equal zero. Further all rigid boundaries are mash cells. The first step is to find the
eesmed free sip. The appropriate boundary intersections of the true boundary with the
condition on a free surface is that it cannot mash cells. Now the true boundary consists of
support any stress. a number of segments whose union is the total

boundary and has te intersection, each
associated with a mash cell. The second step

3Mt



of Phase I is to compute the fluid volume of V * V 0. Cells with more than one closed facethe cell bounded by the boundary segment. If have more complicated procedures. The required
this volume is greater than a set fraction velocities exterior to the boundary are set(25% normally) of the cell volume (Ox 6y), the equal to the adjacent velocities inside thecell is flagged a boundary cell. fluid. The boundary conditions at rigid

stationary and reactive boundaries are implic-For the stationary part of the boundary this itly implemented through the pressure iteration.
calculation need be done only once at the
beginning of the simulation, but for moving In the free surface boundary cells the pres-boundary the procedure needs to be repeated sure is calculated by a linear interpolation
every time step. At this stage the boundary from the pressure in the fluid cells immedi-
is composed of a number of contiguous segments ately belm it.
each associated with a boundary mesh cell and
characterized by a normal pointing into the p "opa (I-) p
fluid, positioned at the midpoint of the seg- i,j a iJ-l
ment and whose magnitude equals the area of the
segment. The logic of the code is built ahere p L the required tor specified) free
around flags aasociated with each cell. A surface pressure (normally zero) and a - 6y/6,flagging scheme is adopted in which a four where 6 is the distance from the free siirface
digit cell flag is assigned to each and every to the center of cell (i,]-1) and 6y is the
cell of the computational mesh. The most grid size.
significant digit indicates whether the cell is
empty, full, boundary, or intersection. If the Outflow boundary conditions are the most
cell is a boundary type, the next significant interesting and difficult to implement.
digit indicates the type of boundary (rigid, Roach. Is) presents a good survey of different
stationary, reactive, free surface, outflow, types of outflow conditions. The most stable
and infljw). The two least significant diqits outflow condition is to specify the outflow
indicate the orientation of the cell in rela- velocities a priori. Unfortunately, the kind
tion to the neighboring cells, of outflow conditions we are interested in are

the so-called 'continuative- outflow conditions,
PHASE II, Consists of setting appropriate where the requirement is to permit the fluidboundary conditions, advancing the velocities to flow out of the mesh with a minimum of up-

in time and iterating on velocities and pres- stream influence. Outflow boundary conditionssuras until a flow field is obtained which are particularly important in wave propagation
satisfies the incompressibility condition, problems. A good outflow boundary allows or to
Viecelli [2) reported a method in which arbk use a much smaller mesh than otherwise needed
trary free slip rigid wall boundaries (either because it eliminates the possibility ofstationary or moving) are treated as if they reflected waves affecting the calculaticon. The
were free surfaces with a pressure dietribu- prescription we implemented involves setting
tion applied exterior to the fluid in such a the velocity gradients near the outflow bound-
way that the free surface position coincides ary to zuro. However, inside the pressurewith the wall boundary. The technique involves iteration they are free to change with thean iteration method in which velocities and changes in pressures. This eems to work well,
pressures are adjusted simultaneously a as evidenced by the results presented later.
opposed to the standard iterative solution of
Poisson equation followed by the computation LInflow boundaries are implemented by speci-of now velocitia as used in the SW 14) fying velocities as a function of depth. Themethod. It can be shown, however, that the two theoretical velocity distributions of a right
techniques are equivalent, running linear gravity wave in water of finite

depth are given by McCormick [61.
5 y Conditions

u . Sk sh 4k kh) o k tvelocitJea on and exterior to the boundary W coah (kh) os (kx-t)
cells are neceseary in differencing the
mmentum equations as well as to detrmline the V ! . kh n
interpolated boundary velocities, The veloci- V ask i h (ke i hw
ties on the boundry are set to make the call
divergence sro. This means for a cell that where
has only xie closed face, we calculate all the
other velocitis in the usual manner an oem- *k - 2 wave number
puts the one on the closed face by setting

.1 
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a wave amplitude A wave corresponding to Eq. (3.2) can be

g gravitational constant readily generated by the same procedures de-

= wave frequency scribed for the generation of regular waves.
d -dpth coordinate

h - depth of water Difference Equations and Pressure Iteration

x - coordinate in direction of propagation

t- time The specific finite difference equations

used to advance the velocities in time are pre-

In order to specify the velocities at the sented in Appendix A. Time derivatives are

boundary, x was set to iero and the veloci- approximated explicitly, and for space deriva-

ties were calculated as a function of time and tives a factor is built into the equations
depth. The initial condition from which we which controls the amount of donor cell flux-

start has the free surface and velocity field ing. A time dependent solution for the problem

set to zero. We start generating inflow is obtained by advancing the flow field vari-

velocities, thereby creating a wave. It takes ables through a succession of time steps. The

several time steps for the wave to reach its velocities are advanced using the previous

steady state amplitude. The waves propagate state of the flow to calculate accelerations

?cross the mesh at a phase velocity determined caused by convection, pressure gradients,

by the k of the wave and which agrees well viscous stresses, body forces, etc. by an

with the theoretical phase velocity, explicit calculation. However, this explicit

time advancement does not necessarily yield a

Irregular waves corresponding to a given velocity field with zero divergence. There-

wave spectrum are assumed to be a superposition fore, the pressure field is adjusted such that

of regular waves with different magnituJas and e.±h eLl ii, the comr~ltftional yzd has zero

random phase mix. divergence. Since a pressure change in one
cell affects velocities in neighboring cells

Pierson-Moskowitz (7) spectrum for fully as well, this pressure adjustment is done

developed seas s iteratively until all cells have simultaneously

achieved a zero divergence. The following

e- (A/w) -(S/ w ) algorithm is employed for pressure iteration.
((3.1) Let 6p denote the pressure correction at ith

iteration for a typical cell (i,1), i.e. 6p -

S(w) - spectal density of wave heights, p(i,j)
n l 

- p(ij)" where superscript, n,

ft
2 

sec, denotes iteration number, then for

A * 172.8 h' 7
-r

Full Cells:

a 691 T
"
'

W - circular frequency, rad/sec. 
-

h - mean of the 1/3 highest peak to where

trough values, ft.
D - the cell divergence

T - average period, ses.

Irregular waves with any specified spectrum can ( - (o/8t (
be modeled by the following equationi

- a relaxatlon factor between 0.5 andx(t) * ) a cos (mat C t ) (3.2) 1.0.
*n 0 n

n-0
-here Boundary Cells,

x - free surface height with reference to
the still water 6p - -

S0 the ai;terpolated velocity vector at
the illivint of the se'ient associated

with the boundary cell.
t - a random number uniformly distributed

between 0 and 25. - the boundary velocity vector of the

H - a reasonably large number such that midpoint.
(ft covers the frequency of interest.
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o the unit normal at the midpoint, u(i-l,j - ui-li,j) - (6t/!Sx)6p

pointing into the fluid
vii,j-li * v(i,j-l) - (dt/6x)lp

symbol for vector dot product

For bouidary cells only the velocities on open
6 a mesh parameter, faces are adjusted and the velocities on closed

faces are determined by setting the cell diver-

For rigid stationary boundaries Veb is set gence to zero.
identically to zero and for the reactive boun-
daries = Vb + R, where Vb is the one complete iteration consists of adjusting
trinslational velocity and % is the rota- pressures (and thereby velocities) in all the

tional velocity of the boundary and R is the cells by sweeping the mesh in an orderly
vector from the ceater of rotation to the mid- fashion. It is to be noted that pressure in
point, each cell gets updated once during an iteration,

whereas the velocities get updated twice. The
V is obtained by a bivariate interpola- iteration is terminated when the ratio of the

tion oPf the velocity components which are norm of the pressure changes to the norm of
defined on mesh lines to the midpoint of the pressures, drops below a small positive number

segment. It is similar to the MAC 131 area t. Usually sufficient accuracy is obtained
weighting procedure used to compute particle with an t of the order of 10

-
l. Iteration

velocities, normally converges in about 4 to 6 iterations,

provided the flow variations are not too rapid
Intersection cells are the cells that con- from time step to next and c is not chosen

lain both a free surface boundary and soue excessively small.

other type of boundary. Several alternate
treatments are possible for suh cells. After PHASE III: Having obtained a consistent
a considerable experimentation, we found that flow field, it is necessary to u| te the free
ad)usting pressures based on the free surface surface and reactive boundaries in preparation

part of the boundary works best. This may not for next time step.

always exactly satisfy the rigid boundary con-
dition for that part of the rigid boundary In the early MAC methods a line of particles

associated with the intersection cell. How- marked the free surface position. hen these

ever, from our experience we found that the particles are moved each time step by computing
discrepancies caused by this are minimal, the velocies of these particles. This is a

Lagrangian procedure and tends to be unstable
Since the free suface segment in the inter- after a large number of time steps. Chan and

section (ell can lie anywhere in the cell, Street (i) reported, that the round off errors
there is a question as to what surface height -ere patticularly serious in problems involving
need be used to interpolate the pressure. Ali waves. To overcome this difficulty an alteena-
extrapolated surface rigit at tin- (vnter of the tive Eulerian approach has t -1) developed for
c(lfltn in which the intersection .ell lies was two dimensional problems by Chan and Street Ill
utilized because the pressure tinterpolation is Later the method ass applied to 3-D problems by
in terms of cell preisuree which are defined it Nichols and Hirt (Hi. In this approach the
the center of cells. Seversl extrapolltion fluid surface is represented by a single valued
schemes were tried and the most simple linear function and is initially defined by the sur-
extrap lation iseoms to work best. The failure face height als)'e the bottom of mesh. Ths
of high order extraeolation ts attributable to surttaco ('ight is defined at the center of each
tire fact that these formulas force A depoendeincy colum of cells. The change in surface sieve-
over a larger domain and as a result tihe bright tion is derecmied by the local fluid velocity
at the interelti )ii -1i sanntt reat finely to and) is governed by the following squation.
tho local flow fistd.

Ah ah 3h

Once a Ap has ben detemined for a cell t s- .-

(i,J) the proeures and VOcitiOs are ulated

as follo , This equation is solved by a space centerud

esplI it diffe-encing method to obtain the free

iji pii.3) 6 Op outface position at now tide. This particular
diffseiQ psioiroximation is unstable because of

imi,, i u(l,)) * itt/dx)ip 1t niative diffusion truncation error, am a
ac-:11it a otai'lilaing viscous like term of the

nii,ii ,viij # it/6yi6p ore,
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I a
1
h . h) a vector in thp y-direction whose tag-

a.2 I.,/ itude is Mg'

ras b en added to the surface height equation. c = the vector from center of rotation to

is a small positive nmber and is chosen to center of mass

be greater than u6t/2. Where u is the

maximUm velocity in the flow field. Due to tl. sysiol Zor vector cross product

nature of the difference approxiiatson, a sur-

face height is required in the colm -- In order to deternie pi by interpolation, it

diately outside the fluid region. Th I is sometimes necessary to know the pressures

obtained by setting 3h/in - O. in exterior empty cells for which a pressure is

normally not compute.4. Therefore, before

Reactive Boundaries attempting to detzrmine pi, pre3sures are

extrapolated to the cell centers of imediately

These are the boundaries which can move in exterior cells by a linear extrapolation pro-

response to the forces exerted on them in a cedure.

fashion dictated by the inertial characteris-

tics of these boundaries. Let us assume that Now the motion of the boundary is governed

the rea tivc boundary is characterized bo a set by dx:/it . i x Ai. It is assured that
of N carticles (called lnirtial Marker arti- the init-ii condition is that the fluid and the

cles [9)) located at the mid% ints of the floating body are at rest and hence Vb and
sen ments -soiatcd with the reactive boundarv arc zero at time zero. Explicit finite

cells. diffeences are used to solve these equations

of motion. After all the inertial ma- r par-

X = (x, yt} denote the pos it o. of these tlles are moved, both the center of rotation

parttcles. and center of mass Are moved.

A area of the corres}onding se rents, This concludes the coeputition for one t.ae

note: A t tal area of reactive step. At the cor,:lusion of Phase III, we are

boundary. ready with a new configuration c*7 the comput.-

tional r-4ion to go into the iwe step.

Let M and I be the mass and inertia ten.or A flow chart of progra" orga. n is pre-

of the collecticn of these particles. Then, i sented in iqure 3-2.

Cb and S are the instantaneous transla-

ti il and rotational veloo;tes of the bo-in- Nuisical Stability and Accuracy

lary, the dynamics of the boundary Is governel Considerations

by the following equations;

1. A ritetioni, which says, the distance

the flui. travels in one ti step must be less
5 - than one grid length is known as the Couract

dt -- It
ndition. Tis restricto the time in.re~nt

to

I dt RI-6t mn ( I')

where

. Since free surfaces are present, it is

is A 1 1. the vector foce acting at n . to i.sure that the diasae urf~ce

x ttavels during one time step be less than

p the interpolated pzessure at I
i I.... at , win Oxs, is)

* the uit normal at X, pointi.tg away

Irtro flc d c - the, ma spec'

- the vector from the center of r:'tat ion J. ia, viscous diffusion term are presera.
(metacentee) to the point X nmerlical stability [.qut.rs

.the accl,rator due to gravity ,,
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au _u
a x a :;y

were transformed, using the incompressibility

condition to

a'u otuv

,, S The difference form of this expression can

simply be written such that flux out of one

.5. ?Ie Fiel 1 3 side of cell exactly equals the flux into that
same side of the adjacent cell.

IV. Results

Several simulations have been carried out

UP",- Pre-. ar velo¢c1ui for a chip moored between four horizontal

springs and suabject to beam seas. Results are

compared with the model test results conducted
A , , at Netherlands Ship Model Basin (101. A sketd

me r if of the model test setup is shvwn in Figure 4-1.

; 
;-tt ti 

tr-e 
nt 

a

Figure 4-1. Model Tet Setup
Figure 3-2. Flow Chart

In order to simulate this situation in two
5. Instabilities may arise if there are dimensions, it was observed that the length of

sharp curvatures in the boundary relative to the ship is las com
5 .ared to wavelengths of

mesh size. As a general rule at least 3 to 5 the exciting waves and hence the end effects

cells should be allowed to define a sharp curve are asmsed negligible. As a result, slab

in the boundary. By the same token any con- symmetry may be assumed in the third dimension

fined fluid flow regions should be covered by and the simulation may be setup (Fiqure 4-2) in

3 to 5 cells. In otherwords floating bodies two dimensions with three degrees .f body free-

must be composed of at least thrue cells in dom vi. sway, heave and roll. The mooring

each direction and fluid flow regions must be system is implicitly incorporated into the body

at least three cells thick, dynamics as follows.

6.khnone uwrca tailt i asreh h hEt Vx, F y and N
h  

be the forces in x, y6. IWten once nasser ical stability is a&siuzS, e IFadN betefrsinx

accuracy depends a lot on how well mass directions and moment of rotation about the

(volums) and mmentum are conserved. The mtaenter of the vessel without the presence

degree of mass conservation is directly depen- of the mooring system. (n superscript denoting

dent on tow stringent the convargence criterion hydrodynamic forces.)

(i.e., how mall t) is. Practical experience

indicates that below a certain mall value, With reference to Figure 4-3, let

cutting down t any further does iot improve (xt, yo) be initial (equilibriam) position

accuracy. This value ,s very problem dependent of point p where the ropes are attached on

and we do not know any one method to find this the deck.

value a XEriori, except Ivy trial and error.

11mmentum conservation is also an smpottant y be the height o metacenter below deck

aspect with oepect to th accuracy of calcula-

tions. In order to achieve this the teei in k be the sprlng constant for mooring

the tranaprt part of the mentu equations rap"

ot the form
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(X°,y
°

) be the equilibrium position ofCc 'z
__________________________ metacenter

9Ift T-5.0 no n n
30 ft 6X-20 ft, 6y-6 ft, 6t=0.2 secs. 770 ft (x, yp be the new position of point

p due to a translation of (Ox, Sy) of the
metacenter and a rotation of dO about the

T=15.0 ] metacenter, then

n x
o 

+6x - sin d6
P p

T-19.0 .n yo+ 6y-j; I _ cosd8)
p p

now define DX and DY as

!n

DX x- 6x -7sin dO (4.1)

n y 6 dy - 7(1 - cos d8)
p p

T-84.0 (DX,DY) - the effective translation of point

p with respect to main coordinate
systsm.

Figure 4-2. Simulation Setup at Various
Times. (Wave is shown amplified by By hypothesis,

a factor of 8)

6x- (xn x)

t c

Fr -, 6y_ (yn Y
o
,,, cL~ldv ( -

where

*[j .. ', (x
n
, v - the new position of metacenter.

It can be seen that the net force due to moor-

ing system, Fm A 28 DX + 3 2k DY. Where i,

are the unit vectors in x, y directions
respectively. An assumtion has bean made here
that the magnitudes of DX and DY are such
that all four mooring ropes are in the linear

operating range all the time.

Since we have two sets of springs (two
springs each) total force is

- U 4kDX+ 4kDY- Kef f DX

iKaff DY

re

Fiqure 4-3. Schmatic of Mo-oring
Forces Kef- he effective spring .,onstant for the

to"I mooring system 4k

4_ I



Now the total forces and moment in the combined noticeable discrepancies exist between the

system cf ship and mooring ropes are simulation spectrum and the one that was

actually generated in the model test. This

F
n  

F 
h 
+ K DX point is to be born? in mind when comparing the

x x eff computer simulations to model test data.

n h
F-F + K DYy y Keff D

n h 7 (Hd.I Tetj

M M + K DX (y cos de) 
(

ef f .-- -heoretLeai s

tnepcted

-K OysinO 5 - 5.2 ft.
DY7sin dO 

:AT- . s*

Ke ff D.

n n n
Thus, if we use F, F, Mn in computing the

new body velocities, istead of Fh, F) and, h\x
Mh, we are effectively incorporating the

mooring system into the problems

Two different irregular beam seas are used \

in the simulations whose spectra are shown in

Figures 4-4 and 4-5.

h 6.6 fl., T - 9.0 c ,

2 6

0.4 0.0 0.I IIo . 1.4

Figure 4-5. Wave Spectrum No. 3

The main particdiers of the ship and the

Smooring system are:

Length to beam ratio - 5.3

Beam to draft ratio - 3.65

Block coefficient - 0.75

Mid-ship section coefficient - 0.997

Stiffness of each mooring spring - 5 tons/m

Neither the mass nor one of (length, beam or

draft) was reported in the model test report to

uniquely determine all the ship's parameters.

Hence a typical beam length of 90 ft. was

assumed and all other parameters were deter-

mined in conformity with this Length. A still

0.) 0. 0.7 0.9 ).) . water depth of 65 ft. was used in all the simu-
-. ead/ lations.

Figure 4-4. Wave Spectrum No. 2
It was pointed out in Chapter III that a

minimum amount of viscosity must be present

The simulation spectrum and the spectrum make the numerical calculation stable. This

generated in the model tcst are both indicated. "artificial viscosity" mesa to attenuae the
The simulation spectrum coincides with the

wavn slightly as the wave propagates down the

spctrw which the m odel tests attempted to mesh. Therefore, it ie necessary to generate a
produce. However, it is to be noted that slightly larger wave at the inflow boundary so



that we get the right magnitude wave near the

ship.

The initial condition for the simulation is t

that the ship and the fluid are at rest. We Computed
start the simulation by impressing appropriate- - - Model Test
velocities at the inflow boundary, thereby mA mean - 74.0 ft.
creating a wave. The generated waves propagate

across the mesh, interact with the ship and t 1.2 .
smoothly flow out through the outflow boundary

(see Figure 4-2). It takes several wave N
periods for the wave to get setup. Simulation 2 u , ,

results for the setup period were discarded in

the analysis of results presented. o ' -I

The computer code outputs time records of -

sway, heave and roll. The second central
moment of the sway for two different sea

states is shown in Figures 4-6 and 4-7. The
test model data for the corresponding cases is

also shown in Figures 4-6 and 4-7. No data
were presented in the model test report to com-

pare the motions in the other two degrees of

freedom viz, heave and roll.

In Reference [101, Verhagen gives a plaus- VALUE

ability argument that the standard deviation

of the sway amplitude is related to the

normalized eoctral density function by a
linear relationship as shown in Figure 4-8. He

conducted three model tests to confirm this i

hypothesis as shown. We simulated this series

of model Lests and obtained the results shown Nlp fe I-Ss_
in Figure 4-8. Computfd

- C-odliutand
Our results showed some deviation from the - - - Model est

mean - 401.4
linear relationship at large wave amplitudes

Sa - 4.17
(approximately 20 ft. waves). We suspect that 4

this is a nonlinar affect which would be born
out by the model tests if they were conducted *

at large amplitude. Our re! ts also show- a -

slightly different linear constant in the low
wave amplitude results. This may be attributed a,
to a scaling of the postulated linear relation-

ship to the mass of the ship. The scaled ship *

displis(ement was not specified in Reference
[1i. We can bracket the above results by
assuming different dieplacements and should be

able to reproduce the linear relationship mora
closely by assuming a slightly larger mass and

rerunning the three simulations.

Figure 4-6. Comparison ol Wave and Ship

Notion Distributions, \uctrum 2

3. -n



FREE SURAC-AVE

COPuted Mean 74.0 ft.

-._-Model Test a 1.57 ft. 2

00

0>

0 
. /T, ft' sec"

0i

O 
Figure 4-8. sueary Comparison of

I. .Model Test and Computer Results

o 
V. Concuilons

We have developed an Eulerian hydrodynamic

approach to siamulating ship motions in randO-

seas. The method treats the ship wave inter-

action in a completely nonlinear fashion. 
The

VALUE co(! as presently formulated allows arbitrary

boundary shapes, arbitrary mooring 
forces on

the ship and arbitrary random wave input

spectra. The code results have been validated

against model test results and shown good

O K 'e' 
agreement. The method has the capability to be

- Computed extended to a very general three dimensional

- - - Model Test predictive technique.

Mean - 405.4 ft. njppenix Ao Finite Difference

11a l.2 ft.

The finite difference notation usad in this

paper i t e

0' 
n

p -pressure at center of cell (i,1) at

time level n

un x-direction veloity at middle of

right side of Coll (iJ) At time

level n

V y-direction vilocity at middle of top

side of cell (i,j) at time level n

. The difference approximation representing

s 0 49t. " LEe continuity quatiOn, Eq. (2.1) for a
typical cell (i,j) is

Figure 4-7. Comparison of Wave and I ( n+l nj) . n~l n+l

ship Notion Distributions .'- (ul+ " "-.) , .i. " d.l"

Th difference nquations opproximating the

maver-Stokes equations, Eq. (2.2) are,

3r



Ul i + p + V ,-

+ gx FUY PUY + VISX - +

and

nil n r [i u~vii v + Ps L +,- ,1il,j + " i-l,)

i g -i V-FV .. vsj ~ 2
ru~ u 1

6YgM i'j+l " i' +u , i J- I)

where the convective and vi-ous fluxes are
defined as and

r x .i4'ui ui1 )+lj + i1 {z-v+ 1  'ilj

(ui,j  Ui+l,j) (uil,j + +i'T( i+ 1  - 2 11 +
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COMPUTATION OF NEAR-BOW OR STERN FLOWS,
USING SERIES EXPANSION IN THE FROUDE NUMBER

J.-M. Vnfden Breeck and E. 0. Tuck
i Ap .led Metfremahc Depasiment

Ar I owdHoM-

innivdeityoAisMe

Aebstract Such evryehre-d-rent series can te
summured by a number of stanuard methods. How-

Two-dimensi nal slow past a semi-nfinite ever, there is necessarily a problem of lack
body with eonstant araft sH, is solved by oi uniqueness about this sm. Inderld. it is
yepansion in a, fo l power ries wth respect fortunate that thr. should be the case, snce
bu parameter , related to he drft-baed the same series represents Luth bow and +ern
Fn rzl number F,-lc .- re e This aeries is flows, which are expected to be quite differ-
as-, vhere diverge, but ca be suinued by ent in character. The maor task is then to
st p sard me.thods. Di,- ae is rio e unique, .nd choose summation procedure capable of enr-
one perofular , !!'iciest s-ation procedure (ting whichever of these possible solutions weyields R i-;contit ;ious : tw-e-free free prefer.
;:urfa"e- Iter.!tJ -echniques are de-eloped

to procapp rs ! t solution s a starting Although work is proceediny (Vanden Broeck
point, to a ng-ous o lsunion posessint and Schartz, 197) on development o dins ,
non-lnrter wve:, hiih cAn rwi-tefore serve techniques o echleve such a purpose, we ..
asg a stern f ult!: n-: presented for here an indiect techniqe. First w u e
the steepness shie eav j enerted a and standard summation prcedure due to ihanks
fucton or F, i .s cos flt-uous wve-free (195'), which gives good convergence, but
solution appears to ist, nd nuorigil sanard nericate a physiolly unanceptbl-
eviden0e p ut ebt th prtnce of a re-entrant solution, possessia l a discotinuou free
jet in the corres Ioie, 'hw-fw t robbl eb e surface.

p. ln far ecto Apprarpriateptrrtninrtorh tniss solutio e'e
then used as a "seed" font a direet numerical

In the present 1, v, we study further attack on the problim, using a form o{" 11owton-

the problem eonsidereb orst by Dan and san iteration. This prucedure hs in prinhiple
Tulin (1972) of te ilow past a semi- quite independent of the lw-Froude number
infinite two-dmeasit d flat-bottimed body asymptotic series, hd ca be viewed as ap
of draft an , in Dfw u and tul t rmsin al stndard nuerical solution of tie inw.re-
problem the body te a e with a vertical differentn[ equation to vhi!h the complete
facet - we generlie Ais here to include problem ta b reduced, at arbitrrry FroudeI plane faces at fr a15 !frury angle y to the nresher .lower, convergence of the thr -Shorizontal. This gKimktr'y can serve an a tioriv Is very sensitive to the c.ii.e or

model for ither near-bow or near-stern flew d sterin solution, d sucesa has bcen tihi-
ae barg-ite vessel, depending on the ed only by use of the suitmd series he such

ign of the flow maanitude av at infinity. a starting solution. The Iterations apper
to ccnvergc extremely well for stern prow, but

Daa an and Tulin found two terms in an not for bow flow.Sexpansion in powers of U'/gH . We are able

ts montilnue this serea,in principle indefn- In the ase of stern flow the final oel-

atelg but in practice he able t n good utlion appears to a vree within the accuracy o
numerl il values for a n t he ser hasaern bod d convergense of the Iterations with the wve
These ters are quite uniqueLy determined. and series, between the bo(dy and the discontinuity.

re ande ndon
t 

of the sign oa U Beyond the previous discontinulty, the final
solution chanes smofhin Into a train of

However, it is apparent that the magnitude waires rit Infinity. Thiese waves becomec strongly '
of the terms in Increasing at an r. arming rate. non-oinuac idel as the Froude number increases.
Indeed. convincing numerical evidence is The prestnt non-lineftr computations provide
available to show that the (n+i)xt term in the first published solutono ror waven goner- s
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2. Mathematical Formulation At infinity in non-dimensional so-ordinates,
we have a unit free stream 0 - x and a free-

We assume a two-dimensional irrotationai surface level y -c. if there is a stag-
flow past a semi-infinite body, consisting of nation point on the free surface, it is necess-
a plane lower surface y* v -H, x* < 0, and a arily at y - O, and y < 0 for all non-
ftce y* -H + x* tan y which slopes at an stagnant free-surface points. The normalized
angle y to the horizontal. Figure 1 shows flow is shown in Figure 2.
an idealized flow of this nature, which behaves

at infinity as a uniform stream U in the x
e  

Y
direction, witsL the free surface ultimately the
plane y* - O, x* , + . The fine detail of S x

the flow sketched in Figure 1 (e.g. the tag- 4-1 H
nation point of contact, and the absence of
waves) may not be representative of .he true C
flow to be computed; indeed it is part of our
task to determine If these features are present.
Figure 1 shove a stern flow with U > 0; the
method is, however, equally applicable to bow
flows with U < 0. X

YOu /s- . Free Surface/ P Figure 2. Sketch of non-dimensional flow

Ay" S O.We solve this problem in an inverse manner.

.*-H,*- X If 0 is the stream function, conju6ate to 4,
Y , Xwe write

f =4+ 14.8

and z a * i, +.9)

U and solve for z as an analytic unc of 7,
in 0 C 0. The free surface and the -iy are

Figure 1. Sketch of dimensional flow portions of the streamline = 0, on Which
(2.7) becomes

The mathematical problem is thus to deter-
mine a dimensional velocity potential 0*(x*,y*) y(x

2 
+ y') + C - 0 > 0. (2.10)

satisfying Laplace's equation in the field of

flow, with S* + U x* at infinity, with vanish-
ing normal derivative on both the body and free 'he boundary condition on the body crn be

surface, and with uniform pressure on the free written

surface, i.e,2 Iy . 0, 0 < -i

AVC +21, ,- ' 2 (2.1) <.in Y). - (cns " y, O0 -1 < 0 0. (2.11)

Without loss of generality, we can choose the A .. tion for a given value of the puvooeter

zero level for the potential 4', such that can be written

00 - 0 at the point of contact between the n(f) z(f;C) = x(0,4,r) + cy(*,0;e). (2.12)
body and the free surface.

We now nomalise with respect to a length Note that i ' dependent variables :iso depeni

scale implicitly on the angle y of the body. The
inverse problem in the f-plane i, Ilnutrat,,i

L - K/U, (2.2) in Figure 1.

where -K !s the -alue of the velocity
potential 40 a. the corner point x* - 0, C NR

yO- -H. Thus we define non-dimensional
quantities Flat Bo loping ody i,ree L'urface

x (- i + 2 -ot 3)/L (2.3) 4ta _...L * - _

- **IK (2.5) -

us Figure 3. Flow ii (,4) plane
and .- (2.6)

In this inverse formulation, i: i,iort-
In terms of un-starred variables, the free- ant to note that the normalisation ch,,& has
surface condition (2,1) becomes forced the body's corner point to lit It $--i,

4s.0, Our solution will then determine thw
a( * ) v y - 0. (2.7) y-coordinate y(-l,0 l) o 'hip poin.tnu

A



hence implicitly the normalized draft H/L of i.e. using (2.19) with 4,> 0,
the body. Thas (2.4) implies

_ =x,(4,,o;c) - ( 1i' [ -

S- y"-l,O;C) - C !2.13)
LI 

(2.23) '
from which we find the draft-based Froude sF - dp (2.23)
number 1 0

Fm (21M ) Upon substitution of the formula (2.23) for
F gH . x into the free-surface bound'-y condition

(2.10) we obtain a non-linear singular integro-
= (- N - y(-l,O;)/2c)

-  
(2.15) differential equation for the unknow quantity

Y(Oo;C). , > 0.
as a function of the parameter .

Once this equation is solved on # > 0,
The function z(f) is analytic in * 4 0 the solution caa be continued to the remainder

except at the stagnation point f - 0, where of the f-plane using (2.20). In particular,
(c f. Dagan and Tulin, 1972) for -1 < 4 < 0 the integral on the right of

(2.23) (which is no longer of Cauchy princip&l-
. , y > 11/3 (2.16) value character when 4 - 0), provides az'(f)

(2.16 representation for the quantity (cos Y)z,#(#,,;C)- < 43 + (sin y)ye(O,O;c). In combination with the
boundary condition (2.11), this gives an

and at the corner point f --1, where expression for Y., -1 < 4 < 0, namely

Z'(f) . (frl)
'  

(2.17) 71

For E 0, the problem has the exact 
solution

n'(f) =(lI', (2.18) irJ\pl , J (2.2h)

corresponding to flow under a step, the free This can be used to evaluate y(-l,O;c), and
surface beirg replaced by the rigid plane y-O. herce the draft-based Froude number via
Note that this is a good local approximation (215).
near the stagnation point f - 0 only if
y > 7/3 but gives the wrong asymptotic behaviour 3 ;ertes in Froude Number
if Y < T1/3.

We now assume that the Integro-differentiaConsider now the function equation obtained by combining (2.10), (2.23),

S it. 12.9 poasesses a formal power-series solution in
x(f) T Z'(f) - I , (2.19) the parameter C, of the form

which vniushes at c - 0 and a n 
"  

, and
removes the singularity at f - -1. If y(OO;c) - y (+)E' (3.1)
Y > 11/3, it also removes the singulsrity at 5-

f - 0, but if Y - w/3, we have x - fe
This singularity is weaker than a simple pole, I
so that in all cases, we can apply Cauchy's .-o (• -o (3.?)
theorem to x(f) on a path consisting of the
complete streamline we 0 and a <ii-circle where Y,(f) - s + iy, is the corresponding

coefficient in a power series for the complte

solution z(f;c). The leading (n - 0) term
X(f)(( , (2.20) in this expansion is simply the tero-.Froude-w. -f number solution (2.18), i.e.

since X 0 as, -- On letting - , (f} - (3.3)
we obtain \TY

which is real on the free surface f o - O,

X(, - i0,- O-AP . (2.21) *>0. Thus

Y.* 0 and x'(#)
the Integral being of Cauchy principal-value
form. Upon substitution of the series (3.2) into

the bounder condition (2.10) we find
The boundary condition (2.11) on the body y, -(xl) , and obtain the recurrence relation

< 0 is equivalent to the statement that the
imaginary port uf the functon X(f) vanishes y .
for real negitive f . Hence. on taking the (3 .4
real part of (2.21), we have ys - J.m' n * 2,3,1,... (3.)

itX# - JLlitl a (2.22) where (3.5),., . ) ,,. ,;,. .
-S

3?3



Since equation (2.23) is a linear relationship "uninteresting" in the sense that the depart-
between yo and xe, it can be used to compute ure of the free surface from its limiting plane
each x., once the corresponding y. is known, is required to be quite small, and the inevit-
i.e. for n = 1,2,... able loss of accuracy of the asymptotic expan-

sion takes place before interesting displace-
7/ApT1i" 1f\ sy (w) ments of the free surface (including waves)

w 'fLl . dp - have a chance to occur.

(3.6) In the present section we show how the

Some care has to be taken in the numerical usefulness of the divergent expansion can be
evaluation of the derivatives y,'() and the improved by a simple appro:imate series-
integrals (3.6), since this is the only numer- completion procedure.
ical limitation on the cumber of coefficients
which can be found. in order to work with We recognise that in practice the follow-
integrals over a finite interval, we first ing approach is limited by very serious
re-write the relations (3.5) and (3.6) with computational difficulties. However we
the new independent variable consider it so a useful preliminary motivation

i for the exact nurerical scheme to be used in
S= ](3.7) Sections 6 and 7.

obtaining Let us consider the series (corresponding
to (3. ..o z'(O,;, 00. In Vanden

( )- +(6 ) / Broeck, Schwartz and Tuck (1977), a generalis-a s -a / ation to the case of complex coefficients of

the Domb-Sykes procedure (Domb, C. and Sykes,

and (3.8) M.F., 1957) was used to show that, for n
a. " , _-, , large.

-s Ti-") y J6 -' It.1.~ () __(3.9) - n I) (4.1)

The interval of discretization is specified for some complex-valued quantity t,(0). A
an E1  for example, for N equal intervals, reasonable approximation to ,(o( can be
Ex 1/H. The functions y, (0). i > 2, are obtained from a finite number of terms,
evaluated at the points 8,= (k- (tki.2 directly from (4.1), or by extrapolation for
The derivatives

are computed by cubic splines at the points 8k r . --,

and also at the midpoints 0(k-l ,hk.3,. O3
with the end conditions y, (0) - y, (1) 0, V
[ 2 . The values y, /a8 at the points
1, are used to compute the integrals (3,9). 02
upon application of Monacella's (1967) theorem, 1, 135l
Wrich states that the singularity in the niumr-
Ir"al evYaluatIon of CaRuchy pri ncip al- value k
integrals can be ignored, providing the quladra-_

ture is sametrical with respect to Silngo')ity.
In the Integration routine, a cubi, spline fit _.. ---- - --- -----* - -

wsuetorepresent the integrani, ndt this (0 02 3 0 05 6
'ubic was integrated esactly. 0

The progr .a run if duble precison 0 O

(.,9 figures) on a CDC 6400 computer, with
N' tOO, and wa oun t to enable evaluatlon of
terati; up U,1 . W ith .- figuir, auncy , laid -02
upt to yi 1  with h-fIgure accuracy.

4. [livergesre and Non-Uniguenes -0 1

Evidenrie lias recently beem, givenl that the
Low-Froude-Tvsber approxlnsttn is problems of
tile prenehlt nature Is singular, and leads 'o Figure 4. Polar plot of (*(.
formal series In powers ,f the Froutie numbe.r
with -er( radios of evlsvergence (V ir, .--.k, In Figure 4 we present polar iflte oF the
lchwarto vd Turk, 197'). Frovidiig the function t(O) estimated fro (4.1) with
Froide number is muffIc lest|ly smail (and it 0 - Ii , for different vlues of y, The
mus indeed b extremely small), tile seres points on each curve when moving clockwise
sewrtheless retains nigni ficatce a. all waymp- correspond to Increasing values of 4 . All
totic' expaiolln, with U-ccuracy of tie order of these plots apiwsr to be close to a circle
innatillude of' the first neglecetr tenm. diwever. throughi the origin. This result can be shown
snoh very lhw-Froude-inumber results are (see Appendix for details) to
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lie equivalent to the approximation obtairned (Abramtowitz and Stegune, 1964, p.22
8
). The

by replacing the non-linear free surface by a usefulness of the original asymptotic expan-
"locally linearised" linear condition. Thin sion can therefore be increased by replacing
locally-linearised solution also predicts the the infinite series in (4t.6) by its "converging
form in which this circular plot is paralset- factor",* i.e.
rized, namely

dx a~(~ (2 (4.2 A0E)- Ft- lt(E "

.9)
a result which appears to be confirmed by theDifrn fucosrelin '(t ca

tombSyke plo fo ~ 1 * whre 4 ~sbe obtained by specifying different cuts it,
D = real. On integrating (4.2) we have tecmlxtpae l t eutn

solutions differ by a term which is exponent-
I 1 itly smell In the limit as e - 0 and all~ ) J x' (11.

3
dt 3) have therefore the same asymptotic expansion.

The main difficulty about the converging factor
is therefore one of non-uniqueness.

Ihe approximation (I.1) seems to fail
close to the stagnation point 0 - 0, suggest- Is particular we cane replace WN(t) in
ing a different kind of behaviou, in this (4.9) by either of the following two fuctiones:
region. We shall nee in Section 5 that this
does not constitute a serious limitation to W (t) ..It. > 0,
the final numerical scheme. + =

S)Iution of (4.1) an a recurrence relation W, (IA - <i(-) 0',~
yields (4..10)

z(o) -C(0)( e(I)(n + a)i (4.4) or W t + 2lie(-sl' 'N11 1t , 0

for some constant a , and some fuiction CWt W_(t) N
which can be evaluated by fitting the last few N (IA zio 0.
coefficients. Rlecall that all quantities, N(.1

including C, C, and a li (L.4), nay depend
implicitly on the angle . Some preliminary' One may argo' thast other arbitrary terms (ali':

cowevrtis valhs to ug e tate wit 0. e,onentially small in the limit an;c 0)
howeerthi vale hs t be reaed ithcould have been Included in the definition of

caution, as an accurate evaluation of the the ecaiverging factor. We believe that this
constant "a' based on only 15 term in dirf- is no'. the case in the present problem, And
icult. We will therefore devellp the follow- that the only non-uniqueneas adpearing in
log arguments without aniy assumption on the the preurt problem I.: asociated uith .!
constant a . speoificaltion of the branch-cut location. The

Follwin Buhann (176)ant Digle I L, 3 , os! convincing argurnent for this is ferhaps
we ollowing asmuotchaa s19ie) androxigtel byh the numeri c"l achene prersented in Section 6:

we um heasyptticneiesaproxmaelybythe profil1e predicted by Shanks transformation
asasing that turns6 out t o be1 correct for the ntern flow

z'i (b.5) Is- to the body.

Let nosecono ider ii t the hol ce (4.1))
for all n ;P N + i, where N is a sufficiently 6ince Wite)t) in defined in thre rumples t
large integer. Therefore we write plane, cut along the ttegative-real t.-usi, the

N c!orreaponding fNqction in k4.9) is define,' in
0. (E' Z. . (7 V~ .a )I the vomples t,-plase out along the noilitln,

(46)real r.-arils. But Figure 1; shows that this
branc-h cut io necessarily crossed at the valu-

The Infinite series 0 - , f or any Y. iHence the oorrerelsnding

Fi r (n a) I Fo.1uolin is discontinuous at o * , anid
thrrfore .ot pheysicailly heccrptabif. O1 the

other hand. since the functions We, And Wet
can be stiedi in the Borol rsens ad Are defined ont a L-plane cut on the 1x~sitive

I real t-axio, the oorresp:nding funectionsr li

~;-r ~( J-~ (4.7) 0 .9) are defined li the complex t-PIan'
s\ it- cut along the negative real wtais hichin I

ster. not ,roaned by the curses In Figure 4. Itnce
bo~th of these solutions are contintuous, s tA

lu-b) e can i pretrd to hise a physica eaning.
.u' Note that the t,Iutlcn 'orr-mpondling to Wei

has to eanes C infln't) and has therafrer
The function Wt t in define! lit the -voplex bus-fIct, chareacer, wheietave tie solutiont

t-plan.!. cat ta~nng the ntegatiee-rcal axis. L'urespntneit and posese a strin coer
If a - 0, Wet(t) can be esp-rssed In termswaeatifny.rd ie sr-ro ,%r

of Ins tisponenetial Integral function&tr



More precisely, substituting (4.3) and
(4.1O) into (4.9),ve get for I ? *, In the e

- 
E( (5.2)

stern-flow case, x /

_ c'x-C( )( x)"e'T W - where EI(t) is the exponential integral
( 0 - E-I) function defined in the complex t-plane cut

along the real negative t-axis. (Abramowitz
ee -e , 'i,.(*)I, do and Stegun 1964, p.228). Thus the Shanks

jr) . table converges in the complex x-plane cut

(4.12) along the real positive x-axis.

The last term in (4.12) represents a linear Other choices for the cut are in principle
wave on the non-unifor- stream defined by the possible. The reason why the Shanks table

rigid-wall solution. The amplitude of the selects this particular cut can be established

waves at infinity is given by: by contradiction. It another cut were selected,
the Shanks table applied to the expansion (5.1),
with x real and positive, would have to

e
-1
0 a- - (C.3) converge to one of the two complex functions

and is exponentially small as E - 0. 1e4 Ei( -± . (5.3)

These results are simil-ir to those obtained (k)
by Ogilvie (1968), by carrying out a local On the other hand el is rea and cannot

linearisation about the C - 0 solution therefore converge to a complex rumber when

z f %o(f). In Ogilvie's method the waver are x is real. Therefore the only possible
completely determined by the rigid-,asl solution choice in to cut the complex x-plan, along the

i.e. the first term of the low Froude number real positive uxis. A similar argument hf.±

expansion. On the other hand, our method been used before by Shanks (1955) in the cac
indicates that the amplitude of Lhe waves of the function log(l+z).

depends on quantities like C(o), a and D
which can only be evaluated by considering Our method is now the following. We

many terms in the low Froude number expansion, apply the transformation e( a| to the complete

We expect our approt :h to he an improvement on expansion for z'(0 .O;C).f > 0, obtained in

Ogilvie's theory, as the total information Section 3. The above considerations, combind

about the fully non-linear problem is contained with the arguments of Section I, suggest that

in high-order terms of the expansion. However, a Stokes discontinuity han to b- expected for

our approach seems to present serious numerical 0 - t'

difficulties, partly because of the difficalty

of evaluating the constant a from a small This point can be Justified intuitively

number of terms. Other oumerical difficulties as follows. In Section 4 we have chown that

also arise associated with the above series- the most-divergent part of the series can te

completion method, involving errors due to complet-1 with the functions WN(t), Wtj(t) or

subtraction of large nearly-equal numbers. In W (t) . The solution corresponding to WN(t)

the following sections, a more practical has a Stokes discontinuity at # - * , whereas
numerical method is derived, using a similar the solution corresponding to V'(t)" poss,,ses

philosophy but without the above limitations, a train of linear waves for $ > 4, . This
procedure could in principle be repeated an

5. Shanks Table Sumation ..finite number of times.

Transformations that accelerate the For example, in the second step, we should

convergence of slowly-convergent series, can find a less-divergent expansIon by extracting

often also be used on divergent maymptotle the nost-divergenc part from the original

expansions. for example Boxer (1965) proved expansion. We should then complete this new

that Padi sequences are convergent for diver- series w.th appropriate funct'ons S(t;, l;(t)
tent expansions derived by confluence. In or S(t). The solutior correspcnding to
the present paper we make use of the Shanks Sit) would have a Stokeu discontinuity at

transforimtion e," (Shanks 1955). Although 0 * #a ad S(t) would possess, for * 4 OA,

this transformation is often more powerful a train of non-linear corrections to the

than the Pads sequences for suming divergent linear waves found In the first step. it

expana Ions. it has not been studied extensively seems reaonable to "msume that the domain in

and the reasons for its "magic" power remain which we superpose the non-linear corrcctlo,

obscure. coincides with the domain of the linear waves.
Therefore 0,,

Useful experience can be gained by consid-

ering first the simple divergeot expansion The Shanks table was foun, to converge

,a pidiy, id gives results will 4-flgure

x* ni (5.1) ccuracy on amost all the rre, surface, even
s~f lor moderately large values of c . A guni

convergence wan even found near the otsag.at on
where a is a complex table. When applied point.vwbre the plots of Figure 4 do not give

to the series 15.1). the iterated Shanks , informtion.
traLnaformsation ," conerges rapidly, o longI

as 9 is not real and positive, to the function

Si'
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where

35- FM0 T'~~ ~ Ja (4y~
.0 2.0 3.0

is a known function of 0.
-0.1 "9 'g, e 0"65

FEquations (2.10) and (6.3) define an

-0-2 integro-differential -luation for the unknown
function y,,() , b < -, to be solved
subject to the matching condition

lim y(P) = ye(b). (6.4)
4 b+

-0.5- After discretisation, the functions Y#(O),
y(x), x (), 1, < < , are represented resp-
eilvely by the vectors

Figure 5. Discontinuous free-surface

profiles obtained by Shanks y' = (y' ,y.,y.
.  

y
5
) (6.5)

method.
(y,y

2
,y '..yN) (6.6)

Typical profiles for t = 0.65, y - r/2, and and
0.40, y = 1/3 , are shown on Figure 5. a = (x,x ,x. .x), (6.T)

These profiles have,as expected,jump discont-
inuities corresponding to a value of 0 whose components are the values of the corres-
relatively close to the points 0 = 0, where ponding functions at the mesh points chosen.
the circles in Figure 4 cross the real positive

r'-axis. The fist mesh point is at 0 - b and

the last one is at 0 i'.€,where 0 , is a
dy analogy with the properties of the large number. The error inherent in approx-

converging factor established in Sction 1, imating an infinite integral by a finite inter-
we arsume hat the portion of the free surface val was found in most cases to be negligible,
given by the Shanks table between the body and at a distance less than a wavelength from the

the discontinuity is correct for the stern flow, last mesh point, for ., sufficiently large.
and that the portion of the free surface beyond Using the trapezoidal rule and Monacella's
the discontinuity is correct for the bow fiow. theorem to approximate the integrals, we get
in the eae of the stern flowthis assumption relations of the form
is confirmed by the numerical scheme of Section N

6 and by the fact that the solution given by F + a 1,2.
the Shanks table between the body and the jump +I 0
satisfies the boundary condition (2.10). The (6.8)
sit Aon with respect to the bow flow is less N
clear. y. y , i s 1,2. N.

6. Stern Flow (6.i)

where the 9 ,C,, ,F, are known constants.
In order to solve the fully non-linear Substituting in (2.10). we get a system of N

problem, L successful numerical scheme was non-linear algebraic equations with N unknowns
developed In the following way. For a given (y..yN) that can be written in vector form
value )f E and Y w we seek a continuous
solution of the integro-differential equation
defined by (2.10) and (2.23). which matches g( ",; - O. (6.to)
exactly the solution given by the Shanks table
between the body and the discontinuity. We This system is solved iteratively by a
slume, therefore, that Newton method. Thus, if X is an approx-

imation to the solution, a better approximation

Ye(4) - ye(), 04 < b, (6.1) is expected to be

where y(O() is given by the Shanks table. y; • - A'I( ), (6.11)
The value $ a b corresponds to some point h
between the body and the discontinuity. Since where A is the matrix 2e/2Z with (i,j)t
y(O) 0 0, the relation (6.1) implies elements

y(O) -ye($), 0< Wb, (6.2) A1  a a)

where y"(4) is a known function. Equation For the first approximation we take y' - 0
(2.23) ema now be re-vritten in the form Each Iteration requires the computatiln nd

Inversion 
of the matrix 

A

-v) I \4/Jte / T scheme was tound to be rapidly convera-
b (6.3) ent, and a soluton of the algebraic equations

3"-*. ...

4 * ,



with an error less than 10
-  

is obtained in
a "ew iterations. The accuracy of the 0-09
solution obtained is improved by increasing
the number of mesh points. The residual error
is a direct measure of the accuracy with which
the free-surface condition is satisfied, and
in fact can be interpreted as the difference 0.07 -

between the computed pressure and the required
zero level. 0.06

So far, the solution obtained satisfies 005
the free-surface condition for b < < -, and "
matches the Shanks-table solution near the
body. Using (6.3) and (2.10) we can compute W0-04

and y, 0 < < b. It is quite remark-
able that the function y(j,) so computed, 0-03
turns out to be equal to y*(O) (see (6.2))
to the same good accuracy as that to which the 0"02
free-surface condition is satisfied for y > b.
This proves that our solution satisfies the
2 lete integro-differential equation (2.10),
(2.23) to this accuracy. It also shows a
posteriori that our vonj.ctoire sbou . he
accuracy of the Shanks-table solution near the 0 1 2 3 4 F5 5 7

body was correct It is worthwhile mentioning
that a Newtonian iteration scheme allowing all Yi gure 7. Steepness (wave height/
the points of the free surface to vary, does wave length) of the non-
not converge, even if the starting approxim- linear stern wave as a
ation is correct to three places. This function of draft-based
phenomenon is related to the non-uniqueness of
the solution. Froude number at y-90'.

As the Froude number increases for a
given value of y , the steepness of the waves
(i.e. peak-to-trough wave height divided by
the wavelength) increases. Figure 7 shovs
the steepness of the waves veruli the Froude

number F, , for y = 900
.  

When the Froude
number is small, the steepness increases

rapidi~(in fac t exponentially) with the Froude
6 number. This behaviour can be expected from

the linear approximation of Section 4 (see
F ,formuln (,. 13)). However,whcn thu Fruude

number is large, non-linear effects become
4 .predominant and an extrapolation of the curve

of Figure 7 for F1, 4 ", suggests that the
steepness tends to a value less than the
m nimum steepness (0.1412) of Stokes waves
(Schwartz, 1974). In other words, when the

Froudi numbee increases, both the wave height
and the wave length increase but their ratio
(i.e. the steepness) remains bounded by a

----- ____ .J constant less than the maximum steepness.

0 0i 10 iS 20 Similar results were found in the case y - 60.
Note that the mathematical formulation of

Figure 6. Relationship between Section 2 allows in principle negative values
iu tuid of the draft It, for .hich waves of higher
Fn  Mid .

steepness could be computed.

Sts,,, flows for I - 60*, y " 90' were In Figure 8 we present a typical example
computed by the above numerical scheme for of the non-linear computations which can be
various values of c: . In each case the performed oy the present method. The Froude
corresponding vau,, or the Froudc nuiter was number is 6.3 and the steeess of the waves
computed by use ui (2..14) and (L.15). In is of order 0.09. The actual shape of the
Figure 6 we present values of the Froude body (y - 90*) is also shown on this figure.
number F,, versus c, for y - 60 and Note that the wave height is several times
Y 90 

,  
For , wmall, F11 is proportiunal bigger than the draft of the body, and the

to . This result is in .areement with waves are quite noticeably non-sinusoidal,with
an asyurtotic analysis of (2.24, and (2.15) sharp peaks and broad troughs. dote also
in the limit as C 0. For large values of that the horisontal scale hue been much comp-
the Froude number, the curves of Figure 6 ressed compared to the vertical scale. Similar
Indicate that aI the values of F,, between computations have been performed for a large
0 and - are mfapped onto a finite range ,f t. range of y and c values.
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Figure 3, Stern flcw for y 90, F11 = 6.3

7..Bow Flow Following the procedure outlined in
Section 6, an integro-differential equation is

In the spirt of Section 5, we kay derived for the unknown function y#('),
expect the solution given by the Shanks table 0 < c < b. After discretization, we obtain
beyond the discontinuity at 4 - $ to be again a set of N non-linear algebraic
correct for the (wave-free) far-field solution equations in N unknowns, that we try to solve
for bow flow. It is interesting to note, by Newtonian iteration.
however, that our numerical results from the
Shanks table are slightly less accurate for This scheme was found to be unstable, and
$ > 4c than for 0 < * . Thus the free- did not converge for a realistically-high
surface pressure computed from this solution choice of the nunber N of meash pointi. This
is essentially zero (t , the accuracy of conver- numerical evidence seems to point strongly to
gence of the Shanks table) if # * but not the conclusion that no continuous wave-free
quite so for 4 > *. This is of potential solution of the bow-flow roblem exists.
significance, as discussed below, but since However, some qualitative information can still
the error is still only very small we ignore be gained frm the present numerical procedure.
it temporarily, and assee that the Shanks
table solution is exact for t o as a For example, a careful analysis of the
representation of a bow flow. first few Nevtunian iterations suggests that

the trouble arises in the immediate neighbour-
We now attempt to solve the bow-flow ho-d of the stagnation point, It was found

problm in a manner analogous to that for stern that excellent convergence of the iterations
flow in section 6. That is, for a gi.en value could be achieved by decreasin the number of
of c and y . we seek a continuous solution msh points in the neighbourhood of the stag-
of the integro-differentil equatien (2.10) nation point, while keeping a large value of
and (2.23), silch matches exactly the solution N, with mesh poitntclosely distributed over
given by the Shanks table for 4 > 4. We the remainder of the free surface. A typica
therefore astm free-surface profile ( 9 0*

. 
C - 0.9) is

sbn in Figure 9.
y (*) • y*(#) . b 4 4 % - ,

# This "solution" is clearly verj aporox-
where y:(4) is given by the Shanks table for fiet indeed, as the flow between the last
come constant b r . •' i t shown and the stagnation point has beec

completely filtered out. However, it is
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-0.3 ,~Nou-tonian iterations.

Free ruace 4

-0.6

I-. C

0 3 x~6 9 1

Figur .e 9. Attempted bow-flow splution Figure 11. Modified f-plane with jet

interesting to note that the free surface is The only effect on the computations is to
becoming almost vertical at the last computed replace the free-nurface condition (2.10) by
point, anti shows no indication of any tendency
to approach the stagnation point. I~ A) y(x*' + y)=0, (7.3)

These comnputertions therefore suggest that$9 ;7 ;

the true bow-flow solut ion possesser, none hind
of jet. We conjecture that the ippropriate where 6 is the non-dimensional jet thickness
suit ion at all Froude numbers in of the fore and A Is its location in the l'-plane. Both

sown In Figure 10, similar to that suggested parnmet ers 6,A are unknown and aut be deter-
by Dagan and Tulin (1972) at high Froude number, mined as part of the bow-flog solution.
The fact that the above numerical method, which
ignores the presence of this jet, nevertheless Note that If 6 -0 we recover the
converges if we m-%e the, mesh sufficIenf, 4  ormtlnizous assumption used In t -he remainder
oarse near the body, is consistev* w,4th tl ..,f ti-o paper, and ? -_ f. it seems likely

whole Ict i;Lru,.Lkre being orfined to a very that 6 In exporvmtinlly snail in the limiP

small region close to the body. no - 0. If this is the case, the solution
with at jet hao* exactly the ime asymptotic
enpansion as that without, and the jet struceture

0.0 moot be obtained by an appropriate suimnation
technique.

____ At thin point we can see ow the slight
p~o~J ppatrent error In the pressure comnputation

it for t 1 , could be bignificant. For ir
(L1.10) is not the appropriate free-surface
cneditlou, but cattier (7.1). the error obtained
by auming (1'.10) will appear to he a non-nero
tree. aurisce pressure, proportional to tie

eKsponentlslly-esmall jet thickness 6. Attempts
have been made, so far unsuccessful,* to exploit
thio phencomenon to provide an -timate of
andti

Ill Drest twton lan-i terat ion methods incorp-
-- orating the jet geometry are premently being

Figs 'r 10 . tihetch of conjectured inveet igdtl. TIhis is a problem or consider-
jet-ilke bow flow uhii difficulty, since an accurate model of

the ctomplete re-entrant jet geometry to needed,
it.ii clear, hiowever, that the whole and this demnit good numerical values For the

snatlytlPal and nuec-rical structure o~f the unknowni jet paraeters 6 atut A
presnrt paper is to principle invald :or a
flow such rin that in Figure 10. For es.iasp Ie,Acnweaat
the f-tI ine, sketched 15 Figure I I, mi iixgrrk
atlropiite, xili we St inoect a cut ast shown fihe authors thank Dr. 1.W. liehwart br
iii Piltre II. Neverthiieesti, we ranl recover asistance gives by active discussion or thi'
tilt' original r-plitnr geometry by the -ntiotsni wojrk, an part of a research project supported

mpitui by the Australian iieneareh Grants Cmittee.

wtiSch . I" r-pttn, of tigure ii I rt. that
Iir ,with 6 Inuteed ,f

I
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NONLINEAR HYDRODYNAMIC FORCES ON FLOATING BODIES*

B. D. Nichols and C. W. Hirt
Univesity ol Califomnia

Los Alamos Scientific Labortor
Los Alamos, New Mexico 87545

ABSTRACT ders in low amplitude forced heave, sway, and
roll motions. 2-4 The good agreement obtained

This study investigates the influence of in these studies with linear theory and experi-
nonlinear effects on two- and three-dimensional mental data serves as a validation of the basic
cylinders in forced oscillation. For the two- calculational procedures. The companion three-
dimensional calculations the publicly available dimensional code, SOLA-30. has been su' cessful-
finite-difference code SOLA-SURF i. used. This ly applied to the calculation of wind loading
code provides a solution algorithm for the full on three-dimensional structures' and, in addi-nonlinear Navier-Stokes equations or, as an in- tion, has reproduced selected two-dimensional
put option, the nonlinear potential flow equa- calculations for heave and sway motions for
tions. The companion code, SOLA-30, is used for cross checking against the two-dimensional
the three-dimensional calculations. Hydrodynam- code.
Ic forces on two- and three-dimensional triangu-
lar cylinders undergoing forced harmonic oscilla- We have utilized the two- And three-dimn-
tion in sway are calculated and compared. The sional SOLA codes to investigate nonlinear and
hydrodynamic coefficients for the two-dimension- three-dimensional effects influencing the hy-
al cylinder are numerically determined for sev- drodynamic forces on floating cylinders. In
eral amplitudes of motion. At amplitudes larger this paper we discuss nonlinear effects arisingthan approximately 0.12 beam widths definite during large amplitude swaying motions of a
nonlinear effects are observed. However, this two-dimensional 60 triangular cylinder. The
is not the case for the three-dimensional flow results of the numrical studies are compared
associated with finite length cylinders for am- with other data, Including nonlinear potential
plitudes of motion up to 0.22 beam widths. The flow numerical computations. An interpretation
numerical data support the use of linear poten- of the observed nonlinear effects it gi.en. We
tial theory for predicting the added mass and present a second study that compares two- and
damping coefficients for two-dimensional cylin- three-dimensional calculations of the triangu-
ders in low amplitude motion (up to 6% of beam lar cylinder in sway. Here the end effects as-
width for sway). For finite length cylinders sociated with finite length cylinders are
the linor theory appears to hold fo- much larger noted. Nonlinear finite amplitude effects foramplitudes (at least up to 20% of beam width). the three-dimensional triangular cylinder are
The numerical algorithms contained in the SOLA also considered. To further validate our nu-
codes are also shown to work well for the calcu- merical methods as useful tools for studying
lation of nonlinear flows generated by rigid nonlinear flow phenomena, we present the re-
bodies Impacting on a fluid surface. In parti- sults from a circular cylinder Impacting onto
cular. the impact of a circular cylinder is cal- a water surface.
culated and found to be in excellent agreement
with experimental data. 11. NON.INEAR TWiO-DIMENSIONAL EFFECTS

I. INTRODUCTION Low Amplitude Studies

in this paper we discuss nuerically de- The hydrodynamic coefficients$ for two-di-
termined hydrodynamic forces on floating cylin- mensional bodies undergoing low Amplitude
der%. Particular attention is given to nonlin- forced harmonic oscillations In an otherwise
ear effects and to finite length effects. The quiescent fluid have been determined using the
nuperical solution algorithms used for these SOLA-WAF code. In this study added mass andstudies art finite-differance techniques for damping coefficients are computed and compared
the nonlinear Navier-Stokes equations. The with the experimental and analytical work of
two-dimensional algoritw Is contained in the Vugts. 7 The results of these studies for theSOLA-SURF code.' This code has been used in rectangular cylinder in forced hea e,' and the
extensive numerical studies of the hdrodymm- 60* triangular cylinder in forced sway$ have
ic forces on rectangular and triangular cylin- previously been reported, but ire Included here

*This work was performed jointly under the auspices of the lited State. Energy Research and Develop
ment Adinistration and the Office of Naval Research, ONN Task M11062-465.
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tangular cylinder and B/T 1.155 for the tri-
for completeness. Presented are also data from angular cylinder, where T is the initial draft
a 600 triangular cylinder in forced roll motion, of the cylinder. The amplitudes of motion,
The added mass coefficient, ji, and the damping normalized by B, for the rectangular cylinder
coefficient, X, are given by were 0.025 and 0.050 and for sway was 0.058.

The triangular cylinder in roll motion rotated
Y Vs(1 about an axis located at the horizontal center

(1) aof the wedge and the initial free surface posi-
a tion. The amplitudes of motion were 0.025 and

0.050 radians.
and

In general, the numerical da+" from these
y sin calculations are in good agreement with linear

(2) theory. The sway (Fig. 2) and roll (Fig. 3)
numerical data show some discrepancy with the
experimental data, which Is believed to result

where a is the amplitude of motion, w is the from elastic bending ;n the support bar used to
frequency of motion, and y Is the anpltude of hold the body in the experimental setup.' Al-
the calculated hamonic pressure force on the though there was secondary flow at the tip of
body. The phase shift B was obtained by com- t.e triangular cylinder in the sway and roll
paring plots of the body displacement and pros- calculations, we found, as Vugts suggested from
sure force acting on the cylinder as functions his observation of these secondary vortices in
of time and measuring the shift in phase. A h~s experiments, that this did not disturb the
detailed description of the determination of ne, pressure force over the cylinder surface.
these coefficients is given in an earlier re- We believe these numerical experiments rein-
port.' The calculated added mass and damping force the usefulaess of linear, potential flow
coefficients for the cylinders in heave, sway, theory for computing the added mass and dampinq
and roll are shown in Figs. 1, 2, and 3. re- coefficients for various shaped bodies in low
spectively. The coefficiet are normalized by amplitude motions.
PA (pA for roll) and %/B62g, where p is the
fluid density, A is the mean submerged area, B Large Amplitude Studies
is the cylinder beam, and 9 is the acceleration
of gravity. Coefficients were calculated for The nonlinear effects associated with
normalized frequencies (i.e.. w v-Mg ranging large amplitude motions of floating cylinders
from 0.50 to 1.25 with B/T - 2.0 for the rec- may be illustrated with a two-dimensional tri-

angular cylinder in finite amplitude forced
sway. This study was performed with the two-

2.5 - v," (196e) 0 a/9-o.o
25  

dvnsional SOLA-SURF code. The amplitude of
o o0.O A. motion in the low amplitude studies discussed
v 9K.A-S W C above was 0.058 of the cylinder beam width

2.0 (0.02 m) at the still water level. The cylin-
- Law T" der draft was equal to 0.865 beam widths. The

finite amplitude studies were performed with
1.5 - ) amplitudes increased up to a maximum value of

0.430 of the beam width, at a normalized fre-
quency of 1.0. All other parameters remained

1. a) - the same as for the low amplitude studies.

.411 The main effect of this increase in apli-
0. -

)
tude Is to produce a significant decrease in
the phase shift of the dynamic pressure force
relative to the cylinder displacement pnase.

co . Figure 4 shows this phase shift and the amoli-
oWo 026 o0* .78 1o La .AO tude of the dynamic pressure force as functions

of the amplitude of motion. The phase shift
v-. reaches a maxims. of 0.90 radians at 0.04 m

amplitude and then decreases nearly linearly
for larger displacement amplitudes. This fig-

€&a , ure also shows, as expected, the linear In-
crease in the force amplitude as a function ofO.1 -the cylinder displacement amplitude. lhesetrends are reflected In the calculation of the

* hydrodynamic coefficients sbmwn in Fig. 5.
0100 Added mass and daping coefficients determined

0l0 00 020 0.15 WO ISO Leo from the linear theory reported by Vugts' are
Sincluded for comparison. The damping coeffi-

cient, Eq. 2, follows the trend of the phase
shift (0) shown in Fig. 4. This is expected

Fig. 1. A comparison of thsoraticl, nwuerice!, because for small phase shifts the coefficient
and experimental values of dded mass is proportional to the phase shift, while the

itop) and damping (bottom) cofficients force amplitude (y) increases nerly linearly
a rctangular cylinder in forced with the displacement 4lItude (a).

heive, with B/T 2.0.
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Fig. 2. A comparison of 
theoretical, numerical,

and experimental values of added mass Fig. 3. A comparison of theoretical, nuFPerical,
(top) and damping (bottom) coefficients and experimental values of addcd mass
for a 60* triangular cylinder in forced (top) end damping (bottom) coefficients
sway, 'ith B/T1.155. for a 60* triangular cylinder In forced

roll, with B/T-l.155.

The added mass coefficient, Eq. 1, for the
larger amplitudes of motion varies less than very high amplitudes will cause splashing and
10% from the lintr theory values. This fol- turbulence dissipation effects that must con-
lows from its weak dependence on B for small tribute to some damping.
B.

Potential Versus Nonpotential Flow
These results suggest that 

the linear

theory reported by Vugts does adequately pre- The flow field In the two-dimensional cal-
dict the added mass coefficients for the 60* culations of the triangular cylinder in sway
triangular cylinder In sway at this bew to shows secondary flow near the cylinder tip (see
draft ratio and for displacoment amplitudes of H1g. 6). AS notea above, the presence of this
motion up to nearly 50 of its beam width. For secondary flow vortex has virtually no ffect
the damping coefficitit, however, this is not on the net calculated force on the cylinder.
the case. For displacemnt amplitudes greater In an attempt to understand this, we modified
inan approximately 25% of the bem width, the the two-dimensional SOLA-SURF code so that non-
damping coefficient is significantly smaller linear potential flow can be computed as an in-
thin that predicted by linear theory. put option.

The detailed calculations reveal the rea- The basis of this modificaticn comes from
son for the decrersing phase angle B with In- the observation that the momentum equation dif-
creasing amplitude. Referring to Fig. 6, we ferenca approximation can be easily cast Into
set the velocity field of the fluid after 1.48 the form of the ptential flow equations. This
periods of motion for the four different apli- is done by eliminating all body, convective,
tudes of motion, 0.02. 0.09, 0.12, and 0.16 m. and viscous accelerations, ad also zeroing out
As the sway asplitude Is Increased, for a given the previous time step velocity field. The po-
frequency, the average body velocity Increases. tential function, s, Is then formally identI-
This causes the fluid to slosh further up find with dt - P in the code, where 8t is the
(down) the silas of the body, because surface time Incrment end P is the pres. re when the
waves do not move away fast enough. As a con- full Navier-Stokes equations are used. The In-
sequence the fluid reaction force on the wedge cressibility condition rwains unchanged.
teds to be more in phase with the body, i.e., The rigid wall boendary conditioni also remain
the phase shift B is reduced. Of course, this unchanged. At the froe surface, however, dif-
trend cannot continue indefinitely, because the
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ferent boundary conditions are needed for the
variable P when it is identified with the po-
tential. These conditions are derived under case are compensated for by more negative up-
the constraint that the g3s pressure at the stream pressures. As a result, the net forces
free surface must equal the pressure outside on the cylinder are nearly the same in the two
the liquid. By expressic, this condition in cases. The eddies generated in the nonpoten-
terms of the potential, appropriate free sur- tial case do not carry away kinetic energy be-
face boundary conditions are determined. We cause they are alternately generated and de-
prooftested this potential flow code by calcu- stroyed as the body moves to and fro.
lating the SOLA-SURF test problem,' i.e., the
formation and propagation of an undular bore, III. NONLINEAR THREE-DIMENSIONAL EFFECTS
The results compared well with the original
SOLA-SURF calculation, which makes use of the Nonlinear and finite length effects In-
full Navier-Stokes equations. fluencing the hydrodynamic forces on three-di-

mensional floating cylinders may be studied
A comparison is shown in Fig. 7 of the ye- using the SOLA-3D code. We utilized this

locity fields of a cylinder In sway after 1.48 three-dimensional code to investigate the end
periods from the SOLA-SURF code with and with- effects and nonlinear large ami! itude effects
out the nonlinear potential flow option. The associated with a finite length 60" triangular
difference between the irrotational and rota- cylinder in forced sway.
tional flow fields is obvious. The net calcu-
lated forces on the cylinder, however, are Finite Length
nearly identical for the two methods. Or the
other hand, the pressure profiles along the The parameters for these three-dimensional
cylinder boundaries in the two cases do differ. calculations were chosen for tomparison with
Figure 8 capares the pressure (plotted normal the two-dimensional calculations. Calculations
to the boundaries) on the 601 triangular cylin- were made with sway amplitudes of motion of
der assuming nonlinear potential flow and using 0.058 and 0.116 of the triangular cylinder beam
the full Navier-Stokes equations, The ampli- width, i.e.. 0.02 m and 0.04 m, at the still
tuds of motion for these calculations is 0.173 water level. The cylinder draft was equal to
beam widths (0.06 ml and the normalized fre- 0.865 bem widths and the normalized frequency
quency is 1.0. The pressure profile plotted is of motion was 1.25. The cylinder length to
after 1.48 periods, which corresponds to the draft ratio was varied from two to four. The
velocity fields In Fig. 7. At this time the resulting phase shift of the dynamic pressure
cylinder velocity is near zero as it ap roaches force relative to the cylinder displacement
the rightmost position of maxim. displacement. phase, and the amplitude of the hydrodynceic
As expected in the potential flow case, the force per unit length for the thre-dimansional
pressure near the tip on both sides of the cyl- calculations were virtually the same as the
inder 1S rre negative than elsewhere on the two-dimensional calculations. This brief study
corresponding side. which Is necessary to ac- suggests, therefore, that the end effects of
celerate the flow around the tip. In fact, the the triangular cylindr are not significant for
pressure is lower over the entire cylinder sur- low amplitudes of motion and for cylinder
face in the potential flow calculation than in length to draft aspect ratios greater than two.
the nonpotantial flow calculation. Although Length to draft ratios less than two were not
these pressure profiles differ, the less posI- Investigated.
tive doastream prissures in the potentialflow
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Typical velocity field plots for these low The three-dimensional calculations were
amplitude calculations are shown in Figs. 9 and for amplitudes of motion from 0.058 to 0.216 of
10. The entire velocity field in these planes the beam width, i.e., .020 m to 0.075 m. (At
is not shown, but only the region near the cyl- larger amplitudes the free surface slope near
inder. Also, the magnification of the velocity the cylinder end violated the code requirement
vectors varies from plane to plane. Velocity that the slope not be greater than the slope
fields in planes normal to the axis of the cyl- of the cell diagonal.) The draft of the 60'
inder are shown in Fig. 9. The left velocity triangular cylinder was G.865 beam widths and
field is of the plane nearest the cylinder end the length to draft aspEct ratio was two. As
and the right plot is of the velcity field in in the two-dimensional care, the force ampli-
the plane immediately outside the cylinder end. tude increased linearly as the cylinder dis-
At the time of these plots the cylinder is mov- placement amplitude increase' (see Fig. 11).
ing to the right after 2.11 periods of oscilla- However, as seen In Fig. 12 e decrease in
tion. The three-dimensional effect of the flow the phase shift of the dyn pressure force
is clearly shown in the right plot. The larger relative to the cylinder '-,'Iacement phase ob-
velocity flow at the left (downstream) edge of served in the two-dimensional case was not ob-
the cylinder does not continue past the cylinder served in these finite-length calculations.
end in this plane, but flows around the edge. The phase shift is less for all amplitudes of
This is also clearly shown in the right plot of motion but does not decrease significantly as
Fig. 10, which is of a horizontal plane near the the amplitude Incrt , . It is possible, how-
vertical center of the cylinder. The fluid ever, that at still ,rger amplitudes of motion
flows around the downstream side of the cylin- the phase shift woqld show a decrease.
der. The velocity field in the vertical plane
through the center of the cylinder and parallel The added m s and damping coefficients
to its axis is shown in the left plot in Fig. determined from these three-dimensional calcu-
10. Secondary vortex flow is seen near the cyl- lations are co.vared with the two-dimensional
inder end in all the planes shown. However, as SOLA-SURF date and linear theory in Figs. 13
in the two-dimensional calculations, these vor- and 14. In keeping with the two-dimensional
tices appear to have no significant influence on data, the a(Jed mass coefficieits are within a
the net hydrodynamic forces on the body. few per cert of the linear theory. lhe damping

coefficie t, again, follows the trend of the
Large Amplitude phase shift.

The most significant effect of the in- We earlier noted that in the infinite
crease in amplitude in the two-dimensional cl- length case the phase shift decreased as the
culations, as discussed above, was a signifi- body velocity increased (i.e., at larger ampli-
cant decrease in the phase shift of the dynamic tudrs of motion at a set frequency) because the
pressure force relative to the cylinder dis- ft Id sloshed further up (down) the sides of
placement phase. The force amplitude increased tie body and caused the force on the cylinder
linearly with the cylinder displacement ampli- to be more in phase with the body, i.e., the
tude. We made correspondingly large amplitude, phase shift was reduced. The probable reason
three-dimensional calculations to compare with for the phase shift not decreasing significant-
the two-dimensional study. ly in the finite length case is that at large

\ N.r./ t // /. ,:> ,

-ll - ".- V-

, .... . .li ... ',-- .
..... \\ \\\ .. .....''\\ ...

....... \................................

Fig. 9. Local velocities In planes normil to the ants of the three-dimensional triangular cylinder in
lo amplitude motion after 2.11 preriods. The left plot is the plane nearest the cylinder end
and the right plot is the plane ceadiately outside the cylinder end.
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I,). 1C. lielocities in a vertical plane through tte center of he cylirder and parallel tr. its axis
(left) and in a horizontal Fiae ntAr the vertical center of the cylinder (right) after
2.11 pertoe.s,

mplitudes of motion fl.id flows freely around the end for this time. The resulting free sur-

the cylinder end and does not build up at the face configuration is shown in Fig. 17.
sides.

IV. CIRCULAR CYLINDER IMPACT

abe flow pattern around the cylinder for
the large amplitudes reinforces this interpre- The SOI.A-SURF code was used to calculatetation. Figures 15 and 16 show the v thocity the force of impact on a circular cylinder
field near the cylirder for an amplitude of during constant velocity entry into a pool of0.1(3 beam width% (0.06 m) after two periods of water. The cyinder boundary was approximated
oscitltio. Again. the magnifcatln of the by straight line segments. The rgd-flu d in-
velocity vectors is different for each of the terface boundary condition applie to each line
planes. Velocity fields in planes normal to segment was successfully used for determining
th e axs ihe cylinder are shw In Fig. i . t he oa-SR ces ue rectangular and
The left Figprty vector plot Is of the plane triangular cylinders in forced motion discussed
nearest the cy irnder end. A l observed n Fig above. Specifically at the riyid-flu d inter-
6 for the two-dtvenscal cate, very strong face the cell pressure is derived from ahe con-
seconary ortax flow Is fomed near of theip of strain ht the norman fluid velocity be equal
te cylinder. The ri t pldfe In f g. 15 It of to that of the cylinder. As a free fluad sur-
the plant Immo dately outside the cylinder nd. face approaches a rgi boundary, a simple an-
At the ti e of these plots the cylinder has ear coination of the rigied mfree boundary
reached the certost point of Its dispacemnt condition is used. This Is needed to eliminate
aftee two period; of umnc llateon. The left plot the suddc transition in boundary conditionsn
in Fig, 16 of the velocity field In the which may result in excessively large pressure
vrtical plane troug , the c ter of the cyln- spkes. For partially submerged bdies moving
dr and parllel to Its axis. This shows the at relatively small velocities, this ad hocAt motion of the fluid at the end of the linear combination of boundary conditions work-
cylinder, resultins in the small vortex ff the ed very w ell. For the impact problem, how-
cylinder o io. The rileft plot in Fig. 16 shows ever, a modification win necessary beruse the
the seo1dary flow te the do strem side of fluid dd no snticipate the presence of the
the cylinder In the hoeizontal plan near the rigid boundary in sufficient time before impact
vertical center of the cylider. These veloci- nd the calculation consequently exhibit d un-

ty fields In selected planes show the flow acceptaluy large pressure oscillations.
aro d the cylinder end and doamrd flow lear Through a heuristic argument based on the need
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_-frequency pressure oscillation around 6 msec.
These oscillations are remnants of the discre-
tization fluctuations that are not completely
eliminated by the iiproved boundary condition
cominatlon discussed above.

V. CONCLUSIONS

Most ship hydrodynamic problems are solved
by linear potential flow methods. Some limits
of this approximate theory have been demon-
strated by comparisons of calculated results
using the SOLA-SURF code for the full, nonlin-
ear Navier-Stokes equations with linear theory
and the experimental data of Vugts. An essen-
tial assumption made in the linear theory is
that the amplitude of motion be small with re-
spect to the dimensions of the cylinder. In-
deed, when this is no longer the case, nonlin-
ear effects, as shown by the SOLA-SURF code.

Fig. 17. Local free suriace configuration re- can be significant.

sulting from the trargular cylinder in Three-dimnSional, finite length effects
sway motion after 2.0 periOdsM were determined not to be significant for cyl-

inders with either low or relatively high am-
plitudes of motion. Apparently the flow around

for an applied pressure on the fluid just suf- the cylinder ends, fir the short cylinders
ficient to bring the normal component of the studied, minimizes the pile up of fluid at the
fluid and body velocities into agreement at the fore and aft cylinder surfaces, which caused
time of impact, a boundary condition comina- the large amplitude effect in the case of In-
tion was derived that did force a smooth tran- finitely long cylinders.
sition between the free and rigid boundary con-
ditions. The new comlnation uses a quadrntic The calculations of the cylinder impacting
in the relative velocity term instead of the onto the free surface forced a needed improve-
linear term used in the earlier ad hoc expres- ment of tne transition from free to rigid sur-
sion. face boundary conditions. It also served to

further validate the SOLA-SURF code as a useful
The average pressure on the cylinder, i.e., tool for calculating nonlinear fluid flow prob-

the vertical force per ult length divided by lems.
the cylinder diameter, was determined for a
cylinder with a diameter of 8.25 inches and an
impact velocity of ?.70 ft/sec. The calcula-
tion was run to a time of 18.0 msec. At this
time the fluid has reached nearly go

0 
around

the cylinder. Velocity vector plots In Fig. 18
show the velocity field with the free surface
and the cylinder boundary at -7.85, 2.48, 10.75
and 18.00 msec. Because the calculation starts
some time before the cylinder hits the surface,
we shifted the calculated time scale so that 10
the computed and measured peak forces occur at
the !ame time. Re

A comparison of the insaeri cally calculated S .A-mw
average pressure and the experimental data are
shown in Fig. 19. (The experimental data are
for an impact velocity of 7.65 ft/sec. and the
computed data have been scaled from 7.70 ft/sec.
to 7.65 ft/sec. for this comparison.) The ex- 3 .

periment only had pressure transducers located ..c
along a portion of the lower surface of the
cylinder. When the cylinder was wetted beyond
the highest pressure gauge location the total
force was estimated in two ways. In the first.
extrapolation was used to estimate the unmeas- -... -L- L. I
ured surface pressures and resulted in the up- o t n 3 4 5 4 r
per of the two experimental curves appearing In MINC)
Fig. 19 after t-3.0 resec. The lower curve is
the result obtained using only the measured Fig. 19. Corparlson of numerically cnmputed and
data and ignoring the pressures in the unin- experimental data for the average pres-
strumented region. The agreement between the sure per unit length on an 8.25 in. di-
computed results and the upper experimental amter cylindo.r impactino with a con-
curve is excellent, except for some small, high stant velocity of 7.65 ft/sec.i 30
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DISCUSSIONS
of four papers

NUMERICAL SOLUTIONS OF TRANSIENT NONLINEAR FREE-SURFACE MOTION
OUTSIDE OR INSIDE MOVING BODIES

Odd M. Falinen

NUMERICAL SIMULATION OF SHIP MOTION BY EULERIAN HYDRODYNAMIC TECHNIQUES
G.. Sourcnoff and S.R. Penumaill

COMPUTATION OF NEAR-BOW OR STERN FLOWS,
USING SERIES EXPANSION IN THE FROUDE NUMBER

J.-M. Vanden Broeck and E.O. Tuckr NONLINEAR HYDRODYNAMIC FORCES ON FLOATING BODIES
B.D. Nichols and C.W. Hi

Invited Discussion that one can comment only upon the results.
Firstly, one can ask the same question here as

John V. Wehausen was asked above about the use of the Navier-
University of Ca~ifornia, Berkeley Stokes equation by Bourianoff & Penumalli. In

particular, is the viscous-fluid boundary condi-
tion used? If this condition is not satisfied,

I have very few comments on Faltinsen's I find it strange that vortices can be generated
paper. Out of curiosity, it might be interest- as in Figures 7 and 9. It is, of course, satis-
ing to know how big a penalty one pays by replac- fying to have a numerical assessment of the
Ing (9) by *(A,y) - 0. Does b(t) have to bc limits of validity of linearized theory. Earlier
much larger? It might help some readers if (35) assessments have been either from experiment or
were identified with the "radiation condition", from second-order calculations such as those of
At the bottom of p. 9 the author remarks that Lee, Parissis and Potash cited above. A com-
C. N. Lee's results do not show a significant pariso. with the latter would be of interest.
influence of nonlinearity. From his point of
view he is probably right. However, the differ-
Ences calculated by Lee, Parissis and by Potash Author's ReltJ. Ship Res. I._5 (1971), 295-324) are significant by OddWN.Faltinsen

enough to be measurable and show reasonable to discussion by John V. Wehausen
agreement with experiment when the amplitudes
aren't too large, as shown by Tasai & Koterayama Professor Wehausen asked how large b(t)
Rep. Res. Inst. App]. Mech. Kyushu Univ. 24 has to be in order to approximate *(x,O) by
1976), no. 77, 1-39. z ero when lxi , b(t).

I have a few problems with the paper by I have not examined this systematically,
Bourianoff & Penumalli. The first concerns the but I found quite erroneous answers by using
use (f the Navier-Stokes equations and an such an approximation for the b(t)-values used
"artificial viscosity". Is this aimed at ob- in my paper.
taining a more exact model of a fluid or does
it have significance only as a device to simpli-
fy the numerical analysis? If the former, is Author's ReDI
the usual viscous-fluid boundary condition satis- by George I. Bourianoff and B.R. Penumalli
fled? Anotner question concerns the equations to discussion by John V. Wehausen
of moti' (2.3) and (2.4). If (2.3) is the
equation for the motion of the center of mass, The coent about artificial viscosity can
shouldn't the angular motion be referred to a best be answered by first supplying some back-
coordinate system fixed in the body with moments ground information. It is well-known that the
taken about the center of mass? Other choices explicit forward time differencing of the force
usually lead to more complicated equations. A equation results in a numerical error that is
similar remark applies to sm later equations. second order In ax. This error term can have

either positive or negative sign, depending on
Since drift forces are calculated, it would the direction of local spa 'I gradients. The

be interesting to see some cemiparlsons with "artificial viscosity" is a . itive dissipative
analytically derive1 expression? by Newman [J. term that is larger in magnitude than the largest
Ship Res. 11, 51-60] and Naruo J. Ship Res. 4, error term. Therefore, the net second-order term
no. 3, 1-101. There are also some recent meaZ (numerical error plus artificial viscosity) will
surements. remain positive and the calculation will remain

stable.
The paper by Vanden Broeck and Tuck is very

Interesting. I think I have understood what It is possible tu ise centered tiw di fer-
has been dons, but I have not digested it well encing techniques or predictor-corrector tech-
enc h to coment s4usibly. niques that have smaller or no second-order

error. These techniques require more .omputer
Th" numerical analysis in the paper by time and am.' unre difficult to implemnnt. There-

Nichols & Hirt has been ouhlished elsewhere, so fore. the inclusion 'if an artific. viscosity
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term is simply a device to allow the use of a
simple fast numerical technique in the present
analysis. The no-sl!p boundary conditions were
used at all fluid-solid interfaces, and hence
there is no coupling of the viscous drag force
to the floating body.

Dr. Wehausen's second point is well taken
since there is a term left out of equation (2.4).
The term is included when the equation is rewrit-
ten on page 6 and it is included in the calcu-
lation.

SA

I
a



CONFERENCE PARTICIPANTS

ADEE, BRUCE H., Unive 'ly of Washington, Seattle, Washington, USA
BABAI EIICHI, Mitsubishi Heavy Industries, Nagasaki, JIapan
BAl. K.J., DTNSRDC, Bethesda, Maryland, USA
BANNISTER, KENNETH A., Naval Surface Weapons Center, Silver Spring, Maryland, USA
BASTIANON, RICARDO A., instituto tde Tecniologla Naval, Buenos Aires, Argeotina
BORIS, JAY P., U.S. Naval Research Laboratory, Washington, D.C., USA
B#RRESEN, ROLF, The Ship Research Institute of Norway, Trondheim, Norway
BOURIANOFF, GEORGE, Austin Research Aasociates, Inc.. Austin, Teuas, USA
BOYNTON, FREDERICK P., Physical Dynamics Inc., 8erlaley, California, USA
BYERS, DAVID W., Naval Ship Engineering Cent- r, Washilngton, D.C., lUSA
CAGLE, BEN .. Office of Naval Research. Pasadena, California. USA
qALIAL, SANDER Md., U.S. Naval Academy, Annapolis, Maryland. USA
CHAN, ROBERT K.-C., JAYCOR, Del Mar, California, LISA
CHANG, Md. S., DTNSRDC, Bethesda, Maryland, UJSA
CHAPMAN, R. R., Science Applicatilons, Inc.. La Jolla, Califorrnia. USA
CHASZEYKA. MICHAEL A., Office of Navel Retearch, C"hicago, Illinois, USA
CHEN, HSAO.HSIN, American Btbreati of Shippig, Nt .ork, USA
COLEMAN, RODERICK Md., DTNSRDC, Bethesda, Maryland, USA
COLLATZ GUENTER, The Hamburg Model Biln, Hamburg, Germany
COOPER, RALPH D., Ottficc of Naval Research, Arlington, Virginia. Ur."A
CORDONNIER, J.-P. V., Unlversil6s de Nantes. Nantes, rrance
CUJMMINS, WILLIAM F_. DTNSIIDC, eethesda, Mariland, USA
DAOUD, NABIL, University of Michigan, Ann Arbor, Michigan. USA
DAWSON, CHARLES W., DTNSRDC, Betheada, Maryland. USA
!DEMANCHE. JEAN FRANCOIS, Bassly d'Essala des Cardnes, Paris, f-rorce
DERN, J1. C., Bassin d'Essala des Caranes, Paris, France
DOCTORS. LAWRENCE J., DTNSRDC. Bethosda, Maryland USA
EGGERS, KLAUS, Hamburg University, Hamburg, Weal Germany
EUVRARD. DANIEL, ENSTA, Paris, Franca
FALTINSEN. ODD. Norges Telmniake Hogskole, Trondheim. Norway
FEIFEL, WINFRIEL Pd., The Boeing Comnany, Revlon, Washington, USA
FRITTS, MARTIN J.. Naval Reosearch I .,tb atr Washington, D.C., UISA
GADD,G. L., National Maritime Institute, Feitham. Middlesex, England
OARRISON. C. J., Naval Postgraduate School, Monterey, California, USA
GLEISSNER. GENE H., DTNSF;DC, Bet head,, Maryland, USA
GOODMAN, THEODORE, Stisvens Institute of Technology, Hobokean, Now Jorsey, USA
HAIKOV, ANRI J., BSHC. Verne, Bulgaria
HAUSSLING, HENRY J.. DTNSRDC, Bothea. Maryland, USA
HERMANS, AAD J., Delft ITechnical University, Delft, The Natherravia
HERSHEY. ALLEN V., Naval Surface Weapona Canter, Dahigren, Virginia, USA
HESS JOHN L, John L. Haas Astsociates, Long Beech, California, USA
HIRT, CYRIL W., Loa Alamos Wcentific Laboratory, Loa Alamos, New Mexico USA
HOLT, MAURICE. University of California, Berkeley, California. USA
HONG, YOUNG S., Conaulting Naval Archietr.t Berkeley, California, USA
IIOSODA. RYUSUKE, University of California, Berkeley, California, USA
HSIUNG, CHI.CHAO, Missiasippi Slte, University, Mississippi, USA
HWANG, ALLEN Y.*L, University of California. Berkeley, California, USA
INUL TAKAO, U~niversity of Tokyo. Tokyo. Japan
JIACOBSEN, BENT K., Daniah Ship Research Laboratory, Lynigby, Denmark
JIANCJ, CHEN-WEN, Massachusetts Institute of Technology. Cambridge, Massachusetts, USA

391



JIIANG, CHEN-WEN, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
JONES, GARY, Naval Ship Engineering Center, Washington. D.C., USA
KAHN, LAWRENCE A., Operat~ons Ressarcni, Inc., Silver Spring, Maryland, USA
KENNELL. COLEN 0., Naval Ship Engineering Center, Washington, D.C., UISA
KINOSHITA, TAKESHI, Yokohama National Univorsity, Yokohama, Japan
KORVING. CORNELIS, Delft Technical University, Deift, The Netherlands
KUSAKA. YUZO, Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo. Japa
KUX JURGEN, Universitit Haniiuug, Hamburg, Germany
LANDWEBER. LOUIS, The University of Iowa, Iowa City, Iowaf, LISA
LAROCX, BRUCI- E, University of California, Davis, California, LISA
LARSSON. LARS A-, Swedish Slate Shipbuilding Experimental Tank, GOtearg, Sweden
LAU, RICHARD, Office of Naval Rtesearch, Pasaidena, California, USA
LEE, CHOIING N., DTNSADC, Bethesda, Maryland, USA
LOKEN, A. E., Dol Norske Vefitas. Oslo, Norway
LONGUET-HIGINS, N. S., University of Cambridge, England
LUNDEGARO, R. J., Office of Naval Research Washington, D.C., USA
MAGNUS, ALFRE' Boeing Company, Sroatta, Washington, USA
MARIN. SAMUEL, Carnagie Mellon University, Pittsburgh, Pernasylvania, USA
M.ARUO, NAJINE, Yokohama National University, Yokohmna, Japan
NC CATHY, JIUSTIN H_, DTNSRDC, Bethesda, Maryland, USA
MILES, MICHAEL D., National Rtesaarch Council, Otiawa, Ontari(, I.;nada
MINER. F 'VADE, Naval Reasearch t aboratory. Waahint31on, D C., USA
MOLIN, BERfJARD, institul Franis du P61roie, Ifueil-MainaIson. Franca
MONACELLA. VINCENT J., DTNSRDr, Bethesda, Maryland. UISA
MORGAN, WILLIAM B.. OTNSRDC, Bethesda, Maryland, USA
MORI, KAZUHIIIO, Hiroshima University, Hliroahima Japa
NAGHOI. PAUL N., University of California, Berkeley. Calilorwe USA
NEWMANJ. NICHOLAS 401ssschusetts Instiltule of Technology, Cambridgii. Massachusati, USA
NICHOLS, S. 0., Los Alamos Scientf ic Laboratory, boa Alamoa. Now Mexico. USA
NOWACKI, HORST, Technical University of Bertin, Berlin, Weal Germany
OGILVIE, T. FRANCAS, University of Michigan, Ann Arbor, Michigan, UISA
OHAING. SAMUEL, DTNSIC, Bethesda, Maryland, USA
PIENUMALLI, B. REDDY, Austin Rtesearch Asaociates, Austin, Texas, USA
PETTERSEN. OJ0RNAR, Technical University of Norway, Trondheimi, Norway
PINESTER. JO A., Netherlands Ship Model Basin, Wageninguri, The Netherlands
POWELL, ALAN, DTNSRDC, Bethesda, Marylainc, USA
PRITCHETT, JOHN W., Systems. Scienice & Softwrare, La Jolla, Calif ornia, USA
RATTAYYA, JASTI, L~ockiheed Missiles & Space Company, Inc., Sunnyvale, California, USA
REDDALL, WALTER F., The Asroopaca Corporation. El Segund<o. Calif orila USA
ROGERS, JOEL C.W., Applied Physics Laboratory, Johns Hopkins University, Laural. Maryland USA
SALVESEN, NILS, DTNSRiOC, Bethesda, Maryland, USA
SAYER, PHILIP, Uli~iorsily of Manchester, Manchester. England
SCHMIECHEN, MICHAEL, Berlin Model Basin, Berln, Germany
SCHO r, JOANNA W., DINSROG, Betfuadt Maryland, USA
SCHUBERT. CHRISTIAN, Technical Univorjity of Berlin, BWrin, West Germany
SCRAGO, CARL A., OTNSAiOC, Bethesda, Maryland, USA
SEIDL., LUDWIG H., Un~veruity of Hawaii, Hlonolulu, Hlawaii, USA
SMITH, NEILL, Navel Coastal Systems Laboratory, Psnama City. Florida, UISA
BOO11ING, HEINRICH, Technical University of Hannover, Hannover, Weat Germany
ZPARENEENG. J. A_, University of Gron'ngeo. Grurnlngei., ,oliarsi

STREET, R, L., Stanford University, Staiford, California USA
TELSTE, JOHN G., CTNSIIOC, Bethesda. Maryland, USA
THOMPSON. JOE F., Mlvslanippi State University. Mississippi, USA
THOMBO4. ALFX J., Physical Dynam~cs hiK, Berkeley, Californiia, USA
TSUTSl.MI, TAKAVUKI. fishikawalIma Herlima Heavy lodustrlee Co., Ltd., Yokohama Japan

306



TUCK, E. 0., University of ,delaife, Adelaide, Australia
TULIN, MARSH4ALL P., Hydroiutics, Inc., Laurel, Maryland, USA
URSELL, F., University of Manchester, Manchester, England
VANDEN SNOECK, J. M., Univeraity of Adelaide, Adelaide, Australia
VANDER VORSY. MICHAEL, JAYCOR, Del Mar, California, USA
VAN DYKE MILTON U., Stan~ord University, Stanford, Califo~rnia, USA
VAN DYKE, PETER, flydronautlcs, Inc., Laurel, Maryland, USA
VAN OORTMERSSEN, GERARD, Netherlands Ship Model Basin, Wageningen, The Netherlands
VINJE, TOR, Technical University of Norway, Trondheim, Norway
VON KENCZEK. C., DTNSROC. Bethesda, Maryland, USA
WALDEN, DAVID A., U.S. Coast Guurd. Washington, D.C., USA
WEBSTER, WILLIAM C., University of California, Berkeley, California. USA
WEHAUSEN. JOHN V., University of California, Berkeley, California, USA
WhIITNEV, ARThUR, Lockheed Missiles & Space Company, Inc., Palo Alto, California, USA
WINTER, DONALD F., University of Washington, Seattle, Washington, USA
WU, THEODORE Y, CailfornIa Institute of Technology, Pasadena, California, USA
YEN, SHEE-MANG, University of Illinois, Urbana, Illinois, USA
YEUNG, RONALD W., Massachusotts Institute of Technology, Cambridge, Massachusetts, USA
YIN, BOHYUN, DTNSRDC, B6, .sUaMarylaesd,.USA
YUEN. HENRY C.. TRW Defense & Space Systems, Redondo Beach, California, USA
ZARDA. P. RICHARD, DTNSRD)C. Bethesda, Maryland, USA
ZIEN. T- F., Naval Surface Weapons Canter. Silver SprinG, Maryland, USA

399


